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Generalized skew derivations on nest algebras characterized
by acting on zero products

By XIAOFEI QI (Taiyuan) and JINCHUAN HOU (Taiyuan)

Abstract. Let A/ be a nest on a Banach space X with N € AN complemented
in X whenever N_ = N, and let AlgN be the associated nest algebra. Assume that
¢ : AlgN — AlgN is an automorphism and § : AlgN — Alg\ is an additive map.
It is shown that, if § is ¢-derivable at zero point (i.e., satisfies 6(A)B + ¢(A)d(B) = 0
whenever AB = 0), then there exists an additive ¢-derivation d : AlgAN — AlgA such
that §(A) = d(A) + 6(I)A for all A € AlgN. Moreover, by use of this result, the linear
maps generalized ¢-derivable at zero point are also characterized.

1. Introduction

Let A be an algebra with unit 7 and ¢ : A — A an additive (linear) map.
Recall that ¢ is called an additive (linear) derivation if 6(AB) = §(A)B + Ad(B)
for all A, B € A; if there is an additive (linear) derivation 7 : A — A such
that §(AB) = 6(A)B + A7r(B) for all A,B € A, then § is called an additive
(linear) generalized derivation and 7 is the relating derivation. Derivations and
generalized derivations are very important maps both in theory and applications,
and have been studied intensively (see [5], [8], [11], [14], [15]).

Recently, more and more mathematicians are interested in characterizing
the maps (generalized) derivable at some point. Recall that § is derivable at

Mathematics Subject Classification: 47L35, 47B47.
Key words and phrases: Nest algebras, derivations, the maps ¢-derivable at zero point, the

maps generalized ¢-derivable at zero point.
This work is partially supported by National Natural Science Foundation of China (No.

10771157), Research Grant to Returned Scholars of Shanxi (2007-38) and Foundation of Shanxi
University.



458 Xiaofei Qi and Jinchuan Hou

some point Z € A if 6(A)B + Ad(B) = 6(AB) for all A,B € A with AB = Z;
is generalized derivable at Z if there exists an additive map 7 on A which is
derivable at zero point such that §(AB) = 6(A)B + A7r(B) for all A, B € A with
AB = Z. Tt is obvious that the condition of (generalized) derivable maps at some
point is much weaker than the condition of being a (generalized) derivation. JING
et al. in [12] showed that, for the case of nest algebras on Hilbert spaces, the set
of linear maps derivable at zero point with §(I) = 0 coincides with the set of inner
derivations. ZHU and XI1ONG showed in [17] that every norm continuous linear
map generalized derivable at zero point between finite nest algebras on Hilbert
spaces is a generalized inner derivation (i.e., has the form A — T A+ AS). Note
that in [17], authors gave another definition for maps generalized derivable at
zero point: ¢ is said to generalized derivable at zero point if §(AB) = §(A)B +
Aé(B) — AS(I)B for all A,B € A with AB = 0. It is easy to prove that their
definition is a special case of ours. For other results, see [4], [10], [13], [18].

The concepts of (generalized) derivations have been generalized. Let ¢ be an
automorphism of A. An additive (linear) map ¢ : A — A is called a ¢-derivation
if 5(AB) = 6(A)B + ¢(A)6(B) for all A, B € A; if there is an additive (linear)
¢-derivation 7 : A — A such that 6(AB) = §(A)B + ¢(A)7(B) for all A, B € A,
then § is called an additive (linear) generalized ¢-derivation and 7 is the relating
¢-derivation. It is obvious that (generalized) ¢-derivations are usual (generalized)
derivations if ¢ is an identity map. The structure of ¢-derivations has been studied
(see, for example, [1], [2], [6]).

Motivated by the maps (generalized) derivable at some point, we give the
concepts of the maps (generalized) ¢-derivable at some point. We say that ¢ is
¢-derivable at some point Z € A if §(A)B + ¢p(A)d(B) = 6(AB) for all A,Be€ A
with AB = Z; is generalized ¢-derivable at Z if there exists an additive map 7
on A which is ¢-derivable at zero point such that §(AB) = 6(A)B + ¢(A)7(B)
for all A,B € A with AB = Z.

The purpose of this paper is to characterize the maps (generalized) ¢-deriv-
able at zero point on nest algebras on Banach spaces. Let A be a nest on a
Banach space X with N € A complemented in X whenever N_ = N, and let
Alg N be the associated nest algebra. Assume that ¢ : Alg N — Alg N is a ring
automorphism and § : AlgN — AlgN is an additive map ¢-derivable at zero
point. In Section 2, we show that ¢ has the form §(A) = d(A) + 6(1)A for all
A € Alg N, where d : AlgN — Alg N is an additive ¢-derivation (Theorem 2.1
and 2.2). In Section 3, by use of Theorem 2.1 and 2.2, we give a characterization
of the maps generalized ¢-derivable at zero point on Alg N (Theorem 3.1).

Let X be a Banach space over the real or complex field F. B(X) denotes the
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algebra of all bounded linear operators on X. A nest N on X is a chain of closed
(under norm topology) subspaces of X which is closed under the formation of
arbitrary closed linear span (denote by \/) and intersection (denote by A), and
which includes {0} and X. The nest algebra associated to the nest A/, denoted by
Alg N, is the weak closed operator algebra consisting of all operators that leave
N invariant, i.e.,

AlgN ={T € B(X): TN C N for all N € N'}..

When N # {0, X}, we say that A is non-trivial. If NV is trivial, then Alg/N =
B(X). For N e N, let N_ =\/{M e N'| M C N}. Denote D(N) = J{N € NV |
N_ # X}. Tt is clear that D(N) is dense in X. For more information on nest
algebras, we refer to [7].

It is clear that every nest algebra on a finite dimensional space is isomorphic
to an upper triangular block matrix algebra. Let M,,(F) denote the algebra of
all n x n matrices over F. Recall that an upper triangular block matrix algebra

T = T(n1,ne,...,ng) is a subalgebra of M,,(IF) consisting of all n X n matrices
of the form
A A oo Ay
0 Agy ... Ao
A= | | . |
0 0 ... Am
where ni,nq,...,n, are finite sequence of positive integers satisfying ny + ns +

-+ np =n and Aj; € My, xn,; (F), the space of all n; x n; matrices over F.

2. Characterization of skew derivations

In this section, we consider the additive maps ¢-derivable at zero point on
nest algebras. The following are our main results.

Theorem 2.1. Let N be a nest on an infinite dimensional Banach space X
over the real or complex field F with N € N complemented in X whenever
N_ = N and AlgN the associated nest algebra. Assume that ¢ : AlgN —
Alg N is a ring automorphism and § : AlgN — Alg N is an additive map ¢-
derivable at zero point. Then there exist an invertible operator T € AlgN, a
scalar A and an additive ¢-derivation d : AlgN — Alg N such that §(I) = AT
and 6(A) = d(A) + 6(I)A = d(A) + AT A for all A € AlgN.
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Remark 2.1. If X is a Hilbert space, the assumption on nest N in the above
theorem is superfluous.

For the finite dimensional case, we have

Theorem 2.2. Let I be the real or complex field, and n be positive integers
greater than 1. Let T = T (n1,na,...,nk) € M, (F) be an upper triangular block
matrix algebra. Assume that ¢ : T — T is a ring automorphism and 6 : T — T
is an additive map ¢-derivable at zero point. Then there exists an additive ¢-
derivation d : T — T such that §(A) = d(A) +d(I)A forall A T.

As an immediate consequence of Theorem 2.1 and 2.2, we get the following
corollary which generalizes the main theorem in [12].

Corollary 2.3. Let N be a nest on a Banach space X over the real or
complex field F with N € N complemented in X whenever N_ = N and Alg /N
the associated nest algebra. Assume that § : AlgN — Alg N is an additive map
derivable at zero point. Then there exist a scalar A and an additive derivation
d: AlgN — Alg N such that 6(A) = d(A) + A\A for all A € AlgN.

Remark 2.2. By [8, Theorem 4.1], additive derivations on nest algebras on
infinite dimensional Banach spaces are linear. Hence, if X is infinite dimensional
in Corollary 2.3, then there exists an operator S € AlgN such that §(A) =
AS — SA+ M\A for all A€ AlgN.

Before proving main theorems, we need the following lemma which appeared
in [9].

Lemma 2.4 ([9, Lemma 3.2]). Let N be a nest on a (real or complex)
Banach space X. If N € N is complemented in X whenever N_ = N, then the
ideal Algz N of finite rank operators of Alg N is contained in the linear span of
the idempotents in Alg N'. Moreover, for every rank one nilpotent operator F in

Alg N, there exist idempotent operators P, @ in the nest algebra Alg N such that
F=P—-Q.

PROOF OF THEOREM 2.1. We will prove the theorem by checking several
claims.

Claim 1. There exist an invertible operator T' € Alg N and some scalar \
such that 6(I) = AT.
For any idempotent P € Alg N, it is obvious that P(I — P) = (I — P)P = 0.
Since § is ¢-derivable at zero point on AlgN, we have
0=0(P(I—-P))=6P)I—-P)+¢(P)S(I—-P)
=0(P) = 6(P)P + ¢(P)o(I) — p(P)s(P)
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and 0= (I — P)P) = (I — P)P+ ¢(I — P)5(P)
=§(I)P — 6(P)P + ¢(I)6(P) — &(P)(P).
Comparing the above two equations, we get
0(P) 4+ ¢(P)o(I) = ¢p(I)o(P) + 6(I)P. (2.1)

Since ¢ is an automorphism of Alg N, it is obvious that ¢(I) = I, and by [9],
¢(A) = TAT! for all A € AlgN, where T € Alg N is an invertible operator. So
equation (2.1) yields TPT~§(I) = 6(I)P, that is, PT~16(I) = T~16(I)P for all
idempotent P € Alg . By Lemma 2.4 and the fact that the set of finite rank
operators is strongly dense in Alg N, it follows that there exists some A € F such
that T=16(1) = M. Hence 6(I) = AT

Claim 2. There exists an additive map h : F — F such that §(al) =
h(a)T and 6(aP) = ad(P) + h(a)TP — aXTP for every scalar a € F and every
idempotent P € Alg NV.

For any idempotent P, since aP(I — P) = (I — P)aP =0, we have

0= 8(aP(I — P)) = §(aP)(I — P) + ¢(aP)5(I — P)
= §(aP) — 6(aP)P + ¢(aP)3(I) — p(aP)5(P)

and
0=46((I — P)aP)=46(I — P)aP + ¢(I — P)j(aP)
=0(I)aP — 6(P)aP + §(aP) — ¢(P)d(aP).
That is,
d0(aP) = 6(aP)P + ¢(aP)o(P) — p(aP)é(I)
= §(aP)P + ¢(aP)é(P) — A\aT P (2.2)
and

d(aP) = ad(P)P + ¢(P)é(aP) — ad(I)P

= ad(P)P + ¢(P)d(aP) — AaTP. (2.3)
Comparing equation (2.2) with (2.3), we get
ad(P)P + ¢(P)o(aP) = 6(aP)P + ¢(aP)s(P). (2.4)
Similarly, by Pa(I — P) = (I — P)P =0, one can get
0(al)P + ad(P) = §(aP)P + agp(P)s(P) (2.5)
and
d(P)d(al) + ad(P) = ad(P)P + ¢(P)d(aP). (2.6)

Combining equations (2.4)-(2.6), we have ¢(P)dé(al) = é(al)P. By a similar
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argument with that of Claim 1, there exists a map h : F — F such that §(al) =
h(a)T. It is clear that h is an additive map. Now combining equation (2.3) with
(2.6), we get 6(aP) = ad(P) + h(a)TP — aATP.

Claim 3. d(aF) = h(a)TF + ad(F) — aATF for all finite rank operator
F e AlgN and X €F.

Firstly, we’ll prove that §(az ® f) = h(a)T2® f+ad(z® f) —a Tz ® f for
all rank one operator z ® f € Alg /. We prove this by considering three cases.

Case 1. (z,f) = 1. Then x ® f is an idempotent. By Claim 2, the claim
holds.

Case 2. (z, f) = 0. By Lemma 2.4, Case 1 and the additivity of §, the claim
is true.

Case 3. (x,f) = 8 # 0,1. Then P = 372 ® f is an idempotent. We first
show that h(af) = h(a)B + ah(B) — Aap for all o, 8 € F. In fact, take any rank
one square zero operator x @ f € Alg . By Case 2, for every «, 8 € F, we have

dafr® f)=h(af)Tr® f+afd(z® f) — AafTs @ f.
On the other hand,

0(afr @ f)=h(a)Tr @ f+ad(fr® f) — AT Bz ® f
=h(a)BTzr® f 4+ ah(B)Tz @ f+ aBfd(z @ f) =2 afTr @ f.

Comparing the above two equations, we get (h(af) — h(a)B — ah(B) + Aap)Tx ®
f =0, which implies that h(af8) = h(a)B + ah(8) — Aaf. Now by Claim 2, we
have

(@)
(a)BTP + a(h(B)TP + Bé(P)) — 2 aBTP
(a)BTP + a(3(BP) + \BTP) — 2\afTP

()BT P + ad(BP) — AaBTP
(@) Tz f+ad(z® f)—AaTx® f.

Since every finite rank operator in Alg A is the sum of rank one operators in
Alg NV, the claim holds.

Claim 4. For any operator A € Alg N and any rank one operator z ® f €
Alg N, we have 6(Az @ ) =0(A)z @ [+ ¢(A)d(z ® f) — A\TAz ® f.
We prove the claim by distinguishing three cases.
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Case 1. (z,f) =1. Since A(z@ fI—2® f) = Al -2 f)(z® f) =0, we
have

S(Az® f) =8(Az @ f)(z @ f) — \NTAz @ f + ¢p(Az @ f)é(z @ f)
and

S(Az@ )z @ f) + p(Az @ )iz @ f) = 6(A)z @ f+ ¢(A)d(z @ f).

Comparing the above two equations, it follows that the claim is true.
Case 2. {z, f) = 0. By Case 1 and Lemma 2.4, the claim is true.
Case 3. (x,f) = 8 #0,1. Then z ® f = BP for rank one idempotent P =
B~ lre f e AlgN. Let S = (I —P)A(I—P). It is clear that S(8P) = (8P)S =0
So
3(S)(BP) + ¢(S)6(BP) = Bo(S)P + BH(S)d(P) + h(B)$(S)TP — ABS(S)TP
= BO(S)P + Be(S)d(P) = 0. (2.7)
Note that A — S is a finite rank operator. By equation (2.7), Claims 2-3 and
Case 1 of Claim 4, we have
6(Az ® f) = 0(A(BP)) = 6(B(A - S)P)
=0(B(A=5))P+¢(B(A—S5))0(P) — ABT(A - S)P
=h(B)T(A—=S)P +B6(A—S)P+¢(B(A—5))5(P) —2ABT(A—S)P
h(B)T AP + BS(A)P + Bp(A)6(P) — 2ABT AP
— (B6(S)P + Bo(S)é(P))
0(A)z ® f+ ¢(A)(h(B)TP + B6(P)) — 2A\BT AP
0(A)x® f+ ¢(A)d(x ® f) — ABTAP
=0(A)r @ f+¢p(A)d(z® f) — A\TAz ® f,
completing the proof of the claim.

Claim 5. There exists an additive ¢-derivation d : AlgN — AlgN such
that §(A) = d(A) + AT A for all A € Alg N, and therefore, the theorem is true.

For any A, B € Alg N and any rank one operator z® f € Alg A/, by Claim 4,
we have

0(ABxz ® f) =6(AB)z ® f + ¢(AB)o(z ® f) — \TABx @ f

and
0(ABx ® f) =6(A)Bx ® f + ¢(A)§(Bx ® f) — \TABx @ f
=0(A)Bz @ f + ¢(A)d(B)x @ [ + ¢(A)p(B)d(x @ f)
—Ap(A)TBx @ f —AXTABx ® f
= §(A)Bx @ f + ¢(A)8(B)x @ f + $(AB)S(z ® f) — 2ATABz @ f.
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Hence (6(AB) — 6(A)B — ¢(A)6(B) + A\TAB)x ® f = 0. Since D(N) is dense
in X, we obtain that

5(AB) = 6(A)B + ¢(A)S8(B) — \TAB. (2.8)

Now let d(A) = §(A) — AT A. By equation (2.8), it is easily checked that d is an
additive ¢-derivation on Alg A/, and hence §(A) = d(A) + AT A for all A € AlgN.
Complete the proof. O

Now we give the proof of Theorem 2.2. The method is similar to that of
Theorem 2.1.

PROOF OF THEOREM 2.2. Firstly, note that, by [16], ¢ is in fact 7-linear,
where 7 is a field automorphism of F. In the following, we’ll use the fact repea-
tedly. We complete the proof by several claims.

Claim 1. §(I)P = ¢(P)d(I) for all idempotent P € T.

By the same argument with that of equation (2.1) in Claim 1 of proof of
Theorem 2.1, and noting that ¢(I) = I, it is obvious that ¢(P)d(I) = 6(I)P.

Claim 2. §(az ® f) = ¢(z ® f)d(al) + ad(z @ f) — ad(l)x & f for all rank
one operator z® f € T.

We prove the claim by three cases.

Case 1. (z, f) = 1. Then P = 2 ® f is an idempotent. Since (I — P)aP =0,
we have

0(aP) = ad(P)P + ¢(P)d(aP) — ad(I)P.

Similarly, by Pa(I — P) =0, we get
d(P)o(ad) + ad(P) = ad(P)P + ¢(P)é(aP).

Combining the above two equations, we get 6(aP) = ad(P)+¢(P)d(al)—ad(I)P.

Case 2. (z, f) = 0. By Case 1 and Lemma 2.4, the claim is true.

Case 3. (z,f) = 8 # 0,1. Then P = 372 ® f is an idempotent. We first
show that §(aBI) = ad(BI) + 7(5)d(al) — aBé(I) for all a, 8 € F. In fact, for
any g € F", there exists y € F” such that y ® g € T with (y,g) = 0. By Case 2,
for every a, 8 € F, we have

d(aBy ®g) = oy ®g)d(apl) + aBd(y @ g) —aBi(l)y®g
and

S(afy @ g) =T1(B)p(y ® g)d(al) + ad(y ® 9)d(BI) + afi(y ® g) — 2aB5(1)y @ g.
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Comparing the above two equations, we get

Py ® g)(6(apl) — ad(BI) — 7(B)é(ad)) + apfd(l)y © g = 0. (2.9)

By Lemma 2.4 and Claim 1, it is clear that ¢(A)d(I) = §(I)A for all A € T with
A? = 0. This and equation (2.9) yield ¢(y ® g)(6(aBl) — ad(BI) — 7(B)d(ad) +
aBs(I)) = 0. Since ¢~! is multiplicative, it follows that (y ® g)¢~1(6(aBI) —
ad(BI)—1(B)0(al)+aBd(I)) = 0. Since g is arbitrary, we get 6(aSI) = ad(BI)+
T(B)o(al) — aBd(I). Now by Case 1 and the 7-linearity of ¢, it is easily checked
that the claim holds.

Since every finite rank operator in T is the sum of rank one operators in T,
we have

0(aF) = ¢(F)o(al) + ad(F) — ad(I)F (2.10)
for all finite rank operator F € T and « € F.

Claim 3. For any operator A € T and any rank one operator x ® f € T, we
have §(Az ® f) = 6(A)z @ f + p(A)o(z @ f) —6(1) Az ® f.

The proof is similar to that of Claim 4 in the proof of Theorem 2.1, we omit
it here.

Claim 4. There exists an additive ¢-derivation d : T — T such that 6(A) =
d(A) +6(I)A for all A € T, and therefore, Theorem 2.2 holds.

For any A, B € T and any rank one operator x ® f € T, by calculating
0(ABzx ® f) using two ways, similar to the proof of Claim 5 in the proof of
Theorem 2.1, one can easily checked that

5(AB) = 6(A)B + ¢(A)3(B) — ¢(A)3(I)B. (2.11)

Now let d(A) = 6(A) — 6(I)A. By equation (2.11), it is also easily checked that
d is an additive ¢-derivation on T, and therefore §(A) = d(A) + §(I)A for all
AeT. a

PRrROOF OF COROLLARY 2.3. By Theorem 2.1 and 2.2, we only need to check
that (1) = AI for some scalar A. In fact, by the proof of Claim 1 in Theorem 2.1,
it is clear that §(I) = AI for some scalar A and this proof is also applicable for
finite dimensional case. Complete the proof. ([l

3. Characterization of generalized skew derivations

In this section, we consider the linear maps generalized ¢-derivable at zero
point on nest algebras. The following is our main result.
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Theorem 3.1. Let N be a nest on a Banach space X over the real or
complex field F with N € N complemented in X whenever N_ = N and Alg N the
associated nest algebra. Assume that ¢ : Alg N — Alg N is an automorphism and
§: Alg N — Alg N is a linear map generalized ¢-derivable at zero point associated
with a linear map T which is ¢-derivable at zero point (i.e. 6(A)B+¢(A)7(B) =0
whenever AB = 0). Then there exists a linear ¢-derivation d : Alg N — Alg N
such that 6(A) = d(A) + 6(I)A for all A € AlgN.

To prove Theorem 3.1, we need a lemma, which is an independent interest
on its own. Let A be a ring (an algebra). Recall that an additive (a linear) map
d: A— Ais called a left (right) multiplier if 6(AB) = §(A)B (6(AB) = Ad(B))
for all A, B € A; is called a local multiplier if for every A € A there is a multiplier
54 : A — Asuch that 6(A) = d4(A). In [3], BRESAR proved that, if A is prime
ring containing a nonzero idempotent and ¢ satisfies that A§(B) = 0 whenever
AB = 0, then 9 is a right multiplier. Here we consider similar problems on nest
algebras. Note that nest algebras are not prime.

Lemma 3.2. Let N be a nest on a Banach space X over the real or complex
field F with N € N complemented in X whenever N_ = N and Alg N the
associated nest algebra. Assume that L : AlgN — Alg N is a linear map. If L
satisfies L(A)B = 0 whenever AB = 0 (in particular, if L is a local multiplier),
then L(A) = L(I)A for all A € AlgN, that is, L is a left multiplier.

PROOF. For any idempotent P € Alg A and any scalar «, since a(I — P)P =
aP(I — P) =0, we have

L(al)P = L(aP)P and L(aP)= L(aP)P,
and so
L(aP) = L(al) = aL(I)P = L(I)aP.
By Lemma 2.4, we get
L(F) = L(I)F for all finite rank operator F' € Alg V. (3.1)
For any operator A€ Alg N and any idempotent P€ Alg N/, since AP(I—P) =
A(I — P)P =0, we have
L(AP) = L(AP)P and L(AP)P = L(A)P.
It follows that
L(AP)=L(A)P. (3.2)
Now taking any rank one idempotent P € Alg N, noting that AP is finite rank, by
equation (3.1) and (3.2), we have L(A)P = L(I)AP for all A. Hence L(A)z® f =
LAz ® f for all A € AlgN and all rank one operator x ® f € AlgN. Since
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D(N) is dense in X, we obtain that L(A) = L(I)A. Complete the proof. O

PROOF OF THEOREM 3.1. Since 7 is ¢-derivable at zero point, we have
AB =0= 7(A)B + ¢(A)7(B) = 0. By assumption, we get

AB=0= §(A)B —1(A)B =0. (3.3)

Let L(A) = 6(A)—7(A) for all A. Tt is clear that L is additive on Alg N'. Moreover,
by equation (3.3), we get AB = 0 = L(A)B = 0. By using of Lemma 3.2,
Theorem 2.1 and 2.2, we obtain that L(A) = L(I)A, that is, §(A) = 7(A4) +
(0(I) —71(I))A=d(A)+6(I)A for all A € AlgN, where d : Alg N — Alg N is a
¢-derivation. O
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