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A monotonicity property of Euler’s gamma function

By JOSE A. ADELL (Zaragoza) and HORST ALZER (Waldbrol)

Abstract. Let

_logI'(z+1)
B x

A(x) (-1<z#0), A0)=-—n.

For alln=0,1,2,... and x > —1, we show that
1
(—1)" AT (2) = (n + 1)!/ "¢ (n + 2, zu + 1) du,
0

where ¢ denotes the Hurwitz zeta function. This representation implies that A’ is
completely monotonic on (—1, c0). This extends a result published in 1996 by GRABNER,
TicHYy, and ZIMMERMANN, who proved that A is increasing and concave on (—1,00).

1. Introduction and main results

In this note we are concerned with the function

_logI'(xz 4 1)

A(r) = £

(—1<z#0), A(0)=-,

where I' denotes Euler’s gamma function and « is Euler’s constant. In the recent
past, several authors studied interesting monotonicity properties of A as well as
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other functions defined in terms of A (see, for instance, [3], [4], [5], [7], [8], [9],
[10]).

GRABNER et al. [6] proved that A is increasing and concave on (—1,00) and
used their result to present an upper bound for the permanent of a 0 — 1 matrix.
VocaT and VoIGT [11] showed that the function = — A(z) — log(x + 1) + 1 is
completely monotonic on (—1,00).

We recall that a function f : I — R is said to be completely monotonic, if f
has derivatives of all orders and

0<(=1)"fM™(z) (n=0,1,2,...; z€l).

Completely monotonic functions have important applications in probability and
potential theory, in numerical and asymptotic analysis, and in other fields. The
main properties of these functions are given in [12, Chapter IV]. In [2] one can
find a detailed list of references on this subject.

The result of Grabner et al. yields

0< (—1)"AM ) (z) (n=0,1;2 > —1), (1.1)

whereas the monotonicity theorem of Vogt and Voigt leads to the inequality

n!

(n=0,1,2,...; x> —1). (1.2)
In view of (1.1), it is natural to ask whether A’ is completely monotonic on
(—=1,00). A positive answer to this question is given in the following theorem
which provides, in addition, a closed form expression for (—1)"A™+1)(z) in terms
of the classical Hurwitz zeta function

oo

1
C(S,a): m (8>1, Cl>0)

m=0

Theorem 1.1. Let n be a nonnegative integer and let x be a real number
with x > —1. Then,

(—)"ATHY (1) = (n +1)! /1 u" T (n + 2, 2u + 1) du. (1.3)
0

As a consequence, A’ is completely monotonic on (—1,00).

Remark 1.1. From (1.3), we have for n > 1:

ACO) = (1" 1),

where ¢ denotes the Riemann zeta function.
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Remark 1.2. If b’ is completely monotonic on I, then exp (—h) is also comp-
letely monotonic on I. This result can be proved by applying the Leibniz rule
and induction. Thus, setting h = A and I = (—1, 00), we conclude from Theorem
1.1 that the function

O)=Tx+1)"Y*" (=1<z#£0), O0)=exp(y),

is completely monotonic on (—1,00).

A consequence of Theorem 1.1 is that the upper bound in (1.2) is asympto-
tically sharp, as stated in the following corollary.

Corollary 1.2. For any nonnegative integer n, we have

1 n+1
i EEDT

z—00 n!

(=1)"ACH () =1, (1.4)

In order to prove Theorem 1.1 we need a lemma. It states that a certain
function, defined in terms of the exponential function, is completely monotonic
on R.

Lemma 1.3. Let N > 0 be an integer and

N
_ —z z™ _N-—1 _ 1
gn(x) = ll—e mZOm,] v @#0), owO=rmry (9
Then we have for n > 0 and x € R:
1 1
(—1)”91(\7)(@ = ﬁ/o eyt dy, (1.6)

In particular, gy is completely monotonic on R.

2. The proofs

Proor or LEMMA 1.3. We get

xiNil * —t ;N 1 ! —zu, N
gn(x) = N /Oe t dt:ﬁ/oe u' du.

Differentiation leads to (1.6). O
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PrOOF OF THEOREM 1.1. Let x > —1, ¢t > 0, and n > 0. We obtain

x O, xz 7'('2
A/(x):dJ( +1)71 gr(2+1) (:c#()), A/(O):i

T T 12’

where ¢ = I""/T" denotes the digamma function. Using the integral formulas

log I'(2) = /OOO {(z S )et - e_t_e_t} @ s

1—et t
and
e o] e—t e—zt

(see [1, pp. 258, 259]), we get

A(z) = /OOO 1’5_6;% g1 (xt) dt, (2.1)

where g; is given in (1.5). Applying (1.6) with N =1 and

we obtain from (2.1) and Fubini’s theorem

o0 gntle—t

(—1)"ACHD () = / —(—1)mg{™ (at) d

o 1l—et
o] o 1
— / tn-l—le—t Z e—mt/ e—xtuun+1 du dt
0 0 0
1 0o 00
_ / un+1 Z / tn+1€7t(m+wu+1) dt du

_ il I'(n+ 2) J
/ Z (m+ zu + 1) +2 "

= (n+1)./0 u" ¢ (n + 2, zu + 1) du.

This completes the proof of Theorem 1.1. ([
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PROOF OF COROLLARY 1.2. Let n > 0 and z > —1. We make use of (1.3)
and get

1

1 [e's)
1 nA(n+1) — 1'/ n+1§ :
=1 (@) =(n+1) 0 " oo (m+ zu + 1)7+2 du

1 [e%e]
1
1)! "“/ . _dtd
(n+ )/Ou | Grrar e U

1 un+1
= n!/o (7du (2.2)

u + 1)ntt T

v

From (2.2) and (1.2) we obtain

1 n+1 n+1
/ (W> du < (& + 1" (—1)"ACHD (z) < 1.
o \zu+1 n!

Applying the dominated convergence theorem we conclude that (1.4) holds. [
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