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Complete spacelike CMC hypersurfaces
in a Lorentzian space form

By BIAOGUI YANG (Fuzhou) and XIMIN LIU (Guangzhou)

Abstract. Let x : Mn → M
n+1
1 (c) be a complete spacelike hypersurface immersed

into a Lorentzian space form, where M
n+1
1 (c) is a Lorentz–Minkowski space Ln+1 =

Rn+1
1 , a de Sitter space Sn+1

1 ⊂ Rn+2
1 or an anti-de Sitter space Hn+1

1 ⊂ Rn+2
2 , according

to c = 0, c = 1 or c = −1, respectively. Let φ = 〈x, a〉 and ψ = 〈 ~H, a〉, where ~H is the

mean curvature vector field of Mn and a is a fixed nonzero vector in the corresponding

pseudo-Euclidean space. We prove that if Mn has constant mean curvature (CMC),

and φ = λψ, for some real number λ, then Mn is a spacelike isoparametric hypersurface

of M
n+1
1 (c). Furthermore, it is either a totally umbilical hypersurface or a hyperbolic

cylinder.

1. Introduction

Let Rn+2
t be an (n + 2)-dimensional pseudo-Euclidean space with index t

endowed the indefinite inner product given by with flat semi-Euclidean metric

〈x, y〉 = −
t∑

i=1

xiyi +

n+2∑

j=t+1

xjyj ,

where (x1, . . . , xn+2) is a rectangular coordinate system of Rn+2
t . The de Sitter

space and anti-de Sitter space [9] are defined by Sn+1
1 = {x ∈ Rn+2

1 |〈x, x〉 = 1},
Hn+1

1 = {x ∈ Rn+2
2 |〈x, x〉 = −1}, respectively, with constant sectional curvature
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c = 1 and c = −1, respectively. A hypersurface Mn is said to be spacelike if the

induced metric on Mn from that of the ambient space is positive definite.

Constant mean curvature (CMC) hypersurfaces are often closely related to

either an eigenvalue problem or a differential equation stemming from the Lap-

lacian. At the same time, Maximal and CMC hypersurfaces play a chief role in

relativity theory. There are many interesting results in the study of spacelike

CMC hypersurfaces.

The study of this kind of hypersurface was inspired, in particular, by a con-

jecture posed byGoddard [6], stating that every complete spacelike hypersurface

with constant mean curvature in Sn+1
1 must be totally umbilical. The first result

in this direction was obtained by Ramanathan [10] in 1987. He showed that

if the constant mean curvature H of a complete spacelike surface in S31 satisfies

H2 ≤ 1, then the surface is totally umbilical. Independently, and still in 1987,

Akutagawa [2] proved Goddard’s conjecture for the case H2 ≤ 1 if n = 2 and

for the case H2 < 4(n− 1)/n2 if n > 2. On the other hand, Montiel [8] proved

the conjecture for the compact case.

In [3], Aĺıas, Brasil and Perdomo studied the quadric constant mean

curvature hypersurfaces of spheres and gave a characterization of ones by a linear

relation between two functions on the position vector and a Gauss map of ones.

Inspired their works, we will investigate complete spacelike CMC hypersurfaces

in a Lorentzian space form.

Let x : Mn → M
n+1

1 (c) be a complete spacelike hypersurface immersed into

a Lorentzian space form, where M
n+1

1 (c) is a Lorentz–Minkowski space Ln+1 =

Rn+1
1 , a de Sitter space Sn+1

1 ⊂ Rn+2
1 or an anti-de Sitter space Hn+1

1 ⊂ Rn+2
2

according to c = 0, c = 1 or c = −1, respectively. For some fixed nonzero vector

a ∈ Rn+1
1 , Rn+2

1 or Rn+2
2 , according to c = 0, c = 1 or c = −1, respectively, let

φ = 〈x, a〉 and ψ = 〈 ~H, a〉, where ~H is the mean curvature vector field of Mn. In

this paper, we will prove that if Mn has constant mean curvature, and φ = λψ,

for some real number λ, then Mn is either a totally umbilical hypersurface or a

hyperbolic cylinder. In fact, we prove the following main results.

Theorem 1.1. Let x : Mn → Ln+1 be a complete spacelike CMC hyper-

surface immersed into the Lorentz–Minkowski space Ln+1. If for some nonzero

constant vector a ∈ Rn+1
1 and some real number λ, we have that φ = λψ, then

Mn is one of the following hypersurfaces, up to rigid motions:

(i) Rn = {x ∈ Rn+1
1 : x1 = 0};

(ii) Hn(sinh t) = {x ∈ Rn+1
1 : ‖x‖2 = − sinh2 t}, where t ∈ R;
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(iii) Hk(sinh t)× Rn−k = {x ∈ Rn+1
1 : −x2

1 + x2
2 + · · ·+ x2

k+1 = − sinh2 t}, where
t ∈ R.

Theorem 1.2. Let x : Mn → Sn+1
1 ⊂ Rn+2

1 be a complete spacelike CMC

hypersurface immersed into the de Sitter space Sn+1
1 . If for some nonzero constant

vector a ∈ Rn+2
1 and some real number λ, we have that φ = λψ, then Mn is either

a totally umbilical hypersurface or a hyperbolic cylinder, i.e. Mn is one of the

following hypersurfaces, up to rigid motions:

(i) Rn = {(f(y) + sinh t, f(y) + cosh t, y) ∈ Sn+1
1 ⊂ Rn+2

1 : y ∈ Rn}, where t ∈ R
and f(y) = −(et/2)‖y‖2;

(ii) Sn(cosh t) = {(sinh t, y cosh t) ∈ Sn+1
1 ⊂ Rn+2

1 : y ∈ Sn(1) ⊂ Rn+1}, where
t ∈ R;

(iii) Hn(sinh t) = {(y sinh t, cosh t) ∈ Sn+1
1 ⊂ Rn+2

1 : y ∈ Hn(1) ⊂ Rn+1
1 }, where

t ∈ (0,+∞);

(iv) Hk(sinh t)× Sn−k(cosh t) = {(y, z) ∈ Rk+1
1 × Rn−k+1 : ‖y‖2 = − sinh2 t,

‖z‖2 = cosh2 t}, where 0 < k < n, t ∈ (0,+∞).

Theorem 1.3. Let x : Mn → Hn+1
1 (c) ⊂ Rn+2

2 be a complete spacelike CMC

hypersurface immersed into the anti-de Sitter space Hn+1
1 . If for some nonzero

constant vector a ∈ Rn+2
2 and some real number λ, we have that φ = λψ, then

Mn is either a totally umbilical hypersurface or a hyperbolic cylinder, i.e. Mn is

one of the following hypersurfaces, up to rigid motions:

(i) Hn(sin t) = {(cos t, y sin t) ∈ Rn+2
2 : y ∈ Hn ⊂ Rn+1

1 }, where t ∈ (0, π/2];

(ii) Hk(cos t)×Hn−k(sin t) = {(y, z) ∈ Rk+1
1 × Rn−k+1

1 : ‖y‖2 = − cos2 t, ‖z‖2
= − sin2 t}, where 0 < k < n, t ∈ (0, π/2).

2. Preliminaries and auxiliary results

In this section, we give some formulas and notions of submanifolds in the

space forms by using the method of moving frames. Let x : M −→ M
n+1

1 (c) ⊂
Rn+2

t be a isometric immersion from Riemannian manifold Mn to Lorentz space

forms M
n+1

1 (c) with constant sectional curvature c. Let ∇, ∇, ∇̃ be the Levi-

Civita connection on Mn, M
n+1

1 (c) and Rn+2
t .

For any p ∈ M , we can choose a local orthonormal frame fields e1, . . . , en+2

(en+2 = x when c = ±1) in a neighborhood U of M such that e1, . . . , en are

tangential toM , en+1 is a unit timelike normal vector field ofMn. In the following
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we shall make use of the following convention on the ranges of indices:

1 ≤ A,B,C ≤ n+ 2, 1 ≤ i, j, k, l ≤ n, n+ 1 ≤ α, β, γ ≤ n+ 2.

Let ωA be the corresponding dual frame. The smooth connection 1-forms

are denoted by ωAB . Then we have the structure equations of Rn+2
t





dx =
∑

A

εAωAeA,

deA =
∑

B

εBωABeB , ωAB + ωBA = 0,

dωA =
∑

B

εBωAB ∧ ωB ,

dωAB =
∑

C

εCωAC ∧ ωCB ,

(2.1)

where εA = 〈eA, eA〉, εi = 1, εn+1 = −1, εn+2 = c. A well-known argument

shows that the forms ωin+1 may be expressed as ωin+1 =
∑

j hijωj , hij = hji.

From (2.1) we obtain structure equations of M in Mn+1
1 (c)





dx =
∑

i

ωiei,

dei =
∑

j

ωijej −
∑

j

hijωjen+1 − cωix,

den+1 = −
∑

i,j

hijωjei.

(2.2)

The second fundamental form is defined

h =
∑

i,j

hijωi ⊗ ωj , (2.3)

and the square of the length of h is given by S = |h|2 =
∑

i,j h
2
ij .

The Gauss and Codazzi equations are

Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk), (2.4)

hijk = hikj , (2.5)

where the covariant derivative of hij is defined by

∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj . (2.6)
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Associated to the shape operator A of M one has n invariants Sr, 1 ≤ r ≤ n,

given by the equality

det(tI −A) =

n∑

k=0

(−1)kSkt
n−k.

If p ∈ M and ek is basis of TpM formed by eigenvectors of the shape operator

Ap, with corresponding eigenvalues λk, one immediately sees that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[x1, . . . , xn] is the r-th elementary symmetric polynomial on the

indeterminates x1, . . . , xn. The r-th mean curvature of M is given by

Hr =
1(
n
r

)Sr.

In particular, when r = 1

H1 =
1

n

∑

i

λi =
1

n
S1 = H

is nothing but the mean curvature of M .

The classical Newton transformations Pr : X (M) → X (M) are defined in-

ductively from the shape operator A by

Pr =

{
I, r = 0,

SrI −A ◦ Pr−1, r = 1, . . . , n,
(2.7)

where I denotes the identity transformation in X (M). Equivalently,

Pr =

r∑

j=0

(−1)jSr−jA
j . (2.8)

Thus Pn = 0 by Cayley–Hamilton Theorem. Moreover, since Pr is a polynomial

in A for every r, it is also self-adjoint and commutes with A. Therefore, all bases

of TpM , diagonalizing A at p ∈ M , also diagonalize all of the Pr at p. Let {ek}
be such a basis. Denoting by Ai the restriction of A to span{ei}⊥ ⊂ TpM , it is

easy to see that

det(tI −Ai) =

n−1∑

k=0

(−1)kSk(Ai)t
n−1−k, (2.9)
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where

Sk(Ai) =
∑

1≤j1<···<jk≤n
j1,...,jk 6=i

λj1 . . . λjk .

With the above notions, it is also immediate to check that Pr(ei) =
∑

j T
r
ijej =

Sr(Ai)ei, where T r
ij = 〈Pr(ei), ej〉. Thus, according to [4], [5], [11], [12], we have

the following lemma.

Lemma 2.1. For each 1 ≤ r ≤ n− 2

(a) Sr(Ai) = Sr − λiSr−1(Ai);

(b) tr(Pr) = (n− r)Sr;

(c) tr(A ◦ Pr) = (r + 1)Sr+1;

(d) tr(A2 ◦ Pr) = S1Sr+1 − (r + 2)Sr+2;

(e) tr(Pr ◦ ∇XA) = 〈∇Sr+1, X〉 for X ∈ X (M).

Associated to each Newton transformation Pr, we consider the second-order

linear differential operator Lr : C∞(M) → C∞(M) given by

Lr(f) = tr(Pr ◦ ∇2f),

where ∇2f : X (M) → X (M) denotes the self-adjoint linear operator metrically

equivalent to the Hessian of f and given by

〈∇2f(X), Y 〉 = 〈∇X(∇f), Y 〉, X, Y ∈ X (M).

Using that Pr is a symmetrical operator, we have

Lr(fg) = fLrg + gLrf + 2〈Pr(∇f),∇g〉 (2.10)

for every f, g ∈ C∞(M).

Since ~H is parallel to en+1, then ~H = Hen+1. Furthermore,

φ = 〈x, a〉, ψ = H〈en+1, a〉,

where a is a fixed vector in Rn+2
1 if c = 1; or a is a fixed vector Rn+2

2 if c = −1.

Then we have that

Proposition 2.2. If Mn is a spacelike hypersurface of M
n+1

1 (c) with non-

zero mean curvature vector field. Then the gradients of functions φ and ψ are

give by

∇φ = a>, ∇ψ = ∇(ln |H|)ψ −HA(a>), (2.11)

where a> denotes the tangential component of a.
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Proof. Since

〈∇φ, ei〉 = ei(φ) = 〈∇̃eix, a〉 = 〈dx(ei), a〉 = 〈ei, a〉,
and

〈∇〈en+1, a〉, ei〉 = 〈∇̃eien+1, a〉 = 〈den+1(ei), a〉
= −

〈∑

j

hijej , a
〉
= −〈Aei, a〉 = −〈ei, A(a>)〉,

thus

∇φ =
∑

i

〈ei, a〉ei = a>, ∇〈en+1, a〉 = −A(a>)

∇ψ = ∇(H〈en+1, a〉) = ∇H〈en+1, a〉+H∇〈en+1, a〉
= ∇H〈en+1, a〉 −HA(a>) = ∇(ln |H|)ψ −HA(a>). ¤

Now, we have the following result.

Proposition 2.3. IfMn is a spacelike hypersurface ofM
n+1

1 (c) with nonzero

mean curvature vector field. For each 1 ≤ r ≤ n− 2, we have

Lrφ = −c(n− r)Srφ−H−1(r + 1)Sr+1ψ, (2.12)

Lrψ = c(r + 1)Sr+1Hφ+ (H−1LrH + S1Sr+1 − (r + 2)Sr+2)ψ

−H〈∇Sr+1, a〉 − 2〈A ◦ Pr(∇H), a〉. (2.13)

Proof. Since

φi = ei〈x, a〉 = 〈ei, a〉, (2.14)

then
∑

j

φijωj = dφi +
∑

j

φjωji = 〈dei, a〉 −
∑

j

〈ej , a〉ωij

=
〈∑

j

ωijej −
∑

j

hijωjen+1 − cωix, a
〉
−
∑

j

〈ej , a〉ωij

= −cφ
∑

j

δijωj −H−1ψ
∑

j

hijωj .

Thus

φij = −cφδij −H−1ψhij . (2.15)

With that in mind we calculate

Lrφ =
∑

i,j

T r
ijφij = −cφ

∑

i,j

T r
ijδij −H−1ψ

∑

i,j

T r
ijhij

= −cφ tr(Pr)−H−1ψ tr(A ◦ Pr) = −c(n− r)Srφ− (r + 1)Sr+1H
−1ψ.
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Next we let η = 〈en+1, a〉

ηi = ei〈en+1, a〉 = 〈den+1(ei), a〉 = −
∑

j

hij〈ej , a〉, (2.16)

thus we can make the suggestive calculation

∑

j

ηijωj = dηi +
∑

j

ηjωji = −
∑

j

dhij〈ej , a〉 −
∑

j

hij〈dej , a〉 −
∑

j

ηjωij

= −
∑

j,k

(hijkωk − hkjωki − hikωkj)〈ej , a〉

−
〈∑

j,k

hijωjkek −
∑

j,k

hijhjkωken+1 − c
∑

j

hijωjx, a
〉
+
∑

j,k

hjk〈ek, a〉ωij

= −
∑

j,k

hijkωj〈ek, a〉+ cφ
∑

j

hijωj + η
∑

j,k

hikhjkωj .

This shows that

ηij = −hijk〈ek, a〉+ cφhij + η
∑

k

hikhjk. (2.17)

With this, then we have

Lrη =
∑

i,j

T r
ijηij = −

∑

i,j,k

T r
ijhijk〈ek, a〉+ cφ

∑

i,j

T r
ijhij + η

∑

i,j,k

T r
ijhikhjk

= −
∑

i,j,k

T r
ijhijk〈ek, a〉+ cφ tr(A ◦ Pr) + η tr(A2 ◦ Pr)

= −〈∇Sr+1, a〉+ cφ(r + 1)Sr+1 + η(S1Sr+1 − (r + 2)Sr+2).

Thus

Lrψ = Lr(Hη) = HLrη + 2〈Pr(∇H),∇η〉+ ηLrH

= H(−〈∇Sr+1, a〉+ cφ(r + 1)Sr+1 + η(S1Sr+1 − (r + 2)Sr+2))

+ 2〈Pr(∇H),−A(a>)〉+H−1LrHψ

= c(r + 1)Sr+1Hφ+ (H−1LrH + S1Sr+1 − (r + 2)Sr+2)ψ

− 2〈A ◦ Pr(∇H), a〉 −H〈∇Sr+1, a〉. ¤
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3. Proof of the main theorems

In this section, using Proposition 2.3, we will prove Theorem 1.1, Theorem

1.2 and Theorem 1.3 in a union form.

Since φ = λψ, if H = 0 or λ = 0, then φ = 0 and Mn is a totally geodesic

submanifold in M
n+1

1 (c). In the following ,we suppose λH 6= 0. From Proposition

2.3, we obtain

Lrφ = −c(n− r)Srφ− (r + 1)Sr+1H
−1ψ

= −[cλ(n− r)Sr + (r + 1)Sr+1H
−1]ψ

= λ{c(r + 1)Sr+1Hφ+ (H−1LrH + S1Sr+1 − (r + 2)Sr+2)ψ

−H〈∇Sr+1, a〉 − 2〈A ◦ Pr(∇H), a〉}
= −H〈∇Sr+1, a〉λ+ [c(r + 1)Sr+1Hλ2 + (S1Sr+1 − (r + 2)Sr+2)λ]ψ.

This imply

{c(r + 1)Sr+1Hλ2 + [S1Sr+1 − (r + 2)Sr+2 + c(n− r)Sr]λ+ (r + 1)Sr+1H
−1}ψ

= λ〈∇Sr+1, a〉H.

If ψ = 0, then φ = 0 and Mn is a totally geodesic submanifold in M
n+1

1 (c). There

is nothing to prove. Therefore we can assume ψ 6= 0, then

c(r + 1)Sr+1Hλ2 + [S1Sr+1 − (r + 2)Sr+2 + c(n− r)Sr]λ+ (r + 1)Sr+1H
−1

= λψ−1〈∇Sr+1, a〉H. (3.1)

Taking r = 0, and since H is constant, then

cnH2λ2 + (S2
1 − 2S2 + cn)λ+ n = 0.

Thus

S2 =
n

2λ
[cH2λ2 + (nH2 + c)λ+ 1]

is constant.

Using (3.1), by inductive method, we show that Sr is constant for every 1 ≤
r ≤ n. This means that Mn is a complete spacelike isoparametric hypersurface

of M
n+1

1 (c). According to Theorem 1 and Theorem 2 in [7] or by the congruence

theorem of Abe, Koike and Yamaguchi [1], we conclude that Mn is either

a totally umbilical hypersurface or a hyperbolic cylinder, i.e. Mn is one of the

following hypersurfaces, up to rigid motions:

(i) Rn, Hn(sinh t), Hk(sinh t)× Rn−k in Ln+1;

(ii) Rn, Sn(cosh t), Hn(sinh t), Hk(sinh t)× Sn−k(cosh t) in Sn+1
1 ;

(iii) Hn(sin t), Hk(cos t)×Hn−k(sin t) in Hn+1
1 .
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4. Some examples

In this section, we give some examples for hypersurfaces appearing in the

main theorems and verify further our results.

Example 4.1. let f : Ln+1 → R be a real function defined by

f(x0, . . . , xn) = δ1(−x2
0 + x2

2 + · · ·+ x2
k) + x2

k+1 + δ2(x
2
k+2 + · · ·+ x2

n), (4.1)

where δ1, δ2 ∈ {0, 1} and δ21 + δ22 6= 0. Taking r > 0 and ε = ±1, the set

Mn = f−1(εr2) is a hypersurface of Ln+1 provided (δ1, δ2, ε) 6= (0, 1,−1).

A straightforward computation shows the unit normal vector field is written

as

en+1 =
1

r
(δ1x0, . . . , δ1xk, xk+1, δ2xk+2, . . . , δ2xn). (4.2)

Moreover, the principal curvatures of Mn are given by

λ1 = · · · = λk = −δ1
r
,

λk+1 = · · · = λn = −δ2
r
,

and we also have that

H = −kδ1 + (n− k)δ2
nr

.

Thus

(1) when (δ1, δ2, ε) = (0, 1, 1), Mn = Lk × Sn−k(r), and if we take a =

(0, . . . , 0, ak+1, . . . , an+1) ∈ Rn+1
1 , then we have φ = − nr2

n−kψ;

(2) when (δ1, δ2, ε) = (1, 0,−1), Mn = Hk(r) × Rn−k, and if we take a =

(a1, . . . , ak+1, 0, . . . , 0) ∈ Rn+1
1 , then we have φ = −nr2

k ψ;

(3) when (δ1, δ2, ε) = (1, 1,−1), Mn = Hn(r), and if we take

a = (a1, . . . , an+1) ∈ Rn+1
1 ,

then we have φ = −r2ψ.

Example 4.2. Given any integer k ∈ {1, . . . , n − 1} and any real number

r ∈ (0, 1), let

Mn = {(x, y) ∈ Lk+1 × Rn−k+1 : ‖x‖2 = −r2 and ‖y‖2 = 1 + r2}
= Hk(r)× Sn−k(

√
1 + r2 ).
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It is not difficult to see that for any (x, y) ∈ Mn one gets

T(x,y)M
n = {(v, w) ∈ Lk+1 × Rn−k+1 : 〈x, v〉 = 0 and 〈y, w〉 = 0}.

Therefore, the unit timelike normal vector field en+1 is given by

en+1(x, y) =

(√
1 + r2

r
x,− r√

1 + r2
y

)
.

Moreover, the principal curvatures of Mn are given by

λ1 = · · · = λk = −
√
1 + r2

r
,

λk+1 = · · · = λn =
r√

1 + r2
,

and we also have that

H =
(n− 2k)r2 − k

nr
√
1 + r2

.

Thus, when H 6= 0, i.e. n ≤ 2k, or n > 2k and r 6=
√

k
n−2k ,

(i) if we take a = (a1, . . . , ak+1, 0, . . . , 0) ∈ Rn+2
1 , then we have that

φ =
nr2

(n− 2k)r2 − k
ψ; (4.3)

(ii) if we take a = (0, . . . , 0, ak+2, . . . , an+2) ∈ Rn+2
1 , then we have that

φ = − n(1 + r2)

(n− 2k)r2 − k
ψ. (4.4)

Similarly, we have the following example.

Example 4.3. Given any integer k ∈ {1, . . . , n − 1} and any real number

r ∈ (0, 1), let

Mn = {(x, y) ∈ Lk+1 × Ln−k+1 : ‖x‖2 = −r2 and ‖y‖2 = −1 + r2}
= Hk(r)×Hn−k(

√
1− r2 ).

It is not difficult to see that for any (x, y) ∈ Mn one gets

T(x,y)M
n = {(v, w) ∈ Lk+1 × Ln−k+1 : 〈x, v〉 = 0 and 〈y, w〉 = 0}.
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Therefore, the unit timelike normal vector field en+1 is given by

en+1(x, y) =

(√
1− r2

r
x,− r√

1− r2
y

)
.

Moreover, the principal curvatures of Mn are given by

λ1 = · · · = λk = −
√
1− r2

r
,

λk+1 = · · · = λn =
r√

1− r2
,

and we also have that

H =
nr2 − k

nr
√
1− r2

.

Thus, when H 6= 0, i.e. r 6=
√

k
n ,

(i) if we take a = (a1, . . . , ak+1, 0, . . . , 0) ∈ Rn+2
1 , then we have that

φ =
nr2

nr2 − k
ψ; (4.5)

(ii) if we take a = (0, . . . , 0, ak+2, . . . , an+2) ∈ Rn+2
1 , then we have that

φ = −n(1− r2)

nr2 − k
ψ. (4.6)
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