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Quasirecognition by prime graph of simple group Dn(3)

By B. KHOSRAVI (Tehran), Z. AKHLAGHI (Tehran) and M. KHATAMI (Tehran)

Abstract. Let G be a finite group. The prime graph Γ(G) of G is defined as

follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct

vertices p and p′ are joined by an edge if there is an element in G of order pp′. It is

proved that Dn(q), with disconnected prime graph, is quasirecognizable by their element

orders.

In this paper as the main result, we show that Dn(3), where n ∈ {p, p+ 1} for an

odd prime p > 3, is quasirecognizable by its prime graph.

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.

If G is a finite group, then π(|G|) is denoted by π(G). We construct the prime

graph of G, which is denoted by Γ(G), as follows: the vertex set is π(G) and two

distinct primes p and p′ are joined by an edge if and only if G has an element

of order pp′. Let s(G) be the number of connected components of Γ(G) and let

π1(G), π2(G), . . . , πs(G)(G) be the connected components of Γ(G). Sometimes we

use the notation πi instead of πi(G). If 2 ∈ π(G) we always suppose 2 ∈ π1(G).

Let m and n be natural numbers. We write m ∼ n if and only if for every prime

divisors r ∈ π(m) and s ∈ π(n), G has an element of order rs.

The spectrum of a finite group G, which is denoted by πe(G), is the set of its

element orders. A subset X of the vertices of a graph is called an independent

set if the induced graph on X has no edge. Let G be a finite group and r ∈ π(G).

We denote by ρ(G), some independent set of vertices in Γ(G) with the maximal
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number of elements. Also some independent set of vertices in Γ(G) containing r

with the maximal number of elements is denoted by ρ(r,G). Also we put t(G) =

|ρ(G)| and t(r,G) = |ρ(r,G)|.
A finite group G is said to be recognizable by spectrum if the equality πe(H) =

πe(G) implies that H ∼= G. A finite simple non-abelian group G is called quasi-

recognizable by spectrum if each finite group H with πe(H) = πe(G) has a unique

non-abelian composition factor isomorphic to G (see [16]).

We denote by k(Γ(G)) the number of isomorphism classes of finite groups

H satisfying Γ(G) = Γ(H). Given a natural number n, a finite group G is called

n-recognizable by prime graph if k(Γ(G)) = n. Usually a 1-recognizable group is

called a recognizable group. A non-abelian simple group G is said to be quasire-

cognizable by prime graph if every finite group whose prime graph is Γ(G) has a

unique non-abelian composition factor isomorphic to G (see [16]).

Hagie in [9] determined finite groups G satisfying Γ(G) = Γ(S), where S is

a sporadic simple group. In [21] finite groups with the same prime graph as a

CIT simple group are determined. It is proved that if q = 32n+1 (n > 0), then

the simple group 2G2(q) is uniquely determined by its prime graph [16, 35]. Also

in [22] it is proved that PSL(2, p), where p > 11 is a prime number and p 6≡ 1

(mod 12), is recognizable by prime graph. In [23] and [17], finite groups with

the same prime graph as PSL(2, q), where q is not prime, are determined. In [1],

[20], finite groups with the same prime graph as 2F4(q), where q = 22n+1 > 2;

F4(q), where q = 2n > 2, are determined. Also in [15], it is proved that if p is

a prime number which is not a Mersenne or Fermat prime and p 6= 11, 13, 19

and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian composition factor

which is isomorphic to PSL(2, p) and if p = 13, then G has a unique nonabelian

composition factor which is isomorphic to PSL(2, 13) or PSL(2, 27). Then it is

proved that if p and k > 1 are odd and q = pk is a prime power, then PGL(2, q)

is uniquely determined by its prime graph [2] (see also [3], [6]). In [18], [19], [24],

[25] finite groups with the same prime graph as Ln(2) and Un(2) are obtained.

In [10], it is proved that the simple group Dn(q), with disconnected prime

graph is quasirecognizable by spectrum. Also it is proved that Dn(q) is recogni-

zable by spectrum, for some n ∈ N and q ∈ {2, 3, 5}. In this paper we determine

finite groups G such that Γ(G) = Γ(Dn(3)), where Dn(3) has disconnected prime

graph. We note that using these results we can give new proofs for some theorems

in [10].

We note that a group which is recognizable by spectrum need not be even

quasirecognizable by prime graph. Obviously the recognizability by prime graph

implies the recognizability by spectrum.
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In this paper, all groups are finite and by simple groups we mean non-abelian

simple groups. All further unexplained notations are standard and refer to [4],

for example.

2. Preliminary results

Lemma 2.1 (see [34]). A finite group G with disconnected prime graph

Γ(G) satisfies one of the following conditions:

(a) s(G) = 2 and G is a Frobenius group;

(b) s(G) = 2 and G is a 2-Frobenius group;

(c) there exists a nonabelian simple group S such that S ≤ G = G/K ≤ Aut(S),

where K is a nilpotent normal subgroup of G; furthermore K and G/S are

trivial or π1(G)-groups, s(S) ≥ s(G), and for every 2 ≤ i ≤ s(G), there exists

2 ≤ j ≤ s(S) such that πi(G) = πj(S).

Lemma 2.2 (see [31]). Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2.

Then the following hold:

(1) Then there exists a finite non-abelian simple group S such that S ≤ G =

G/K ≤ Aut(S) for a maximal normal soluble subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime in ρ

divides the product |K|.|G/S|. In particular, t(S) ≥ t(G)− 1.

(3) One of the following conditions holds:

(a) S ∼= Alt7 or A1(q) for some odd q, and t(S) = t(2, S) = 3;

(b) for every prime r ∈ π(G) non-adjacent to 2 in Γ(G), a Sylow r-subgroup

of G is isomorphic to a Sylow r-subgroup of S; in particular t(2, S) ≥
t(2, G).

Lemma 2.3 ((Zsigmondy Theorem) (see [36])). Let p be a prime and let n

be a positive integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn−1, that is , p′ | (pn−1) but p′ - (pm−1),

for every 1 ≤ m < n,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Lemma 2.4 ((see [10], [32])).

(1) If G = An−1(q), then G contains a Frobenius subgroup with kernel of order

qn−1 and cyclic complement of order (qn−1 − 1)/(n, q − 1).
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(2) If G = Cn(q), then G contains a Frobenius subgroup with kernel of order qn

and cyclic complement of order (qn − 1)/(2, q − 1).

(3) If G = 2Dn(q), and there exists a primitive prime divisor r of q2n−2 − 1,

then G contains a Frobenius subgroup with kernel of order q2n−2 and cyclic

complement of order r.

(4) If G = Bn(q) or Dn(q), and there exists a primitive prime divisor rm of

qm − 1, where m = n or n − 1 such that m is odd, then G contains a

Frobenius subgroup with kernel of order qm(m−1)/2 and cyclic complement

of order rm.

Lemma 2.5 (see [28, Lemma 1]). Let N be a normal subgroup of G. Assume

that G/N is a Frobenius group with Frobenius kernel F and cyclic Frobenius

complement C. If (|N |, |F |) = 1, and F is not contained in NCG(N)/N , then

p|C| ∈ πe(G), where p is a prime factor of |N |.
Lemma 2.6. Let G be a finite group such that s(G) ≥ 2 and K be a normal

π1-subgroup of G. Let S be a finite simple group such that S ≤ G/K and S is

not a π1-group. If K 6= 1, and S contains a Frobenius subgroup with kernel F

and a cyclic complement C such that (|F |, |K|) = 1, then r|C| ∈ πe(G), for every

prime divisor r of K.

Proof. Since KCG(K)/K EG/K, so S ∩KCG(K)/K E S. Let F be con-

tained in KCG(K)/K. Hence S ∩KCG(K)/K 6= 1 and so S ∩KCG(K)/K = S,

which implies that S ≤ KCG(K)/K. So there exists m ∈ π(G) \ π1(G) such that

m ∈ π(CG(K)). So for every r ∈ π(K) we have r ∼ m, which is a contradiction.

Therefore F is not contained in KCG(K)/K. Thus by Lemma 2.5, r|C| ∈ πe(G),

for every prime divisor r of K. ¤

Lemma 2.7 (see [29]). Let G be a finite group and N a nontrivial normal

p-subgroup, for some prime p, and set K = G/N . Suppose that K contains an

element x of order m coprime to p such that 〈φ|〈x〉, 1|〈x〉〉 > 0 for every Brauer

character φ of (an absolutely irreducible representation of) K in characteristic p.

Then G contains elements of order pm.

Lemma 2.8 (see [5, Remark 1]). The equation pm − qn = 1, where p and q

are primes and m,n > 1, has only one solution, namely 32 − 23 = 1.

Lemma 2.9 (see [5]). With the exceptions of the relations (239)2−2(13)4 =

−1 and 35 − 2(11)2 = 1 every solution of the equation

pm − 2qn = ±1; p, q prime; m,n > 1
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has exponents m = n = 2; i.e. it comes from a unit p − q.21/2 of the quadratic

field Q(21/2) for which the coefficients p and q are primes.

In the sequel we recall the concept of quadratic residue and the Legendre

symbol from number theory.

Remark 2.10 (see [12]). Let (k, n) = 1. If there is an integer x such that

x2 ≡ k (mod n), then k is called a quadratic residue (mod n). Otherwise k is

called a quadratic nonresidue (mod n).

Let p be an odd prime. The symbol (a/p) will have the value 1 if a is

a quadratic residue (mod p),−1 if a is a quadratic nonresidue (mod p), and

zero if p | a. The symbol (a/p) is called the Legendre symbol. For computing the

Legendre symbol we use the Law of quadratic reciprocity (for details see Chapter 5

of [12]).

Let p be a prime number and (a, p) = 1. Let k ≥ 1 be the smallest positive

integer such that ak ≡ 1 (mod p). Then k is called the order of a with respect

to p and we denote it by ordp(a). Obviously by the Fermat’s little theorem it

follows that ordp(a) | (p− 1). Also if an ≡ 1 (mod p), then ordp(a) | n. Similarly

if q = pα, then ordq(a) is defined. If q is odd, some authors use the symbol e(q, a)

for ordq(a).

Lemma 2.11 (see [12]). Let p be an odd prime. Then (−1/p) = (−1)(p−1)/2.

Lemma 2.12 (see [33, Theorem 2.7]). Let G = Dε
n(q) be a finite simple

group of Lie type over a field of characteristic p, where ε ∈ {+,−}, and D+
n (q) =

Dn(q), D
−
n (q) =

2Dn(q). Define

η(m) = m if m is odd; otherwise η(m) = m/2.

Suppose r and s are odd primes and r, s ∈ π(G) \ {p}, put k = e(r, q), l = e(s, q)

and 1 ≤ η(k) ≤ η(l). Then r and s are nonadjacent if and only if 2η(k) + 2η(l) >

2n− (1− ε(−1)k+l) and k and l satisfy one of the following conditions:

(1) (−1)k+l = 1, k 6= l, and η(l)/η(k) is not an odd integer;

(2) (−1)k+l = −1, and if η(k) = η(l) and n/2 is an odd integer, then k 6= n/2.

3. Main results

Proposition 3.1. Let G be a group with disconnected prime graph, such

that t(G) ≥ 3. Also let K be the maximal normal soluble subgroup of G. Then K

is a nilpotent π1-group.
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Proof. By Lemma 2.2, there exists a finite non-abelian simple group S such

that S ≤ G = G/K ≤ Aut(S). By [27, Lemma 8], we know that if G is a solvable

group, then t(G) ≤ 2. Therefore G is not solvable and so G is not a 2-Frobenius

group. Now we prove that G is not a non-solvable Frobenius group. Let G be

a non-solvable Frobenius group with Frobenius complement C and Frobenius

kernel H. By [7], [11], {2, 3, 5} ⊆ π(C) and Γ(C) can be obtained from the

complete graph with vertex set π(C) by removing the edge {3, 5} and Γ(H) is a

complete graph. So π1(G) = π(C) and π2(G) = π(H). SinceH is nilpotent andK

is the maximal normal solvable subgroup, then H ≤ K. Therefore S ≤ G/K and

|G/K| ∣∣ |C|. If x ∈ π2(G), then x ∈ π(H) and x � 2 in Γ(G). Also π(S) ⊆ π(C)

and so x 6∈ π(S). So by Lemma 2.2, S ∼= A7 or S ∼= A1(q). Note that A7 and A1(q)

contain some Frobenius subgroups. So G/K contains a Frobenius subgroup with

Frobenius complement of order m, where π(m) ⊆ π1(G). If t ∈ π2(G) ⊆ π(K),

then by Lemma 2.5, we have t ∼ m, which is a contradiction. Therefore by

Lemma 2.1, G has a normal series 1 E H E N E G such that H is a nilpotent

π1-group and in [34] it is proved that H = Sπ1(G), where Sπ1(G) is the maximal

π1-separable normal subgroup of G. Obviously K is π1-separable. So K ≤ H.

Therefore K is a nilpotent π1-group. ¤

Theorem 3.2. Let G be a finite group such that Γ(G) = Γ(Dp+1(3)), where

p is an odd prime. Then G is recognizable by prime graph, if p > 3. If p = 3,

then G ∼= B3(3), C3(3) D4(3) or G/O2(G) ∼= Aut(2B2(8)).

Proof. By Proposition 3.1, there exists a finite nonabelian simple group S

such that S ≤ G = G/K ≤ Aut(S) for the maximal normal solvable subgroup K

of G, and K is nilpotent. Moreover, t(S) ≥ t(G)− 1 = [3p/4]. According to [33,

Tables 1a–1c], we consider the following cases. In the sequel we denote by ri, a

primitive prime divisor of 3i−1, and if S is a simple group of Lie type over GF (q′),
where q′ = pα0 , then ui denotes a primitive prime divisor of q′i − 1. By [10], we

have t(G) = [(3p+4)/4], t(2, G) = 2 and t(3, G) = 3 and by easy computation we

can see that for every m ∈ π1(G) \ π(3p + 1), {m, rp, r2p} ⊆ ρ(m,G). We know

that π1(G) = π(3(3p + 1)
∏p−1

i=1 (3
2i − 1)) and π2(G) = π((3p − 1)/2).

Case 1. Let S ∼= An, where either n − 2, n − 1 or n is a prime number.

So rp ∈ {n, n − 1, n − 2} and rβp = (3p − 1)/2, for some β > 0. Therefore by

Lemma 2.9, either β = 1 or rp = 11. Let β = 1. Since r2p | (3p + 1)/4, we have

r2p ≤ (3p+1)/4 ≤ (3p−1)/2−6 ≤ rp−6. So r2p < n−3. Hence r2p ∼ 3 in Γ(S),

by [33], which is a contradiction. Therefore rp = 11 and p = 5 and so S ∼= An,

where 11 ≤ n ≤ 13. On the other hand r2p = (3p + 1)/4 = 61 and r2(p−1) =

(3p−1 + 1)/2 = 41 do not belong to π(S). So r2p, r2(p−1) ∈ π(K) ∪ π(G/S).
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But G/S ⊆ Out(S) and so r2p, r2(p−1) ∈ π(K), since |Out(S)| = 2. Therefore

41 = r2p ∼ 61 = r2(p−1) in Γ(G), since K is nilpotent, which is a contradiction,

since r2p is only adjacent to divisors of 3p + 1.

Case 2. Let S ∼= An−1(q), where q = pα0 , n ∈ {p′, p′ + 1} and p′ is an odd

prime.

Let p = 3. Then p0 ∈ π1(S) ⊆ π1(D4(3)) = {2, 3, 5, 7}. Since 13 is the only

primitive prime of pp
′α

0 − 1, easily we can see that q = p0 = 3 and p′ = 3. So

S ∼= A2(3) or A3(3). If S ∼= A2(3), then 5, 7 ∈ π(K) and so 5 ∼ 7, since K is

nilpotent, which is a contradiction. If S ∼= A3(3), then 7 ∈ π(K). Also S contains

a Frobenius subgroup with kernel of order 33 and cyclic complement of order 13,

which implies that 7 ∼ 13, that is a contradiction.

Let p = 5. So π1(S) ⊆ {2, 3, 5, 7, 13, 41, 61} and 11 is the only primitive

prime of qp
′ − 1. Now similarly and by easy calculation we get a contradiction.

Therefore p > 5.

We claim that π(q + 1) ⊆ {2, 3, 5}. Let 2 6= x ∈ π(q + 1). By [33, Proposit-

ions 2.1, 3.1], we have x ∼ t, for every t ∈ π1(S). Let A = {r2p, r2(p−1), r2(p−2)}.
By Lemma 2.12 we can show that A is an independent set of Γ(G). Using Lem-

ma 2.2, |A \ π(S)| ≤ 1 and so let r, s ∈ A ∩ π1(S), for r 6= s. Then x ∼ r and

x ∼ s. Let r = r2(p−1) and s = r2(p−2). Then using the orders of maximal tori

of Dp+1(3), we see that there are maximal tori T and T ′ of Dp+1(3) such that

r2(p−1) | |T |, r2(p−2) | |T ′| and x | (|T |, |T ′|). If d = (|T |, |T ′|), then easily we

can see that π(d) ⊆ {2, 3, 5}. Similarly for every r, s ∈ A, we get the result. So

π(q + 1) ⊆ {2, 3, 5}.
Since p0 ∈ π(S), it follows that p0 ∈ π(G). Let p0 be a primitive prime of

3t − 1, where t ≤ 2p. We claim that t 6∈ {2, 3, 4, 6, 8}. Otherwise, for example if

t = 6, then p0 = 7, q = 7α and π(q + 1) ⊆ {2, 3, 5}, which implies that q = 7

or q = 49. Let S ∼= An−1(49). If n 6= 3, then 1201 ∈ π(494 − 1) ⊆ π1(S) and

by [33], t(1201, S) = 4. On the other hand, by the orders of maximal tori in

Γ(G), t(1201, G) ≥ 7, since 1201 is a primitive prime of 3300 − 1 and so p ≥ 100.

Therefore by Lemma 2.2, we get a contradiction. Therefore S ∼= A2(49) and

π((3p − 1)/2) = π((493 − 1)/48), which is a contradiction. If S ∼= An−1(7), then

we get a contradiction similarly.

By [33], we have ρ(p0, S) = {p0, un−1, un}. Let t ≥ 5 be odd. Then

{p0, rp, r2p, r2(p−1), r2(p−2)} ⊆ ρ(p0, G), by Lemma 2.12, and we get a contra-

diction by Lemma 2.2.

Let t≥ 10 be even and t/2≡ ε(mod 2), where ε∈{0,1}. Then {p0,rp,r2(p−2+ε),

rp−2, rp−4} ⊆ ρ(p0, G), and we get a contradiction by Lemma 2.2.

Therefore p0 = 3 and so the set of primitive primes of 3αp
′ −1 is equal to the
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set of primitive primes of (3p − 1)/2, which implies that αp′ = p, by Lemma 2.3.

Then α = 1 and p′ = p. Therefore {r2p, r2(p−1)} ⊆ π1(G) \ π1(S) and we get a

contradiction, since π(G/S) ⊆ {2}, K is nilpotent and r2(p−1) � r2p in Γ(G).

If S ∼= 2An−1(q), then we get a contradiction, similarly.

Case 3. Let S ∼= A1(q), where 4 | (q + 1) and q = pα0 . Therefore π1(S) =

π(q + 1), π2(S) = π(q) and π3(S) = π((q − 1)/2). Also t(S) = 3. Therefore

[3p/4] ≤ 3. So p ≤ 5.

Let p = 3 and π2(S) = π(q) = {13}. So p0 = 13 and π(q2−1) ⊆ {2, 3, 5, 7}. If
5 ∈ π(q2−1), then ord5(13) = 4, and so 2 | α. Hence we get a contradiction, since

17 ∈ π(134 − 1) ⊆ π(q2 − 1). Therefore π(q2 − 1) ⊆ {2, 3, 7} and so q = 13. Since

5 /∈ π(S), by [13, Theorem 15.13], the Brauer character table in characteristic 5

and the ordinary character table of S are the same. By [4] we have 〈φ|〈x〉, 1|〈x〉〉>0,

for every irreducible character φ in S, where x ∈ S is an element of order 7. Since

5 ∈ π(K), by Lemma 2.7, 5 ∼ 7 in Γ(G), which is a contradiction

Let p = 3 and π3(S) = π((q − 1)/2) = {13}. So pα0 − 1 = 2.13β , for some

β > 0, and p0 ∈ π1(G) = {2, 3, 5, 7} , which implies that q = 27, by Lemma 2.9.

So we have 5 ∈ π(G) \ π(S). Therefore 5 ∈ π(K). On the other hand, S has a

Frobenius subgroup with Frobenius kernel of order 27 and Frobenius complement

of order 13, which implies that 13 ∼ 5, a contradiction.

Let p = 5 and π2(S) = π(q) = {11}. So p0 = 11 and π(q2 − 1) ⊆ {2, 3, 5,
7, 13, 41, 61}. If 7, 13 ∈ π(S), then 3 | α. Hence we get a contradiction, since

19 ∈ π(113 − 1) ⊆ π(q2 − 1). If 41 ∈ π(S), then we get a contradiction, similarly.

So 7, 13, 41 ∈ π(K) ∪ π(G/S) and so we get a contradiction by Lemma 2.2, since

{7, 13, 41} is an independent set.

Let p = 5 and π3(S) = π((q − 1)/2) = {11}. So pα0 − 1 = 2.11β , for some

β > 0, and p0 ∈ π1(G) = {2, 3, 5, 7, 13, 41, 61}. By Lemma 2.9, the only solution

for the equation is (p0, α, β) = (3, 5, 2). So 41 6∈ π(S) and 41 6∈ π(G/S) ⊆ {2, α}.
Therefore 41 ∈ π(K). On the other hand, by Lemma 2.4, S contains a Frobenius

subgroup with Frobenius kernel of order 35 and Frobenius complement of order

(35 − 1)/2. Therefore by Lemma 2.6, 41 ∼ 11, which is a contradiction.

If S ∼= A1(q), where 4 | (q− 1) or 2 | q, then we get a contradiction similarly.

Case 4. Let S ∼= G2(q), where q = pα0 . Therefore π2(S) = π(q2 − εq + 1),

where ε = ±1. Since t(S) = 3, we have [3p/4] ≤ 3. Then p ≤ 5.

Let p = 3. Then r2p = 7, π(q2 − εq + 1) = {13} and π(q(q2 − 1)(q3 − ε)) ⊆
π1(G) = {2, 3, 5, 7}.

Let p0 = 2. Then ord13(2) = 12. Since 13 is the only primitive prime of q3−1

or q6 − 1, then 13 is a primitive prime of p3α0 − 1 or p6α0 − 1, so α = 4 or α = 2.
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Therefore q = 16 or q = 4, respectively. But 13 is not the only primitive prime of

163 − 1 and so q = 4. Hence 3 ∼ 7 = r2p in Γ(S), which is a contradiction.

Let p0 = 3. Then q = p0 = 3, since 13 is the only primitive prime of p3α0 − 1.

Since 5 6∈ π(S) and |Out(S)| = 2, it follows that 5 ∈ π(K). By [4], S contains a

Frobenius subgroup with Frobenius complement of order 7 and Frobenius kernel

of order 8 and hence r2p = 7 ∼ 5 in Γ(G), which is impossible. If p0 ∈ {5, 7},
then we get a contradiction similarly.

Let p = 5. Then π(q2 − εq + 1) = {11} and so 11 is a primitive prime of

q3 − 1 or q6 − 1, which is a contradiction, since 3 - (11− 1).

If S ∼= 3D4(q), where q is odd;
2G2(q), where 3 | q; 2F4(q), where q=22n+1>2;

or F4(q), then we get a contradiction similarly.

Case 5. Let S ∼= E8(q), where q = pα0 . Then t(S) = 11. Therefore [3p/4]≤ 11.

Therefore p ≤ 16. On the other hand, for each q, 31 ∈ π(S) ⊆ π(G), which implies

that p ≥ 17 and this is a contradiction.

If S ∼= E6(q) or
2E6(q), then we get a contradiction similarly.

Case 6. Let S ∼= 2B2(q), where q = 22m+1 > 2. Therefore π1(S) = {2},
π2(S) = π(q − 1), π3(S) = π(q +

√
2q + 1) and π4(S) = π(q − √

2q + 1). Also

t(G) = 4. Which implies that, [3p/4] ≤ 4 and hence p ≤ 5.

Let p = 3. Then π2(G) = {13}. If π(q−1)={13}, then 13 is a primitive prime

of 22m+1− 1, which is a contradiction, since ord13(2) = 12. If π(q +
√
2q + 1) =

{13}, then 13 is a primitive prime of q4 − 1, which implies that 2m + 1 = 3,

since ord13(2) = 12. So S ∼= 2B2(8) and 2 is not adjacent to 5, 7 in Γ(S). On

the other hand, 2 is adjacent to 5, 7 in Γ(G). Therefore either 5 and 7 ∈ π(K),

which implies that 5 ∼ 7, a contradiction; or 2 ∈ π(K), since π(G/S) ⊆ {3}.
Therefore G/O2(G) ∼= Aut(2B2(8)). If π(q −

√
2q + 1) = {13}, then similarly we

have 2m+ 1 = 3 and we get a contradiction, since π(23 − 22 + 1) 6= {13}.
Let p=5. Then π2(G)= {11}. If π(q− 1)= {11}, then ord11(2)= 2m+1=10,

which is impossible. If π(q −√
2q + 1) = {11}, then ord11(2) = 4(2m+ 1) = 10,

which is a contradiction. If π(q +
√
2q + 1) = {11}, then we get a contradiction

similarly.

Case 7. Let S ∼= J1. Then π1(S) = {2, 3, 5}, π2(S) = {11}, π3(S) = {7} and

π4(S) = {19}.
If π2(S) = π((3p − 1)/2) = {7}, then we get a contradiction, since 6 =

ord7(3) = p.

If π3(S) = π((3p − 1)/2) = {11}, then p = 5, which is impossible, since

19 6∈ π1(D6(3)).
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If π4(S) = π((3p − 1)/2) = {19}, then we get a contradiction, since 18 =

ord19(3) = p.

If S is a sporadic simple group, or S ∼= 2A3(2),
2F4(2)

′, A2(2),
2A5(2), A2(4),

E7(2), E7(3) or
2E6(2), then we get a contradiction, similarly.

Case 8. Let S ∼= Cp′(q), where q = 2 or 3 and p′ is a prime. Therefore

π1(S) = π(q(qp
′
+ 1)

∏p′−1
i=1 (qi − 1)) and π2(S) = π((qp

′ − 1)/(2, q − 1)).

Let q = 2. By [33, Proposition 2.3], 3 ∼ r in Γ(S), for every r ∈ π1(S).

Therefore r2p ∈ π(K) ∪ π(G/S). Since G/S ≤ Out(S) and |Out(S)| = 1, we

conclude that r2p ∈ π(K). On the other hand, S contains a Frobenius subgroup

with Frobenius kernel of order qp
′
and Frobenius complement of order qp

′ − 1, by

Lemma 2.4. Therefore r2p ∼ t, for every t ∈ π(qp
′ − 1) = π((3p − 1)/2), which is

a contradiction.

Let q = 3. Since π((3p
′ − 1)/2) = π((3p − 1)/2), we have p′ = p. Hence

S ∼= Cp(3). If S < G/K ≤ Aut(S), then by [26], s(G/K) = 1, which is a

contradiction. Therefore S = G/K. Let K 6= 1. Let k ∈ π(K) and k 6= 3. We

know that Cp(3) contains a Frobenius subgroup with Frobenius kernel of order 3p

and Frobenius complement of order (3p − 1)/2. Therefore by Lemma 2.6, k ∼ rp,

which is a contradiction. Let k = 3. We may assume that K is an elementary

abelian 3-group. Then S acts unisingularly on K, by [8, Theorem 1.3]. Therefore

3 ∼ rp, which is impossible. So K = 1 and G ∼= Cp(3). Using the maximal tori

in [33], we can see that, for p > 5, r(p−2−ε)/2 ∼ r(p+4+ε)/2 in Γ(Dp+1(3)), but

r(p−2−ε)/2 � r(p+4+ε)/2 in Γ(Cp(3)), if p ≡ ε (mod 4) and ε = ±1. Therefore

p ≤ 5. If p = 5, then 41 � 5 in Γ(C5(3)), a contradiction. For p = 3 we know

that Γ(Dp+1(3)) = Γ(Cp(3)).

If S ∼= Bp′(3), where p′ is a prime, then similarly we get a contradiction for

p > 3 and we have Γ(Dp+1(3)) = Γ(Bp(3)) for p = 3.

Also we conclude that S is not isomorphic to Cn(q) and Bn(q), where n =

2m ≥ 2; or Dp′(q), for every prime p′, similarly to the above discussion.

Case 9. Let S ∼= Dp′+1(q), where q = 2 or 3 and p′ is a prime. Therefore

π1(S) = π(q(qp
′
+ 1)

∏p′−1
i=1 (qi − 1)) and π2(S) = π((qp

′ − 1)/(2, q − 1)).

Let q = 2. By Lemma 2.12, 3 ∼ r in Γ(S), for every r ∈ π1(S). Therefore

r2p ∈ π(K) ∪ π(G/S). Since G/S ≤ Out(S) and |Out(S)| = 2, we conclude that

r2p ∈ π(K). On the other hand, S contains a Frobenius subgroup with Frobenius

kernel of order qp
′(p′−1)/2 and Frobenius complement of order up′ , by Lemma 2.4.

Therefore r2p ∼ up′ , which is a contradiction.

Let q = 3. Since π((3p
′ − 1)/2) = π((3p − 1)/2), we have p′ = p. Hence

S ∼= Dp+1(3). If S < G/K ≤ Aut(S), then by [26], s(G/K) = 1, which is a
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contradiction. Therefore S = G/K. Let K 6= 1. Let k ∈ π(K) and k 6= 3. We

know that Dp+1(3) contains a Frobenius subgroup with Frobenius kernel of order

3p(p−1)/2 and Frobenius complement of order rp. Therefore by Lemma 2.6, k ∼ rp,

which is a contradiction. Let k = 3. We may assume that K is an elementary

abelian 3-group. Then S acts unisingularly on K, by [8, Theorem 1.3]. Therefore

3 ∼ rp, which is impossible. So K = 1 and G ∼= Dp+1(3).

Also similarly to these cases we conclude that S �2 Dn(q).

Now the proof of this theorem is completed and it follows that Dp+1(3) is

recognizable by prime graph. ¤

Theorem 3.3. Let G be a finite group such that Γ(G) = Γ(Dp(3)), where p

is an odd prime. If p > 3, then G is quasirecognizable by prime graph. Moreover

Dp(3) ≤ G/O3(G) ≤ Aut(Dp(3)). If p = 3, then either G ∼= 2F4(2)
′; G ∼= 2F4(2);

A1(25) ≤ G/O2(G) ≤ Aut(A1(25)) or D3(3) ≤ G/O3(G) ≤ Aut(D3(3)).

Proof. Similarly to the proof of Theorem 3.2, there exists a finite nonabe-

lian simple group S such that S ≤ G/K ≤ Aut(S) for the maximal normal

solvable subgroup K of G, and K is nilpotent. Also similarly to the proof of The-

orem 3.2, we can prove that S is not isomorphic to simple exceptional groups of

Lie type, alternating groups, sporadic groups, except 2F4(2)
′. For convenience we

omit the proof of these cases. So we only consider finite simple classical groups.

Let ri and ui be similar to Theorem 3.2.

Case 1. Let S ∼= An−1(q), where q = pα0 , n ∈ {p′, p′ + 1} and p′ is an odd

prime.

Let p = 3. Then p0 ∈ π1(S) ⊆ {2, 3, 5}. Since 13 is the only primitive prime

of pp
′α

0 − 1, we have q = p0 = 3 and p′ = 3. So either S ∼= A3(3) ∼= D3(3)

or S ∼= A2(3). If S ∼= A2(3), then 5 ∈ π(K) and 〈φ|〈x〉, 1|〈x〉〉 > 0, for every

Brauer character of A2(3) in characteristic 5, where x is an element of order 3 in

A2(3), by [4] and [13, Theorem 15.13]. Therefore we get a contradiction, since by

Lemma 2.7, 3 ∼ 5. Hence S ∼= D3(3). Let p = 5. So π1(S) ⊆ {2, 3, 5, 7, 13, 41}
and 11 is the only primitive prime of qp

′ − 1. So by easy calculation we get a

contradiction. Therefore p > 5.

We claim that π(q + 1) ⊆ {2, 3, 5}. Let 2 6= x ∈ π(q + 1). By [33, Proposit-

ions 2.1, 3.1], we have x ∼ t, for every t ∈ π1(S). Let A = {r2(p−1), r2(p−2), rp−2}
which is an independent set of Γ(G). By Lemma 2.2, we have |A \ π(S)| ≤ 1.

Let r, s ∈ A ∩ π1(S), for r 6= s. Then x ∼ r and x ∼ s. If r = r2(p−1) and

s = r2(p−2), then using the orders of maximal tori of Dp(3), we see that there is

only one torus T of Dp(3) such that r2(p−1) | |T |. On the other hand, there is

a maximal torus T ′ of Dp(3) such that r2(p−2) | |T ′| and so x | (|T |, |T ′|), which
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implies that x ∈ {2, 5}. Similarly for every r, s ∈ A, we have x ∈ {2, 3, 5}. So

π(q + 1) ⊆ {2, 3, 5}.
Since p0 ∈ π(S), it follows that p0 ∈ π(G). Let p0 be a primitive prime

of 3t − 1, where t ≤ 2(p − 1). We claim that t 6∈ {2, 3, 4, 6, 8}. Otherwise, for

example if t = 4, then q = 5α and π(q + 1) ⊆ {2, 3, 5}, which implies that q = 5.

So S ∼= An−1(5). If n ≥ 5, then 31 ∈ π(53 − 1) ⊆ π1(S) and by [33], t(31, S) ≤ 4.

On the other hand, by the orders of maximal tori in Γ(G), t(31, G) ≥ 7, since 31

is a primitive prime of 330 − 1 and so p ≥ 17. Therefore by Lemma 2.2, we get a

contradiction. So S ∼= A2(5) or S ∼= A3(5) and hence π((3p−1)/2) = π((53−1)/4),

which is a contradiction.

By [33], we have ρ(p0, S) = {p0, un−1, un}. Let t ≥ 5 be odd. Then {p0, rp,
r2(p−1), r2(p−2), r2(p−3)} ⊆ ρ(p0, G). So we get a contradiction by Lemma 2.2.

Let t ≥ 10 be even and t/2 ≡ ε (mod 2), where ε ∈ {0, 1}. Then {p0, rp,
r2(p−2+ε), rp−2, rp−4} ⊆ ρ(p0, G), and so we get a contradiction by Lemma 2.2.

Therefore p0 = 3 and so the set of primitive primes of 3αp
′ −1 is equal to the

set of primitive primes of (3p−1)/2, which implies that αp′ = p. Then α = 1 and

p′ = p. Therefore {r2(p−1), r2(p−2)} ⊆ π1(G) \ π1(S) and we get a contradiction,

since π(G/S) ⊆ {2}, K is nilpotent and r2(p−1) � r2(p−2) in Γ(G).

If S ∼= 2An−1(q), then we get a contradiction, similarly.

Case 2. Let S ∼= A1(q), where q = pα0 . Since t(S) = 3, it follows that

t(G) = [(3p+ 1)/4] ≤ 4, and so p ∈ {3, 5}.
Let p = 3. Then π2(G) = {13}, π1(G) = {2, 3, 5} and 3 ∼ 2 ∼ 5 and 3 � 5

in Γ(G).

If π(q) = {13}, then π(q2 − 1) ⊆ {2, 3, 5}, which is a contradiction.

Let π((q + ε)/(2, q − 1)) = {13}, where ε = ±1 and 4 - (q + ε). Then

π(p0(q − ε)) ⊆ {2, 3, 5}. By easy calculation we can see that q = 25. So S ∼=
A1(25). Let 3, 5 or 13 ∈ π(K). Then by [14] and Lemma 2.7, we have 3 ∼ 13,

5 ∼ 13 or 2 ∼ 13, respectively which is a contradiction. So K is a 2-group. Note

that G/S ≤ Out(A1(25)). If a diagonal automorphism is a generator of G/S, then

2 ∼ 13 in G, a contradiction. If a diagonal-field automorphism is a generator of

G/S, then Γ(A1(25)) = Γ(G) and if a field automorphism is a generator of G/S,

then Γ(D3(3)) = Γ(G).

Let p = 5. Therefore π1(G) = {2, 3, 5, 7, 13, 41}, and π2(G) = {11}.
Let π(q) = {11}. Then q = 11α and π(q2 − 1) ⊆ π1(G). By Lemma 2.3

and easy calculation we conclude that q = 11. Therefore 7, 13, 41 /∈ π(S), which

implies that 7, 13, 41 ∈ π(K). So 13 ∼ 41, since K is nilpotent, which is a

contradiction.

Let π((q + ε)/(2, q − 1)) = {11}, where ε = ±1 and 4 - (q + ε). Then
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π(p0(q − ε)) ⊆ {2, 3, 5, 7, 13, 41}. By easy calculation and Lemma 2.3 we get a

contradiction.

Case 3. Let S ∼= 2F4(2)
′. Then {13} = π2(S) = π((3p − 1)/2) = π2(G) and

π1(S) = {2, 3, 5} ⊆ π1(G). So p = 3. We know that Γ(S) = Γ(D3(3)). If 2, 3

or 5 ∈ π(K), then by [14] and Lemma 2.7, we can see that 2 ∼ 13, 3 ∼ 13 or

5 ∼ 13, a contradiction. So K = 1. Note that |Out(S)| = 2 and G/S ≤ Out(S).

If |G/S| = 2, then G =2 F4(2), by [26] and Γ(G) = Γ(D3(3)). So G = 2F4(2) or

G = 2F4(2)
′.

Case 4. Let S ∼= 2Dn(q), where n = 2m ≥ 4 and q = pα0 .

Let p = 3. Then p0 ∈ π1(S) ⊆ {2, 3, 5} and 13 is the only primitive prime of

q2n−1. By easy calculation, we have q = 5 and n = 2, which is a contradiction by

assumption. If p = 5, then by easy calculation we get a contradiction. Therefore

p > 5.

By [33, Proposition 3.1] and Lemma 2.12, for every 2 6= t ∈ π(q2 − 1) and

s ∈ π1(S), we have t ∼ s. Similarly to Case 1, using Lemma 2.2 and considering

A = {r2(p−1), r2(p−2), rp−2}, we have π(q2 − 1) ⊆ {2, 3, 5}.
Since p0 ∈ π(S), it follows that p0 ∈ π(G). Let p0 be a primitive prime of

3t−1, where t ≤ 2(p−1). We claim that t 6∈ {2, 3, 4, 5, 6, 8, 10, 12}. Otherwise, for

example if t = 3, then q = 13α and π(q2− 1) ⊆ {2, 3, 5}, which is a contradiction.

By [33], we have ρ(p0, S) = {p0, un−1, u2(n−1), u2n}. Let t ≥ 7 be odd.

So p > 7 and {p0, rp, r2(p−1), r2(p−2), r2(p−3), r2(p−4)} ⊆ ρ(p0, G). So we get a

contradiction by Lemma 2.2.

Let t ≥ 14 be even and t/2 ≡ ε (mod 2), where ε ∈ {0, 1}. So p > 7 and

{p0, rp, r2(p−2+ε), rp−2, r2(p−4+ε), rp−4} ⊆ ρ(p0, G). Therefore we get a contradic-

tion by Lemma 2.2.

Therefore p0 = 3 and so the set of primitive primes of 32nα − 1 is equal to

the set of primitive primes of (3p − 1)/2, which implies that 2nα = p and we get

a contradiction.

If S ∼= Bn(q), where n = 2m; Cn(q), where n = 2m; 2Dn(q), where n = 2m+1,

or 2Dp′(3), where p′ 6= 2m + 1 is prime, then we get a contradiction similarly.

Case 5. Let S ∼= Bp′(q) or Cp′(q). Then similar to the proof of Theorem 3.2,

we have p = p′ and q = 3. If S ∼= Cp(3) or Bp(3), then (3p + 1) | |S| and so

there exists a primitive prime u of 32p − 1 such that u ∈ π(S) \ π(G), which is

impossible.

Case 6. Let S ∼= Dn(q). Then similar to the proof of Theorem 3.2, we

have n = p and q = 3. Let K 6= 1. Let k ∈ π(K) and k 6= 3. We know that

Dp(3) contains a Frobenius subgroup with Frobenius kernel of order 3p(p−1)/2
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and Frobenius complement of order rp. Therefore by Lemma 2.6, k ∼ rp in Γ(G),

which is a contradiction. So K is a 3-group. ¤

Remark 3.4. W. Shi and J. Bi in [30] put forward the following conjecture:

Conjecture. Let G be a group and M be a finite simple group. Then G ∼= M

if and only if

(i) |G| = |M |, and,
(ii) πe(G) = πe(M).

As a corollary of the main theorem of this paper we prove a generalization

of Shi–Bi conjecture for Dn(3), where n ∈ {p, p+ 1}.

Corollary 3.5. Let G be a finite group satisfying |G| = |Dn(3)| and Γ(G) =

Γ(Dn(3)), where n ∈ {p, p+ 1}, for some prime number p. Then G ∼= Dn(3).

Proof. If Γ(G) = Γ(Dn(3)), where n ∈ {p, p + 1} and p > 3, then by

Theorems 3.2 and 3.3, it follows that G has a composition factor isomorphic to

S ∼= Dn(3) and since |G| = |Dn(3)|, we conclude that S ∼= G. If Γ(G) = Γ(D4(3)),

then by Theorem 3.2, we have either G ∼= D4(3); C3(3), B3(3) or G/O2(G) ∼=
Aut(2B2(8)). Since |B3(3)| = |C3(3)| 6= |D4(3)| and 3‖|G|, where G/O2(G) ∼=
Aut(2B2(8)), then G ∼= D4(3). If Γ(G) = Γ(D3(3)), then by Theorem 3.3, G has

a composition factor isomorphic to G ∼= D3(3); A1(25);
2F4(2)

′ or 2F4(2). On the

other hand 25 divides the order of A1(25),
2F4(2)

′ and 2F4(2) and 25 does not

divide the order of D3(3), which implies that G ∼= D3(3). ¤
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