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Generalized skew derivations on nest algebras characterized
by acting on zero products

By XIAOFEI QI (Taiyuan) and JINCHUAN HOU (Taiyuan)

Abstract. Let N be a nest on a Banach space X with N ∈ N complemented

in X whenever N− = N , and let AlgN be the associated nest algebra. Assume that

φ : AlgN → AlgN is an automorphism and δ : AlgN → AlgN is an additive map.

It is shown that, if δ is φ-derivable at zero point (i.e., satisfies δ(A)B + φ(A)δ(B) = 0

whenever AB = 0), then there exists an additive φ-derivation d : AlgN → AlgN such

that δ(A) = d(A) + δ(I)A for all A ∈ AlgN . Moreover, by use of this result, the linear

maps generalized φ-derivable at zero point are also characterized.

1. Introduction

Let A be an algebra with unit I and δ : A → A an additive (linear) map.

Recall that δ is called an additive (linear) derivation if δ(AB) = δ(A)B +Aδ(B)

for all A,B ∈ A; if there is an additive (linear) derivation τ : A → A such

that δ(AB) = δ(A)B + Aτ(B) for all A,B ∈ A, then δ is called an additive

(linear) generalized derivation and τ is the relating derivation. Derivations and

generalized derivations are very important maps both in theory and applications,

and have been studied intensively (see [5], [8], [11], [14], [15]).

Recently, more and more mathematicians are interested in characterizing

the maps (generalized) derivable at some point. Recall that δ is derivable at
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some point Z ∈ A if δ(A)B + Aδ(B) = δ(AB) for all A,B ∈ A with AB = Z;

is generalized derivable at Z if there exists an additive map τ on A which is

derivable at zero point such that δ(AB) = δ(A)B +Aτ(B) for all A,B ∈ A with

AB = Z. It is obvious that the condition of (generalized) derivable maps at some

point is much weaker than the condition of being a (generalized) derivation. Jing

et al. in [12] showed that, for the case of nest algebras on Hilbert spaces, the set

of linear maps derivable at zero point with δ(I) = 0 coincides with the set of inner

derivations. Zhu and Xiong showed in [17] that every norm continuous linear

map generalized derivable at zero point between finite nest algebras on Hilbert

spaces is a generalized inner derivation (i.e., has the form A 7→ TA+ AS). Note

that in [17], authors gave another definition for maps generalized derivable at

zero point: δ is said to generalized derivable at zero point if δ(AB) = δ(A)B +

Aδ(B) − Aδ(I)B for all A,B ∈ A with AB = 0. It is easy to prove that their

definition is a special case of ours. For other results, see [4], [10], [13], [18].

The concepts of (generalized) derivations have been generalized. Let φ be an

automorphism of A. An additive (linear) map δ : A → A is called a φ-derivation

if δ(AB) = δ(A)B + φ(A)δ(B) for all A,B ∈ A; if there is an additive (linear)

φ-derivation τ : A → A such that δ(AB) = δ(A)B + φ(A)τ(B) for all A,B ∈ A,

then δ is called an additive (linear) generalized φ-derivation and τ is the relating

φ-derivation. It is obvious that (generalized) φ-derivations are usual (generalized)

derivations if φ is an identity map. The structure of φ-derivations has been studied

(see, for example, [1], [2], [6]).

Motivated by the maps (generalized) derivable at some point, we give the

concepts of the maps (generalized) φ-derivable at some point. We say that δ is

φ-derivable at some point Z ∈ A if δ(A)B + φ(A)δ(B) = δ(AB) for all A,B ∈ A
with AB = Z; is generalized φ-derivable at Z if there exists an additive map τ

on A which is φ-derivable at zero point such that δ(AB) = δ(A)B + φ(A)τ(B)

for all A,B ∈ A with AB = Z.

The purpose of this paper is to characterize the maps (generalized) φ-deriv-

able at zero point on nest algebras on Banach spaces. Let N be a nest on a

Banach space X with N ∈ N complemented in X whenever N− = N , and let

AlgN be the associated nest algebra. Assume that φ : AlgN → AlgN is a ring

automorphism and δ : AlgN → AlgN is an additive map φ-derivable at zero

point. In Section 2, we show that δ has the form δ(A) = d(A) + δ(I)A for all

A ∈ AlgN , where d : AlgN → AlgN is an additive φ-derivation (Theorem 2.1

and 2.2). In Section 3, by use of Theorem 2.1 and 2.2, we give a characterization

of the maps generalized φ-derivable at zero point on AlgN (Theorem 3.1).

Let X be a Banach space over the real or complex field F. B(X) denotes the
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algebra of all bounded linear operators on X. A nest N on X is a chain of closed

(under norm topology) subspaces of X which is closed under the formation of

arbitrary closed linear span (denote by
∨
) and intersection (denote by

∧
), and

which includes {0} and X. The nest algebra associated to the nest N , denoted by

AlgN , is the weak closed operator algebra consisting of all operators that leave

N invariant, i.e.,

AlgN = {T ∈ B(X) : TN ⊆ N for all N ∈ N}.

When N 6= {0, X}, we say that N is non-trivial. If N is trivial, then AlgN =

B(X). For N ∈ N , let N− =
∨{M ∈ N | M ⊂ N}. Denote D(N ) =

⋃{N ∈ N |
N− 6= X}. It is clear that D(N ) is dense in X. For more information on nest

algebras, we refer to [7].

It is clear that every nest algebra on a finite dimensional space is isomorphic

to an upper triangular block matrix algebra. Let Mn(F) denote the algebra of

all n × n matrices over F. Recall that an upper triangular block matrix algebra

T = T (n1, n2, . . . , nk) is a subalgebra of Mn(F) consisting of all n × n matrices

of the form

A =




A11 A12 . . . A1k

0 A22 . . . A2k

...
...

. . .
...

0 0 . . . Akk




,

where n1, n2, . . . , nk are finite sequence of positive integers satisfying n1 + n2 +

· · ·+ nk = n and Aij ∈ Mni×nj (F), the space of all ni × nj matrices over F.

2. Characterization of skew derivations

In this section, we consider the additive maps φ-derivable at zero point on

nest algebras. The following are our main results.

Theorem 2.1. Let N be a nest on an infinite dimensional Banach space X

over the real or complex field F with N ∈ N complemented in X whenever

N− = N and AlgN the associated nest algebra. Assume that φ : AlgN →
AlgN is a ring automorphism and δ : AlgN → AlgN is an additive map φ-

derivable at zero point. Then there exist an invertible operator T ∈ AlgN , a

scalar λ and an additive φ-derivation d : AlgN → AlgN such that δ(I) = λT

and δ(A) = d(A) + δ(I)A = d(A) + λTA for all A ∈ AlgN .



460 Xiaofei Qi and Jinchuan Hou

Remark 2.1. If X is a Hilbert space, the assumption on nest N in the above

theorem is superfluous.

For the finite dimensional case, we have

Theorem 2.2. Let F be the real or complex field, and n be positive integers

greater than 1. Let T = T (n1, n2, . . . , nk) ⊆ Mn(F) be an upper triangular block

matrix algebra. Assume that φ : T → T is a ring automorphism and δ : T → T
is an additive map φ-derivable at zero point. Then there exists an additive φ-

derivation d : T → T such that δ(A) = d(A) + δ(I)A for all A ∈ T .

As an immediate consequence of Theorem 2.1 and 2.2, we get the following

corollary which generalizes the main theorem in [12].

Corollary 2.3. Let N be a nest on a Banach space X over the real or

complex field F with N ∈ N complemented in X whenever N− = N and AlgN
the associated nest algebra. Assume that δ : AlgN → AlgN is an additive map

derivable at zero point. Then there exist a scalar λ and an additive derivation

d : AlgN → AlgN such that δ(A) = d(A) + λA for all A ∈ AlgN .

Remark 2.2. By [8, Theorem 4.1], additive derivations on nest algebras on

infinite dimensional Banach spaces are linear. Hence, if X is infinite dimensional

in Corollary 2.3, then there exists an operator S ∈ AlgN such that δ(A) =

AS − SA+ λA for all A ∈ AlgN .

Before proving main theorems, we need the following lemma which appeared

in [9].

Lemma 2.4 ([9, Lemma 3.2]). Let N be a nest on a (real or complex)

Banach space X. If N ∈ N is complemented in X whenever N− = N , then the

ideal AlgF N of finite rank operators of AlgN is contained in the linear span of

the idempotents in AlgN . Moreover, for every rank one nilpotent operator F in

AlgN , there exist idempotent operators P,Q in the nest algebra AlgN such that

F = P −Q.

Proof of Theorem 2.1. We will prove the theorem by checking several

claims.

Claim 1. There exist an invertible operator T ∈ AlgN and some scalar λ

such that δ(I) = λT .

For any idempotent P ∈ AlgN , it is obvious that P (I −P ) = (I −P )P = 0.

Since δ is φ-derivable at zero point on AlgN , we have

0 = δ(P (I − P )) = δ(P )(I − P ) + φ(P )δ(I − P )

= δ(P )− δ(P )P + φ(P )δ(I)− φ(P )δ(P )
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and
0 = δ((I − P )P ) = δ(I − P )P + φ(I − P )δ(P )

= δ(I)P − δ(P )P + φ(I)δ(P )− φ(P )δ(P ).

Comparing the above two equations, we get

δ(P ) + φ(P )δ(I) = φ(I)δ(P ) + δ(I)P. (2.1)

Since φ is an automorphism of AlgN , it is obvious that φ(I) = I, and by [9],

φ(A) = TAT−1 for all A ∈ AlgN , where T ∈ AlgN is an invertible operator. So

equation (2.1) yields TPT−1δ(I) = δ(I)P , that is, PT−1δ(I) = T−1δ(I)P for all

idempotent P ∈ AlgN . By Lemma 2.4 and the fact that the set of finite rank

operators is strongly dense in AlgN , it follows that there exists some λ ∈ F such

that T−1δ(I) = λI. Hence δ(I) = λT .

Claim 2. There exists an additive map h : F → F such that δ(αI) =

h(α)T and δ(αP ) = αδ(P ) + h(α)TP − αλTP for every scalar α ∈ F and every

idempotent P ∈ AlgN .

For any idempotent P , since αP (I − P ) = (I − P )αP = 0, we have

0 = δ(αP (I − P )) = δ(αP )(I − P ) + φ(αP )δ(I − P )

= δ(αP )− δ(αP )P + φ(αP )δ(I)− φ(αP )δ(P )
and

0 = δ((I − P )αP ) = δ(I − P )αP + φ(I − P )δ(αP )

= δ(I)αP − δ(P )αP + δ(αP )− φ(P )δ(αP ).

That is,

δ(αP ) = δ(αP )P + φ(αP )δ(P )− φ(αP )δ(I)

= δ(αP )P + φ(αP )δ(P )− λαTP (2.2)
and

δ(αP ) = αδ(P )P + φ(P )δ(αP )− αδ(I)P

= αδ(P )P + φ(P )δ(αP )− λαTP. (2.3)

Comparing equation (2.2) with (2.3), we get

αδ(P )P + φ(P )δ(αP ) = δ(αP )P + φ(αP )δ(P ). (2.4)

Similarly, by Pα(I − P ) = α(I − P )P = 0, one can get

δ(αI)P + αδ(P ) = δ(αP )P + αφ(P )δ(P ) (2.5)

and

φ(P )δ(αI) + αδ(P ) = αδ(P )P + φ(P )δ(αP ). (2.6)

Combining equations (2.4)–(2.6), we have φ(P )δ(αI) = δ(αI)P . By a similar
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argument with that of Claim 1, there exists a map h : F → F such that δ(αI) =

h(α)T . It is clear that h is an additive map. Now combining equation (2.3) with

(2.6), we get δ(αP ) = αδ(P ) + h(α)TP − αλTP .

Claim 3. δ(αF ) = h(α)TF + αδ(F ) − αλTF for all finite rank operator

F ∈ AlgN and λ ∈ F.
Firstly, we’ll prove that δ(αx⊗ f) = h(α)Tx⊗ f +αδ(x⊗ f)−αλTx⊗ f for

all rank one operator x⊗ f ∈ AlgN . We prove this by considering three cases.

Case 1. 〈x, f〉 = 1. Then x ⊗ f is an idempotent. By Claim 2, the claim

holds.

Case 2. 〈x, f〉 = 0. By Lemma 2.4, Case 1 and the additivity of δ, the claim

is true.

Case 3. 〈x, f〉 = β 6= 0, 1. Then P = β−1x ⊗ f is an idempotent. We first

show that h(αβ) = h(α)β + αh(β)− λαβ for all α, β ∈ F. In fact, take any rank

one square zero operator x⊗ f ∈ AlgN . By Case 2, for every α, β ∈ F, we have

δ(αβx⊗ f) = h(αβ)Tx⊗ f + αβδ(x⊗ f)− λαβTx⊗ f.

On the other hand,

δ(αβx⊗ f) = h(α)Tβx⊗ f + αδ(βx⊗ f)− λαTβx⊗ f

= h(α)βTx⊗ f + αh(β)Tx⊗ f + αβδ(x⊗ f)− 2λαβTx⊗ f.

Comparing the above two equations, we get (h(αβ)−h(α)β−αh(β)+λαβ)Tx⊗
f = 0, which implies that h(αβ) = h(α)β + αh(β) − λαβ. Now by Claim 2, we

have

δ(αx⊗ f) = δ(αβP ) = h(αβ)TP + αβδ(P )− λαβTP

= h(α)βTP + αh(β)TP + αβδ(P )− 2λαβTP

= h(α)βTP + α(h(β)TP + βδ(P ))− 2λαβTP

= h(α)βTP + α(δ(βP ) + λβTP )− 2λαβTP

= h(α)βTP + αδ(βP )− λαβTP

= h(α)Tx⊗ f + αδ(x⊗ f)− λαTx⊗ f.

Since every finite rank operator in AlgN is the sum of rank one operators in

AlgN , the claim holds.

Claim 4. For any operator A ∈ AlgN and any rank one operator x ⊗ f ∈
AlgN , we have δ(Ax⊗ f) = δ(A)x⊗ f + φ(A)δ(x⊗ f)− λTAx⊗ f .

We prove the claim by distinguishing three cases.
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Case 1. 〈x, f〉 = 1. Since A(x⊗ f)(I − x⊗ f) = A(I − x⊗ f)(x⊗ f) = 0, we

have

δ(Ax⊗ f) = δ(Ax⊗ f)(x⊗ f)− λTAx⊗ f + φ(Ax⊗ f)δ(x⊗ f)
and

δ(Ax⊗ f)(x⊗ f) + φ(Ax⊗ f)δ(x⊗ f) = δ(A)x⊗ f + φ(A)δ(x⊗ f).

Comparing the above two equations, it follows that the claim is true.

Case 2. 〈x, f〉 = 0. By Case 1 and Lemma 2.4, the claim is true.

Case 3. 〈x, f〉 = β 6= 0, 1. Then x ⊗ f = βP for rank one idempotent P =

β−1x⊗f ∈ AlgN . Let S = (I−P )A(I−P ). It is clear that S(βP ) = (βP )S = 0.

So

δ(S)(βP ) + φ(S)δ(βP ) = βδ(S)P + βφ(S)δ(P ) + h(β)φ(S)TP − λβφ(S)TP

= βδ(S)P + βφ(S)δ(P ) = 0. (2.7)

Note that A − S is a finite rank operator. By equation (2.7), Claims 2–3 and

Case 1 of Claim 4, we have

δ(Ax⊗ f) = δ(A(βP )) = δ(β(A− S)P )

= δ(β(A− S))P + φ(β(A− S))δ(P )− λβT (A− S)P

= h(β)T (A−S)P +βδ(A−S)P +φ(β(A−S))δ(P )− 2λβT (A−S)P

= h(β)TAP + βδ(A)P + βφ(A)δ(P )− 2λβTAP

− (βδ(S)P + βφ(S)δ(P ))

= δ(A)x⊗ f + φ(A)(h(β)TP + βδ(P ))− 2λβTAP

= δ(A)x⊗ f + φ(A)δ(x⊗ f)− λβTAP

= δ(A)x⊗ f + φ(A)δ(x⊗ f)− λTAx⊗ f,

completing the proof of the claim.

Claim 5. There exists an additive φ-derivation d : AlgN → AlgN such

that δ(A) = d(A) + λTA for all A ∈ AlgN , and therefore, the theorem is true.

For any A,B ∈ AlgN and any rank one operator x⊗f ∈ AlgN , by Claim 4,

we have
δ(ABx⊗ f) = δ(AB)x⊗ f + φ(AB)δ(x⊗ f)− λTABx⊗ f

and

δ(ABx⊗ f) = δ(A)Bx⊗ f + φ(A)δ(Bx⊗ f)− λTABx⊗ f

= δ(A)Bx⊗ f + φ(A)δ(B)x⊗ f + φ(A)φ(B)δ(x⊗ f)

− λφ(A)TBx⊗ f − λTABx⊗ f

= δ(A)Bx⊗ f + φ(A)δ(B)x⊗ f + φ(AB)δ(x⊗ f)− 2λTABx⊗ f.



464 Xiaofei Qi and Jinchuan Hou

Hence (δ(AB) − δ(A)B − φ(A)δ(B) + λTAB)x ⊗ f = 0. Since D(N ) is dense

in X, we obtain that

δ(AB) = δ(A)B + φ(A)δ(B)− λTAB. (2.8)

Now let d(A) = δ(A)− λTA. By equation (2.8), it is easily checked that d is an

additive φ-derivation on AlgN , and hence δ(A) = d(A)+λTA for all A ∈ AlgN .

Complete the proof. ¤

Now we give the proof of Theorem 2.2. The method is similar to that of

Theorem 2.1.

Proof of Theorem 2.2. Firstly, note that, by [16], φ is in fact τ -linear,

where τ is a field automorphism of F. In the following, we’ll use the fact repea-

tedly. We complete the proof by several claims.

Claim 1. δ(I)P = φ(P )δ(I) for all idempotent P ∈ T .

By the same argument with that of equation (2.1) in Claim 1 of proof of

Theorem 2.1, and noting that φ(I) = I, it is obvious that φ(P )δ(I) = δ(I)P .

Claim 2. δ(αx⊗ f) = φ(x⊗ f)δ(αI) + αδ(x⊗ f)− αδ(I)x⊗ f for all rank

one operator x⊗ f ∈ T .

We prove the claim by three cases.

Case 1. 〈x, f〉 = 1. Then P = x⊗ f is an idempotent. Since (I −P )αP = 0,

we have

δ(αP ) = αδ(P )P + φ(P )δ(αP )− αδ(I)P.

Similarly, by Pα(I − P ) = 0, we get

φ(P )δ(αI) + αδ(P ) = αδ(P )P + φ(P )δ(αP ).

Combining the above two equations, we get δ(αP ) = αδ(P )+φ(P )δ(αI)−αδ(I)P .

Case 2. 〈x, f〉 = 0. By Case 1 and Lemma 2.4, the claim is true.

Case 3. 〈x, f〉 = β 6= 0, 1. Then P = β−1x ⊗ f is an idempotent. We first

show that δ(αβI) = αδ(βI) + τ(β)δ(αI) − αβδ(I) for all α, β ∈ F. In fact, for

any g ∈ Fn, there exists y ∈ Fn such that y ⊗ g ∈ T with 〈y, g〉 = 0. By Case 2,

for every α, β ∈ F, we have

δ(αβy ⊗ g) = φ(y ⊗ g)δ(αβI) + αβδ(y ⊗ g)− αβδ(I)y ⊗ g

and

δ(αβy ⊗ g) = τ(β)φ(y ⊗ g)δ(αI) + αφ(y ⊗ g)δ(βI) + αβδ(y ⊗ g)− 2αβδ(I)y ⊗ g.
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Comparing the above two equations, we get

φ(y ⊗ g)(δ(αβI)− αδ(βI)− τ(β)δ(αI)) + αβδ(I)y ⊗ g = 0. (2.9)

By Lemma 2.4 and Claim 1, it is clear that φ(A)δ(I) = δ(I)A for all A ∈ T with

A2 = 0. This and equation (2.9) yield φ(y ⊗ g)(δ(αβI) − αδ(βI) − τ(β)δ(αI) +

αβδ(I)) = 0. Since φ−1 is multiplicative, it follows that (y ⊗ g)φ−1(δ(αβI) −
αδ(βI)−τ(β)δ(αI)+αβδ(I)) = 0. Since g is arbitrary, we get δ(αβI) = αδ(βI)+

τ(β)δ(αI)− αβδ(I). Now by Case 1 and the τ -linearity of φ, it is easily checked

that the claim holds.

Since every finite rank operator in T is the sum of rank one operators in T ,

we have

δ(αF ) = φ(F )δ(αI) + αδ(F )− αδ(I)F (2.10)

for all finite rank operator F ∈ T and α ∈ F.
Claim 3. For any operator A ∈ T and any rank one operator x⊗ f ∈ T , we

have δ(Ax⊗ f) = δ(A)x⊗ f + φ(A)δ(x⊗ f)− δ(I)Ax⊗ f .

The proof is similar to that of Claim 4 in the proof of Theorem 2.1, we omit

it here.

Claim 4. There exists an additive φ-derivation d : T → T such that δ(A) =

d(A) + δ(I)A for all A ∈ T , and therefore, Theorem 2.2 holds.

For any A, B ∈ T and any rank one operator x ⊗ f ∈ T , by calculating

δ(ABx ⊗ f) using two ways, similar to the proof of Claim 5 in the proof of

Theorem 2.1, one can easily checked that

δ(AB) = δ(A)B + φ(A)δ(B)− φ(A)δ(I)B. (2.11)

Now let d(A) = δ(A) − δ(I)A. By equation (2.11), it is also easily checked that

d is an additive φ-derivation on T , and therefore δ(A) = d(A) + δ(I)A for all

A ∈ T . ¤

Proof of Corollary 2.3. By Theorem 2.1 and 2.2, we only need to check

that δ(I) = λI for some scalar λ. In fact, by the proof of Claim 1 in Theorem 2.1,

it is clear that δ(I) = λI for some scalar λ and this proof is also applicable for

finite dimensional case. Complete the proof. ¤

3. Characterization of generalized skew derivations

In this section, we consider the linear maps generalized φ-derivable at zero

point on nest algebras. The following is our main result.
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Theorem 3.1. Let N be a nest on a Banach space X over the real or

complex field F withN ∈ N complemented inX wheneverN− = N andAlgN the

associated nest algebra. Assume that φ : AlgN → AlgN is an automorphism and

δ : AlgN → AlgN is a linear map generalized φ-derivable at zero point associated

with a linear map τ which is φ-derivable at zero point (i.e. δ(A)B+φ(A)τ(B) = 0

whenever AB = 0). Then there exists a linear φ-derivation d : AlgN → AlgN
such that δ(A) = d(A) + δ(I)A for all A ∈ AlgN .

To prove Theorem 3.1, we need a lemma, which is an independent interest

on its own. Let A be a ring (an algebra). Recall that an additive (a linear) map

δ : A → A is called a left (right) multiplier if δ(AB) = δ(A)B (δ(AB) = Aδ(B))

for all A,B ∈ A; is called a local multiplier if for every A ∈ A there is a multiplier

δA : A → A such that δ(A) = δA(A). In [3], Brešar proved that, if A is prime

ring containing a nonzero idempotent and δ satisfies that Aδ(B) = 0 whenever

AB = 0, then δ is a right multiplier. Here we consider similar problems on nest

algebras. Note that nest algebras are not prime.

Lemma 3.2. Let N be a nest on a Banach space X over the real or complex

field F with N ∈ N complemented in X whenever N− = N and AlgN the

associated nest algebra. Assume that L : AlgN → AlgN is a linear map. If L

satisfies L(A)B = 0 whenever AB = 0 (in particular, if L is a local multiplier),

then L(A) = L(I)A for all A ∈ AlgN , that is, L is a left multiplier.

Proof. For any idempotent P ∈ AlgN and any scalar α, since α(I−P )P =

αP (I − P ) = 0, we have

L(αI)P = L(αP )P and L(αP ) = L(αP )P,

and so

L(αP ) = L(αI) = αL(I)P = L(I)αP.

By Lemma 2.4, we get

L(F ) = L(I)F for all finite rank operator F ∈ AlgN . (3.1)

For any operator A∈AlgN and any idempotent P∈AlgN , since AP (I−P )=

A(I − P )P = 0, we have

L(AP ) = L(AP )P and L(AP )P = L(A)P.

It follows that

L(AP ) = L(A)P. (3.2)

Now taking any rank one idempotent P ∈ AlgN , noting that AP is finite rank, by

equation (3.1) and (3.2), we have L(A)P = L(I)AP for all A. Hence L(A)x⊗f =

L(I)Ax ⊗ f for all A ∈ AlgN and all rank one operator x ⊗ f ∈ AlgN . Since
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D(N ) is dense in X, we obtain that L(A) = L(I)A. Complete the proof. ¤

Proof of Theorem 3.1. Since τ is φ-derivable at zero point, we have

AB = 0 ⇒ τ(A)B + φ(A)τ(B) = 0. By assumption, we get

AB = 0 ⇒ δ(A)B − τ(A)B = 0. (3.3)

Let L(A) = δ(A)−τ(A) for all A. It is clear that L is additive on AlgN . Moreover,

by equation (3.3), we get AB = 0 ⇒ L(A)B = 0. By using of Lemma 3.2,

Theorem 2.1 and 2.2, we obtain that L(A) = L(I)A, that is, δ(A) = τ(A) +

(δ(I)− τ(I))A = d(A) + δ(I)A for all A ∈ AlgN , where d : AlgN → AlgN is a

φ-derivation. ¤
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