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Classification of minimal Lorentz surfaces in indefinite space
forms with arbitrary codimension and arbitrary index

By BANG-YEN CHEN (East Lansing)

Abstract. Since J. L. Lagrange initiated in [18] the study of minimal surfaces

of Euclidean 3-space in 1760, minimal surfaces in real space forms have been studied

extensively by many mathematicians during the last two and half centuries. In cont-

rast, so far very few results on minimal Lorentz surfaces in indefinite space forms are

known. Hence, in this paper we investigate minimal Lorentz surfaces in arbitrary inde-

finite space forms. As a consequence, we obtain several classification results for minimal

Lorentz surfaces in indefinite space forms. In particular, we completely classify all mini-

mal Lorentz surfaces in a pseudo-Euclidean space Em
s with arbitrary dimension m and

arbitrary index s.

1. Introduction

Let Em
s denote the pseudo-Euclidean m-space with the canonical metric of

index s given by

g0 = −
s∑

i=1

dx2
i +

m∑

j=s+1

dx2
j , (1.1)

where (x1, . . . , xm) is a rectangular coordinate system of Em
s . The light cone LC

of Em+1
s is defined by LC = {x ∈ Em+1

s : 〈x,x〉 = 0}.
We put

Sk
s (c) = {x ∈ Ek+1

s | 〈x, x〉 = c−1 > 0}, (1.2)

Hk
s (−c) = {x ∈ Ek+1

s+1 | 〈x, x〉 = −c−1 < 0}, (1.3)
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where 〈 , 〉 denotes the indefinite inner product on Ek+1
t . The Sk

s (c) and Hk
s (−c)

are complete pseudo-Riemannian manifolds with index s and of constant curvat-

ure c and −c, respectively.

The Sk
s (c) and Hk

s (−c) are called pseudo k-sphere and pseudo hyperbolic

k-space, respectively. The pseudo-Riemannian manifolds Ek
s , Sk

s and Hk
s are

known as the indefinite space forms. In particular, Ek
1 , S

k
1 and Hk

1 are called

Minkowski, de Sitter and anti-de Sitter spacetimes, which play very important

roles in relativity theory.

The history of minimal surfaces goes back to J. L. Lagrange (1736–1813)

who initiated in 1760 the study of minimal surfaces in Euclidean 3-space (see [18]).

Since then minimal surfaces have attracted many mathematician. In particular,

minimal surfaces in real space forms have been studied very extensively during

the last two and half centuries (see, [4, pages 207–249] and [21], [23] for details).

In [24], [25], L. Verstraelen and M. Pieters studied some families of

Lorentz surfaces in 4-dimensional indefinite space forms with index 2. Recently,

parallel Lorentz surfaces in indefinite space forms with arbitrary codimension and

arbitrary index were completely classified in a series of articles [8]–[14] (see also

[1], [15], [16], [19]). Moreover, Lorentz surfaces with parallel mean curvature

vector in an arbitrary pseudo-Euclidean space were classified in [7] (see also [17]).

Further, minimal Lorentz surfaces in Lorentzian complex space forms M̃2
1 (c) with

complex index one were investigated in [5], [6].

In this paper, we study minimal Lorentz surfaces in indefinite space forms

Rm
s (c) with arbitrary codimension and arbitrary index s. In particular, we comp-

letely classify minimal Lorentz surfaces in an arbitrary pseudo-Euclidean space in

Section 4. In Section 5, we classify minimal Lorentz surfaces of constant curvature

one in an arbitrary pseudo m-sphere Sm
s (1). The classification of minimal Lorentz

surfaces of constant curvature −1 in a pseudo-hyperbolic m-space Hm
s (−1) are

obtained in Section 6. In the last two sections, we provide many explicit examples

of minimal Lorentz surfaces in Sm
s (1) and in Hm

s (−1).

2. Basics formulas, equations and definitions

Let Rm
s (c) be an m-dimensional indefinite space form of constant sectional

curvature c and with index s. The curvature tensor of Rm
s (c) is given by

R̃(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y }. (2.1)

Let ψ : M2
1 → Rm

s (c) be an isometric immersion of a Lorentz surface M2
1

into Rm
s (c). Denote by ∇ and ∇̃ the Levi–Civita connections on M2

1 and R̃m
s (c),
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respectively. Let X, Y be vector fields tangent to M2
1 and ξ normal to M2

1 in

Rm
s (c). The formulas of Gauss and Weingarten are given by (cf. [2], [3], [22]):

∇̃XY = ∇XY + h(X,Y ), (2.2)

∇̃Xξ = −AξX +DXξ. (2.3)

These formulas define h, A and D, which are called the second fundamental form,

the shape operator and the normal connection, respectively.

For each normal vector ξ ∈ T⊥
x M2

1 , the shape operator Aξ at ξ is a symmetric

endomorphism of the tangent space TxM
2
1 , x ∈ M2

1 . The shape operator and the

second fundamental form are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 . (2.4)

The mean curvature vector H of M2
1 in Rm

s (c) is defined by

H =
1

2
traceh. (2.5)

A Lorentz surface in an indefinite space form is called totally geodesic if its second

fundamental form vanishes identically. It is called minimal if its mean curvature

vector vanishes identically.

The equations of Gauss, Codazzi and Ricci are given respectively by

R(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y }+Ah(Y,Z)X −Ah(X,Z)Y, (2.6)

(∇Xh)(Y, Z) = (∇Y h)(X,Z), (2.7)
〈
RD(X,Y )ξ, η

〉
= 〈[Aξ, Aη]X,Y 〉 , (2.8)

for vector fields X, Y , Z tangent to M2
1 , ξ normal to M2

1 , where ∇h is defined by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ), (2.9)

and RD is the curvature tensor associated to the normal connection D, i.e.,

RD(X,Y )ξ = DXDY ξ −DY DXξ −D[X,Y ]ξ. (2.10)

A vector v in Rm
s (c) is called spacelike (respectively, timelike, or light-like)

if 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0, or 〈v, v〉 = 0 and v 6= 0). A curve z(x) in

Rm
s (c) is called spacelike (respectively, timelike or null) if its velocity vector z′(x)

is spacelike (respectively, timelike or lightlike) at each point.
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3. A special coordinate system on a Lorentz surface

Let M2
1 be a Lorentz surface. We may choose a local coordinate system

{x, y} on M2
1 such that the metric tensor is given by

g = −E2(x, y)(dx⊗ dy + dy ⊗ dx) (3.1)

for some positive function E.

The Levi–Civita connection of g satisfies

∇ ∂
∂x

∂

∂x
=

2Ex

E

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2Ey

E

∂

∂y
(3.2)

and the Gaussian curvature K is given by

K =
2EExy − 2ExEy

E4
. (3.3)

If we put

e1 =
1

E

∂

∂x
, e2 =

1

E

∂

∂y
, (3.4)

then {e1, e2} forms a pseudo-orthonormal frame satisfying

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (3.5)

We define the connection 1-form ω by the following equations:

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2. (3.6)

From (3.2) and (3.4) we fin

∇e1e1 =
Ex

E2
e1, ∇e2e1 = −Ey

E2
e1, (3.7)

∇e1e2 = −Ex

E2
e2, ∇e2e2 =

Ey

E2
e2. (3.8)

By comparing (3.6) and (3.8), we get

ø(e1) =
Ex

E2
, ø(e2) = −Ey

E2
. (3.9)

Let ψ : M2
1 → Rm

s (c) be an isometric immersion of M2
1 into Rm

s (c). Then it

follows from (2.5) and (3.5) that the mean curvature vector of M2
1 is given by

H = −h(e1, e2). (3.10)

Therefore, M2
1 is a minimal surface of Rm

s (c) if and only if h(e1, e2) = 0 holds

identically.
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4. Minimal Lorentz surfaces in Em
s

In this section, we completely classify minimal Lorentz surface in an arbitrary

pseudo-Euclidean m-space Em
s . More precisely, we prove the following.

Theorem 4.1. A Lorentz surface in a pseudo-Euclidean m-space Em
s is mi-

nimal if and only if locally the immersion takes the form L(x, y) = z(x) + w(y),

where z and w are null curves satisfying 〈z′(x), w′(y)〉 6= 0.

Proof. Let L : M2
1 → Em

s be an isometric immersion of a Lorentz surface

M2
1 into a pseudo-Euclidean m-space Em

s with index s ≥ 1. We choose a local

coordinate system {x, y} on M2
1 satisfying

g = −E2(x, y)(dx⊗ dy + dy ⊗ dx) (4.1)

Then we have (3.2)–(3.10).

If M2
1 is a minimal surface, it follows from (3.10) that h(e1, e2) = 0 holds.

Hence, we may put

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (4.2)

for some normal vector fields ξ, η. After applying (2.2), (3.2), (3.4), and (4.2),

we obtain

Lxx =
2Ex

E
Lx + E2ξ, Lxy = 0, Lyy =

2Ey

E
Ly + E2η. (4.3)

After solving the second equation in (4.3), we find

L(x, y) = z(x) + w(y) (4.4)

for some vector-valued functions z(x), w(y). Thus, by applying (3.1) and (4.4),

we obtain 〈z′, z′〉 = 〈w′, w′〉 = 0, and 〈z′, w′〉 = −E2. Therefore, z and w are null

curves satisfying 〈z′, w′〉 6= 0.

Conversely, if L : M2
1 → Em

s is an immersion of a Lorentz surface M2
1 into

E4
s such that L = z(x) + w(y) for some null curves z, w satisfying 〈z′, w′〉 6= 0,

then we obtain 〈Lx, Lx〉 = 〈Ly, Ly〉 = 0, 〈Lx, Ly〉 6= 0, and Lxy = 0. Thus, M2
1

is surface with induced metric given by g = F (x, y)(dx⊗ dy + dy ⊗ dx) for some

nonzero function F . Moreover, it follows from (3.10) and Lxy = 0 that L is a

minimal immersion. ¤

Remark 4.1. Flat minimal Lorentz surfaces in the Lorentzian complex plane

C2
1 have been completely classified in [5]. Moreover, if m = 3, this theorem is due

to [20, Theorem 3.5].
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In particular, if M2
1 is a flat Lorentz surface, we have the following.

Corollary 4.1. A flat Lorentz surface in a pseudo-Euclidean m-space Em
s is

minimal if and only if locally the immersion takes the form

L(x, y) = z(x) + w(y), (4.5)

where z and w are null curves satisfying 〈z′, w′〉 = constant 6= 0.

Proof. Let L : M2
1 → Em

s be an isometric immersion of a flat Lorentz

surface M2
1 into a pseudo-Euclidean m-space Em

s . Then we may choose a local

coordinate system {x, y} on M2
1 satisfying

g = −(dx⊗ dy + dy ⊗ dx) (4.6)

Then we find from (4.3) that the immersion L satisfies

Lxx = ξ, Lxy = 0, Lyy = η (4.7)

for some normal vector fields ξ, η. After solving the second equation in (4.7) we

find

L(x, y) = z(x) + w(y) (4.8)

for some vector functions z, w. Thus, by applying (4.6), we find 〈z′, z′〉= 〈w′, w′〉=0

and 〈z′, w′〉 = −1. Consequently, z and w are null curves satisfying 〈z′, w′〉 = −1.

Conversely, consider a map L defined by L(x, y) = z(x) +w(y), where z and

w are null curves satisfying 〈z′, w′〉 = constant 6= 0 . Then we have

〈Lx, Lx〉 = 〈Ly, Ly〉 = 0, 〈Lx, Ly〉 = constant 6= 0.

Thus, with respect to the induced metric, (4.5) defines an isometric immersion of

a flat Lorentz surface M2
1 into Em

s . The remaining follows from Theorem 4.1. ¤

5. Minimal Lorentz surfaces in Sm
s (1)

Let ψ : M2
1 → Sm

s (1) be an isometric immersion of a Lorentz surface into

Sm
s (1). Denote by L = ι◦ψ : M2

1 → Em+1
s the composition of ψ and the inclusion

ι : Sm
s (1) ⊂ Em+1

s via (1.2).

Obviously, every totally geodesic Lorentz surface in an indefinite space form

Rm
s (c) is of constant curvature c. A natural question is the following:
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Question. Besides totally geodesic ones how many minimal Lorentz surfaces

of constant curvature c in Rm
s (c) are there ?

Theorem 5.1 of [5] provides the answer to this basic question for c = 0.

In this section, we give an answer to this question for c > 0. More precisely,

we classify all minimal Lorentz surfaces of constant curvature one in the pseudo-

sphere Sm
s (1) with arbitrary m and arbitrary index s.

Theorem 5.1. Let M2
1 be a Lorentz surface of constant curvature one.

Then an isometric immersion ψ : M2
1 → Sm

s (1) is minimal if and only if one of

the following three cases occurs:

(a) M2
1 is an open portion of a totally geodesic S2

1(1) ⊂ Sm
s (1).

(b) The immersion L = ι ◦ ψ : M2
1 → Sm

s (1) ⊂ Em+1
s is locally given by

L(x, y) =
z(x)

x+ y
− z′(x)

2
, (5.1)

where z(x) is a spacelike curve with constant speed 2 lying in the light cone

LC satisfying 〈z′′, z′′〉 = 0 and z′′′ 6= 0.

(c) The immersion L = ι ◦ ψ : M2
1 → Sm

s (1) ⊂ Em+1
s is locally given by

L(x, y) =
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2
, (5.2)

where z and w are curves in Em+1
s satisfying

〈
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2
,
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2

〉
= 1, (c.1)

2 〈z + w, z′′′〉 = (x+ y) 〈z′ + w′, z′′′〉 , (c.2)

2 〈z + w,w′′′〉 = (x+ y) 〈z′ + w′, w′′′〉 . (c.3)

Proof. Assume that ψ : M2
1 → Sm

s (1) is an isometric immersion of a Lo-

rentz surface M2
1 of constant curvature one into Sm

s (1). If M2
1 is totally geodesic

in Sm
s (1), we obtain case (a). Hence, let us assume thatM2

1 is non-totally geodesic

in Sm
s (1).

SinceM2
1 is of constant curvature one, we may choose local coordinates {x, y}

such that the metric tensor is given by

g =
−2

(x+ y)2
(dx⊗ dy + dy ⊗ dx). (5.3)
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Hence the Levi–Civita connection satisfies

∇ ∂
∂x

∂

∂x
=

−2

x+ y

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

−2

x+ y

∂

∂y
. (5.4)

Let us put
∂

∂x
=

√
2e1

x+ y
,

∂

∂y
=

√
2e2

x+ y
. (5.5)

Then we get

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (5.6)

Because M2
1 is minimal in Sm

s (1), it follows from (3.10) and (5.3) that h(e1, e2)=0.

Hence, we may put

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (5.7)

for some normal vector fields ξ, η. Without loss of generality, we may assume

ξ 6= 0. Since K = 1, it follows from the equation (2.6) of Gauss and (5.3) that

〈ξ, η〉 = 0.

Case (i): η = 0. From formula (2.2) of Gauss, (5.3)–(5.5), and (5.7), we get

Lxx =
2ξ

(x+ y)2
− 2Lx

x+ y
, Lxy =

2L

(x+ y)2
, Lyy = − 2Ly

x+ y
. (5.8)

After solving the last two equations in (5.8) we obtain

L(x, y) =
z(x)

x+ y
− z′(x)

2
(5.9)

for some Em+1
s -valued function z(x). Since the metric tensor is given by (5.3),

one finds

〈Lx, Lx〉 = 〈Ly, Ly〉 = 0 and 〈Lx, Ly〉 = − 2

(x+ y)2
.

Thus, it follows from (5.8), (5.9) and 〈L,L〉 = 1 that z(x) satisfies

〈z, z〉 = 〈z′′, z′′〉 = 0 and 〈z′, z′〉 = 4.

Moreover, by substituting (5.9) into the first equation (5.8) we find

ξ = − (x+ y)2z′′′(x)
4

. (5.10)
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Combining this with ξ 6= 0 gives z′′′(x) 6= 0. Consequently, we obtain case (b).

Conversely, suppose that L is given by (5.1), where z(x) is a spacelike curve

with constant speed 2 lying in the light cone LC ⊂ Em+1
s satisfying 〈z′′, z′′〉 = 0

and z′′′ 6= 0. Then L satisfies (5.9) with ξ given by (5.10). From the assumption,

we have

〈z, z〉 = 〈z, z′〉 = 〈z′′, z′′〉 = 0, 〈z′, z′〉 = −〈z, z′′〉 = 4. (5.11)

By using (5.9) and (5.11) we know that 〈L,L〉 = 1 and the induced metric tensor

is given by (5.3). Moreover, the second equation in (5.8) shows that the second

fundamental form of ψ satisfies h( ∂
∂x ,

∂
∂y ) = 0. Consequently, the immersion ψ is

a minimal immersion.

Case (ii): η 6= 0. After applying formula (2.2) of Gauss, (5.3)–(5.5), and

(5.7), we obtain

Lxx =
2ξ

(x+ y)2
− 2Lx

x+ y
, Lxy =

2L

(x+ y)2
, Lyy =

2η

(x+ y)2
− 2Ly

x+ y
. (5.12)

The compatibility conditions of (5.12) are given by

∇̃ ∂
∂y
ξ =

2ξ

x+ y
, ∇̃ ∂

∂x
η =

2η

x+ y
. (5.13)

Solving (5.13) gives

ξ = (x+ y)2A(x), η = (x+ y)2B(y) (5.14)

for some Em+1
s -valued functions A(x), B(y). Substituting (5.14) into (5.12) yields

Lxx = A(x)− 2Lx

x+ y
, Lxy =

2L

(x+ y)2
, Lyy = B(y)− 2Ly

x+ y
. (5.15)

After solving system (5.15), we obtain

L(x, y) =
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2
, (5.16)

where z(x), w(y) are Em+1
s -valued functions satisfying

z′′′(x) = −4A(x), w′′′(y) = −4B(y). (5.17)

From 〈L,L〉 = 1 and (5.16), we obtain condition (c.1) in Theorem 5.1.
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By combining (5.15) and (5.17), we obtain

Lxx = −z′′′

4
− 2Lx

x+ y
, Lxy =

2L

(x+ y)2
, Lyy = −w′′′(y)

4
− 2Ly

x+ y
. (5.18)

Since the metric tensor of M2
1 is given by (5.3), we find

〈Lx, Lx〉 = 〈Ly, Ly〉 = 0, 〈Lx, Ly〉 = − 2

(x+ y)2
. (5.19)

Because 〈L,L〉 = 1, we have 〈Lxx, L〉 = −〈Lx, Lx〉 = 0. Thus, we obtain

condition (c.2) from (5.16), (5.18) and (5.19)

Similarly, due to 〈Lyy, L〉 = −〈Ly, Ly〉 = 0, we may also derive condition

(c.3) from (5.16) and (5.18).

Conversely, assume that L is defined by

L(x, y) =
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2
, (5.20)

where z(x), w(y) are curves satisfying conditions (c1), (c.2) and (c.3). Then it

follows from (5.20) that L satisfies system (5.18). Also, it follows from (5.20) and

condition (c.1) that 〈L,L〉 = 1. Thus, we have

〈L,Lx〉 = 〈L,Ly〉 = 0, (5.21)

which implies that

〈Lx, Lx〉= − 〈L,Lxx〉 , 〈Lx, Ly〉= − 〈L,Lxy〉 , 〈Ly, Ly〉= − 〈L,Lyy〉 . (5.22)

By applying (5.22), (c.1) and the first equation in (5.22), we obtain

〈Lx, Lx〉 = −〈L,Lxx〉 = 2

(x+ y)2
〈Lx, Lx〉 , (5.23)

which shows that 〈Lx, Lx〉 = 0.

Similarly, from (5.22) and (c.3) we find 〈Ly, Ly〉 = 0. Also, after applying

(c.1), (5.22) and the second equation in (5.18), we find 〈Lx, Ly〉 = −2/(x + y)2.

Consequently, the induced metric tensor via L is given by (5.3). Finally, it follows

from (3.10) and the second equation in (5.18) that ψ : M2
1 → Sm

s (1) is a minimal

immersion. ¤
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6. Minimal Lorentz surfaces in Hm
s (−1)

Let ψ : M2
1 → Hm

s (−1) be an isometric immersion of a Lorentz surface into

Hm
s (−1). Denote by L = ι ◦ ψ : M2

1 → Em+1
s+1 the composition of ψ and the

inclusion ι : Hm
s (−1) ⊂ Em+1

s+1 via (1.2).

In this section, we provide the following answer to the basic question proposed

in Section 5 for c < 0.

Theorem 6.1. Let M2
1 be a Lorentz surface of constant Gauss curvature −1.

Then an isometric immersion ψ : M2
1 → Hm

s (−1) is a minimal immersion if and

only if one of the following three cases occurs:

(i) M2
1 is an open portion of a totally geodesic H2

1 (−1) ⊂ Hm
s (−1).

(ii) The immersion L = ι ◦ ψ : M2
1 → Hm

s (−1) ⊂ Em+1
s+1 is locally given by

L(x, y) = z(x) tanh

(
x+ y√

2

)
− z′(x)√

2
, (6.1)

where z(x) is a timelike curve with constant speed
√
2 lying in the light cone

LC ⊂ Em+1
s+1 satisfying 〈z′′, z′′〉 = 4 and z′′′ 6= 2z′.

(iii) The immersion L = ι ◦ ψ : M2
1 → Hm

s (−1) ⊂ Em+1
s+1 is locally given by

L(x, y) = (z(x) + w(y)) tanh

(
x+ y√

2

)
− z′(x) + w′(y)√

2
, (6.2)

where z and w are curves satisfying
〈
(z+w) tanh

(
x+ y√

2

)
− z′ +w′

√
2

, (z+w) tanh

(
x+ y√

2

)
− z′ +w′

√
2

〉
=−1, (iii.1)

√
2 〈z + w, 2z′ − z′′′〉 tanh

(
x+ y√

2

)
= 〈z′ + w′, 2z′ − z′′′〉 , (iii.2)

√
2 〈z + w, 2w′ − w′′′〉 tanh

(
x+ y√

2

)
= 〈z′ + w′, 2w′ − w′′′〉 . (iii.3)

Proof. Assume that ψ : M2
1 → Hm

s (−1) is an isometric immersion of a

Lorentz surface M2
1 of constant curvature −1 into Hm

s (−1). If M is totally

geodesic in Hm
s (−1), we obtain (i). Hence, let us assume that M2

1 is non-totally

geodesic.

Since M2
1 is assumed to be of constant curvature −1, we may choose local

coordinates {x, y} such that the metric tensor is given by

g = − sech2
(
x+ y√

2

)
(dx⊗ dy + dy ⊗ dx). (6.3)
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Hence, the Levi–Civita connection satisfies

∇ ∂
∂x

∂

∂x
= −

√
2 tanh

(
x+ y√

2

)
∂

∂x
,

∇ ∂
∂x

∂

∂y
= 0,

∇ ∂
∂y

∂

∂y
= −

√
2 tanh

(
x+ y√

2

)
∂

∂y
. (6.4)

Let us put

∂

∂x
= sech

(
x+ y√

2

)
e1,

∂

∂y
= sech

(
x+ y√

2

)
e2. (6.5)

Then we get

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (6.6)

Because M2
1 is minimal, it follows from (3.10) and (6.3) that h(e1, e2) = 0 holds.

Hence, we may put

h(e1, e1) = ξ, h(e1, e2) = 0, h(e2, e2) = η (6.7)

for some normal vector fields ξ, η. Without loss of generality, we may assume

ξ 6= 0. Since M2
1 is of curvature −1, the equation of Gauss and (6.7) imply that

〈ξ, η〉 = 0.

Case (i): η = 0. By applying formula (2.2) of Gauss, (6.3)–(6.5), and (6.7),

we obtain

Lxx = sech2
(
x+ y√

2

)
ξ −

√
2 tanh

(
x+ y√

2

)
Lx,

Lxy = − sech2
(
x+ y√

2

)
L,

Lyy = −
√
2 tanh

(
x+ y√

2

)
Ly. (6.8)

After solving the last two equations in (6.8) we have

L(x, y) = z(x) tanh

(
x+ y√

2

)
− z′(x)√

2
(6.9)

for some Em+1
s+1 -valued function z. It follows from (6.3), (6.8), (6.9) and 〈L,L〉 =

−1 that z(x) satisfies 〈z, z〉 = 0, 〈z′, z′〉 = −2, and 〈z′′, z′′〉 = 4. Moreover,

substituting (6.9) into the first equation (6.8) yields

ξ =

(√
2z′(x)− z′′′(x)√

2

)
cosh

(
x+ y√

2

)
. (6.10)
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Combining this with ξ 6= 0 gives z′′′(x) 6= 2z′(x). Consequently, we obtain (ii).

Conversely, suppose that L is given by (6.2), where z(x) is a timelike curve

with constant speed
√
2 lying in the light cone LC satisfying 〈z′′, z′′〉 = 4 and

z′′′ 6= 2z′. Then, L satisfies (6.8) with ξ given by (6.10). Moreover, from the

assumption, we have

〈z, z〉 = 〈z, z′〉 = 0, 〈z, z′′〉 = −〈z′, z′〉 = 2, 〈z′′, z′′〉 = 4. (6.11)

Hence, we know from (6.9) and (6.11) that the induced metric tensor is given by

(6.3). Consequently, we see from (6.8) that the second fundamental form of ψ

satisfies h( ∂
∂x ,

∂
∂y ) = 0. Therefore, the immersion ψ is minimal.

Case (ii): η 6= 0. By applying formula (2.2) of Gauss, (6.3)-(6.5) and (6.7),

we obtain

Lxx = sech2
(
x+ y√

2

)
ξ −

√
2 tanh

(
x+ y√

2

)
Lx,

Lxy = − sech2
(
x+ y√

2

)
L,

Lyy = sech2
(
x+ y√

2

)
η −

√
2 tanh

(
x+ y√

2

)
Ly. (6.12)

The compatibility conditions of (6.12) are given by

∇̃ ∂
∂y
ξ =

√
2ξ tanh

(
x+ y√

2

)
, ∇̃ ∂

∂x
η =

√
2η tanh

(
x+ y√

2

)
. (6.13)

Solving (6.13) gives

ξ = A(x) cosh2
(
x+ y√

2

)
, η = B(y) cosh2

(
x+ y√

2

)

for some Em+1
s -valued functions A(x), B(y) satisfying 〈A,B〉 = 0. Substituting

these into (6.12) yields

Lxx = A(x)−
√
2 tanh

(
x+ y√

2

)
Lx,

Lxy = − sech2
(
x+ y√

2

)
L,

Lyy = B(y)−
√
2 tanh

(
x+ y√

2

)
Ly. (6.14)
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After solving system (6.14) we obtain

L(x, y) = (z(x) + w(y)) tanh

(
x+ y√

2

)
− z′(x) + w′(y)√

2
, (6.15)

A(x) =
√
2z′(x)− z′′′(x)√

2
, B(y) =

√
2w′(y)− w′′′(y)√

2
(6.16)

for some Em+1
s -valued functions z, w. From (6.15) and 〈L,L〉 = −1, we obtain

condition (iii.1) of the theorem.

After differentiating (6.15) we get

Lx = z′(x) tanh
(
x+ y√

2

)
+

z(x) + w(y)√
2

sech2
(
x+ y√

2

)
− z′′(x)√

2
,

Ly = w′(y) tanh
(
x+ y√

2

)
+

z(x) + w(y)√
2

sech2
(
x+ y√

2

)
− w′′(y)√

2
. (6.17)

Since the metric tensor of M2
1 is given by (6.3), we find

〈Lx, Lx〉 = 〈Ly, Ly〉 = 0, 〈Lx, Ly〉 = − sech2
(
x+ y√

2

)
. (6.18)

From (6.14) and (6.16), we obtain

Lxx =
√
2z′(x)− z′′′(x)√

2
−
√
2 tanh

(
x+ y√

2

)
Lx,

Lxy = − sech2
(
x+ y√

2

)
L,

Lyy =
√
2w′(y)− w′′′(y)√

2
−
√
2 tanh

(
x+ y√

2

)
Ly. (6.19)

Because 〈L,L〉 = −1, we have 〈Lxx, L〉 = −〈Lx, Lx〉 = 0. Thus, we derive from

(6.18) and (6.19) that

√
2 〈z + w, 2z′ − z′′′〉 tanh

(
x+ y√

2

)
= 〈z′ + w′, 2z′ − z′′′〉 . (6.20)

Similarly, from 〈Lyy, L〉 = −〈Ly, Ly〉 = 0, we have

√
2 〈z + w, 2w′ − w′′′〉 tanh

(
x+ y√

2

)
= 〈z′ + w′, 2w′ − w′′′〉 . (6.21)

These give conditions (iii.2) and (iii.3). Therefore, we obtain case (iii).
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Conversely, if L is given by (6.2) such that z(x), w(y) satisfy conditions (iii.1),

(iii.2) and (iii.3), then we know from (6.2) that L satisfies (6.19). Also, it follows

from (6.2) and (iii.1) that 〈L,L〉 = −1. Thus, we have

〈L,Lx〉 = 〈L,Ly〉 = 0, (6.22)

which implies that

〈Lx, Lx〉 = −〈L,Lxx〉 , 〈Lx, Ly〉 = −〈L,Lxy〉 , 〈Ly, Ly〉 = −〈L,Lyy〉 . (6.23)

By applying (6.19), (iii.1) and the first equation in (6.23), we obtain

〈Lx, Lx〉 = −〈L,Lxx〉 =
√
2 tanh

(
x+ y√

2

)
〈Lx, Lx〉 , (6.24)

which yields 〈Lx, Lx〉 = 0. Similarly, from (6.19) and (iii.3) we find 〈Ly, Ly〉 = 0.

Also, after applying (iii.1), (6.19) and the second equation in (6.23), we obtain

〈Lx, Ly〉 = − sech2
(
x+y√

2

)
. Consequently, the induced metric tensor via L is given

by (6.3). Therefore, it follows from (3.10) and the second equation in (6.19) that

the immersion ψ : M2
1 → Hm

s (−1) is minimal. ¤

7. Explicit examples of minimal Lorentz surfaces in Sm
s (1)

There exist infinitely many spacelike curves with constant speed 2 lying in

the light cone LC ⊂ Em+1
s satisfying 〈z′′, z′′〉 = 0 and z′′′ 6= 0.

Example 7.1. Consider the curve z = z(x) in E7
3 defined by

z(x) =

(
a cosh px,

√
4r2 + a2p2(p2 − r2)

q
√
r2 − q2

cosh qx,

√
4q2 + a2p2(p2 − q2)

r
√
r2 − q2

sinh rx,

a sinh px,

√
4r2 + a2p2(p2 − r2)

q
√
r2 − q2

sinh qx,

√
4q2 + a2p2(p2 − q2)

r
√
r2 − q2

cosh rx,

√
4(q2 + r2) + a2(p2 − r2)(p2 − q2)

qr

)
,

where a, p, q, r are real numbers satisfying p > r > q > 0. It is easy to verify that z

is a spacelike curve of constant speed 2 lying in LC satisfying 〈z′′, z′′〉 = 0, z′′′ 6= 0.

It is direct to verify that the immersion defined by

L(x, y) =
z(x)

x+ y
− z′(x)

2

gives rise to minimal Lorentz surfaces of constant curvature one in S6
3(1). Thus,

there exist infinitely many minimal Lorentz surfaces of type (b) of Theorem 5.1.
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There exist infinitely many pairs (z, w) of curves satisfying conditions (c.1),

(c.2) and (c.3) of Theorem 5.1. Here we provide some examples of such pairs.

Example 7.2. Let p, q, r be positive numbers satisfying

315

4
p2 > 80 + 189r2 − 64q2 > 35p2.

Consider curves z(x) and w(y) in E14
6 defined by

z(x) =

(√
256q2 + 369r2

4
√
15

cosh 2x,

√
16q2 + 609r2

4
√
15

sinh 4x, r cosh 5x, 0, 0, 0,

√
256q2 + 369r2

4
√
15

sinh 2x,

√
16q2 + 609r2

4
√
15

cosh 4x, r sinh 5x, 0, 0, 0, q, 0

)
,

w(y) =

(
0, 0, 0, p cosh

(
3y

2

)
,

√
320 + 225p2 + 756r2 − 256q2

8
√
15

sinh 2y,

√
315p2 + 1024q2 − 3024r2 − 1280

4
√
15

sinh y, 0, 0, 0, p sinh

(
3y

2

)
,

√
320 + 225p2 + 756r2 − 256q2

8
√
15

cosh 2y,

√
315p2 + 1024q2 − 3024r2 − 1280

4
√
15

cosh y,

0,

√
320 + 756r2 − 35p2 − 256q2

8

)
.

Then z, w are constant speed curves lying in the light cone LC ⊂ E14
6 satisfying

〈z′, z′〉 = 64q2 − 189r2

20
, 〈w′, w′〉 = 80 + 189r2 − 64q2

20
,

〈z, w〉 = 〈z, z′′′〉 = 〈z′, z′′′〉 = 〈z′′, z′′〉 = 〈w,w′′′〉 = 〈w′, w′′′〉 = 〈w′′, w′′〉 = 0.

Moreover, it is easy to see that conditions (c.1), (c.2) and (c.3) are satisfied. It is

straightforward to verify that the immersion:

L(x, y) =
z(x) + w(y)

x+ y
− z′(x) + w′(y)

2

via (z, w) defines a minimal Lorentz surface of constant curvature one in S13
6 (1).
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8. Explicit examples of minimal Lorentz surfaces in Hm
s (−1)

There exist infinitely many timelike curves with constant speed
√
2 lying in

the light cone LC ⊂ Em+1
s+1 satisfying 〈z′′, z′′〉 = 4 and z′′′ 6= 2z′.

Example 8.1. Let a, b, p, q be positive numbers satisfying

p2 <
4 + a2

2 + a2
< q2 and b2 >

a2(q2 − 1)(1− p2) + 2(p2 + q2 − 2)

p2q2
.

Consider the curve z = z(x) in E8
4 defined by

z(x)=

(
b, a coshx,

√
q2(2 + a2)− (4 + a2)

p
√
q2 − p2

sinh px,

√
4 + a2 − p2(2 + a2)

q
√
q2 − p2

sinh qx,

a sinh px,

√
q2(2 + a2)− (4 + a2)

p
√
q2 − p2

cosh px,

√
4 + a2 − p2(2 + a2)

q
√
q2 − p2

cosh qx

√
b2p2q2 − a2(q2 − 1)(1− p2)− 2(p2 + q2 − 2)

pq

)
.

It is easy to see that z is curve lying in LC satisfying 〈z′, z′〉 = −2, 〈z′′, z′′〉 = 4

and z′′′ 6= 2z′. A direct computation shows that

L(x, y) = z(x) tanh

(
x+ y√

2

)
− z′(x)√

2
,

defines a minimal Lorentz surfaces of constant curvature −1 in H7
3 (−1). Hence,

there exist infinitely many minimal Lorentz surfaces of type (ii) of Theorem 6.1.

There are many pairs (z, w) of curves satisfying conditions (iii.1)–(iii.3) of

Theorem 6.1. Here we provide infinitely many examples of such pair of curves.

Example 8.2. Let a, b, p, q, r, s be positive numbers satisfying

a, b < 1, p, q, r, s > 1, p2 <
1

1− b2
< q2, r2 <

1

1− a2
< s2,

b2 <
p2 + q2 − 2

p2q2
, a2 <

r2 + s2 − 2

r2s2
. (8.1)

Consider curves z(x) and w(y) in E14
8 defined by

z(x) =

(
b,

√
p2 + q2 − b2p2q2 − 2√
(p2 − 1)(q2 − 1)

coshx,

√
1− p2(1− b2)√

(q2 − p2)(q2 − 1)
sinh qx,
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√
q2(1− b2)− 1√

(q2 − p2)(p2 − 1)
sinh px, 0, 0, 0, 0,

√
p2 + q2 − b2p2q2 − 2√
(p2 − 1)(q2 − 1)

sinhx,

√
1− p2(1− b2)√

(q2 − p2)(q2 − 1)
cosh qx,

√
q2(1− b2)− 1√

(q2 − p2)(p2 − 1)
cosh px, 0, 0, 0

)
,

w(y) =

(
0, 0, 0, 0, a,

√
r2 + s2 − a2r2s2 − 2√

(r2 − 1)(s2 − 1)
cosh y,

√
1− r2(1− a2)√

(s2 − r2)(s2 − 1)
sinh sy,

√
s2(1− a2)− 1√

(s2 − r2)(r2 − 1)
sinh ry, 0, 0, 0,

√
r2 + s2 − a2r2s2 − 2√

(r2 − 1)(s2 − 1)
sinh y,

√
1− r2(1− a2)√

(s2 − r2)(s2 − 1)
cosh qy,

√
s2(1− a2)− 1√

(s2 − r2)(r2 − 1)
cosh py

)
.

It is easy to verify that z and w satisfy conditions (iii.1), (iii.2) and (iii.3). The

associated map

L(x, y) = (z(x) + w(y)) tanh

(
x+ y√

2

)
− z′(x) + w′(y)√

2

defines a minimal Lorentz surface of constant curvature −1 in H13
7 (−1).

Remark 8.1. There exist many positive numbers a, b, p, q, r, s satisfying the

conditions given in (8.2). For instance, a = b = 1/
√
2, p = r = 1.1 and q = s = 1.5

satisfy all conditions given in (8.2).
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