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On the Diophantine equation ax2 − by2 = c

By A. GRELAK (Zielona Góra) and A. GRYTCZUK (Zielona Góra)

1. Introduction

In the paper [3] there has been given a matrix method for the study of
some properties of the solutions in integers x, y of the Diophantine equation

(1.1) ax2 − by2 = c .

The study of (1.1) was begun by Lagrange and continued by several au-
thors, see C. U. Jensen [5], P. Kaplan [6], J. C. Lagarias [7],
H. Lienen [8], T. Nagell [9], [10], [11] and many others.

From Theorems 2 and 3 of our paper [3] we get the following solvability
criteria in integers x, y for (1.1) when c = 1 or c = 2:

Criterion 1. Let a > 1, b be positive integers such that (a, b) = 1 and
d = ab is not a square of a natural number. Moreover let 〈u0, v0〉 denote
the least positive integer solution of Pell’s equation

(1.2) u2 − dv2 = 1 .

Then equation (1.1) with c = 1 has a solution in positive integers x, y iff

(1.3) 2a | u0 + 1 and 2b | u0 − 1 .

We note that this result has been proved also by W. Górzny [2], but
in another way.

Criterion 2. Let a, b be positive integers such that (a, b) = (a, 2) =
(b, 2) = 1 and d = ab is not a square of a natural number and let 〈u0, v0〉
denote the least positive integer solution of (1.2). Then the equation (1.1)
with c = 2 has a solution in positive integers x, y iff

(1.4) a | u0 + 1 and b | v0 − 1 .
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By using an idea contained in [3] we give in this paper a solvability
criterion for (1.1) when c > 2. Namely, we reduce the problem of the solv-
ability of (1.1) in integers x, y to the investigation of the integer solutions
of the following Diophantine equation

u2 − abv2 = c2 .

We conclude the introduction by expressing our thanks to referee for the
remarks incorporated in the present version of the paper.

2. Notations and Lemmas

Let d = ab and suppose that (a, b) = (b, c) = (c, a) = 1. In a similar
way as in [3] we introduce the matrix

(2.1) S =




√
a x

d√
a

y

1√
a

y
√

a x




associated with the Diophantine equation (1.1). The matrix S will be
called a solvable matrix if x, y are integers such that (x, c) = 1 and

(2.2) det S = ax2 − by2 = c .

In the case a = c = 1 the solvable matrix S will be called Pell’s solvable
matrix. Hence

(2.3) P =
[

u dv
v u

]

and

(2.4) det P = u2 − dv2 = 1 .

Let 〈u0, v0〉 denote the least positive integer solution of (2.4), such a solu-
tion we will be called a primitive Pell’s solution. Now we can define the
primitive solution of (1.1).

The solution 〈x0, y0〉 of (1.1) will be called primitive solution, if ax2
0−

by2
0 = c and x0 ≤ x for any positive integer x satisfying (1.1). Let S0, P0

be matrices associated with a primitive solution of (1.1) and a primitive
Pell’s solution, respectively.



On the Diophantine equation ax2 − by2 = c 293

By (2.1) and (2.3) we have

S0 =




√
a x0

d√
a

y0

1√
a

y0
√

a x0


(2.5)

P0 =
[

u0 dv0
v0 u0

]
(2.6)

From (2.5) and (2.6) we obtain

(2.7) S1 = S0P0 = P0S0 =




√
a x1

d√
a

y1

1√
a

y1
√

a x1




where

(2.8) x1 = x0u0 + by0v0, y1 = y0u0 + ax0v0 .

From (2.7) and Cauchy’s Theorem on the product of determinants we get

(2.9) det S1 = det S0 · detP0 = det P0 · det S0 = ax2
1 − by2

1 = c ,

because det S0 = c and det P0 = 1. From (2.9) it follows that the numbers
x1, y1 given in (2.8) are solutions of (1.1).

Now we define the singular solution of (1.1).

Definition 1. The solution 〈u, v〉 of (1.1) will be called a singular so-
lution of (1.1) if

(2.10) x0 < u < x1

where x1 is given by (2.8) and 〈x0, y0〉 is the primitive solution of (1.1).

We can prove the following

Lemma 1. Let c > 2 not be a square of a natural number and suppose
that equation (1.1) has a primitive solution in positive integers x0, y0 such
that (x0, c) = 1. Then there exists a singular solution 〈u, v〉 of (1.1).

Proof. Let d = ab and

(2.11) u = x0u0 − by0v0, v = y0u0 − ax0v0 .

It is easy to see that by (2.6) we have

(2.12) P−1
0 =

[
u0 −dv0−v0 u0

]
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and det P−1 = 1, thus by (2.7) and (2.8) it follows that the 〈u, |v|〉 given
by (2.11) is a solution of (1.1).

Since u2
0 − abv2

0 = 1 then u0 >
√

ab v0 and

u = x0u0 − by0v0 >
√

ab v0x0 − by0v0 = v0

√
b (
√

a x0 −
√

by0).

On the other hand from the ax2
0 − by2

0 = c, c > 2 follows that
√

a x0 −√
b y0 > 0 and we obtain u > 0. Then from (2.11) and (2.8) we have

(2.13) 0 < u < x1 .

We remark that v 6= 0. Indeed, suppose that v = 0 then by (1.1) we
have au2 = c. Since (a, c) = 1 thus a = 1 and u2 = c concradicting our
assumption that c is not a square of a positive integer. Since 〈x0, y0〉 is
a primitive solution of (1.1), by (2.13) and the definition of a primitive
solution we obtain
(2.14) x0 ≤ u < x1 .

Suppose that in (2.14) we have u = x0. Then by (2.11) it follows that

(2.15) x0(u0 − 1) = by0v0 .

On the other hand, since 〈u, |v|〉 is a solution of ax2 − by2 = c by (2.11)
we have

ax2 − b(ax0v0 − y0u0)2 = c .

From the last equality we obtain

(2.16) ax2
0 − ax2

0(abv2
0) + 2au0x0(by0v0)− u2

0(by
2
0) = c .

From the assumptions we have ax2
0 − by2

0 = c and u2
0 − abv2

0 = 1 and
therefore by2

0 = ax2
0 − c and abv2

0 = u2
0 − 1.

Substituting the last equality and (2.15) in to (2.16) we obtain

(2.17) ax2
0 − ax2

0(u
2
0 − 1) + 2au0x

2
0(u0 − 1)− u2

0(ax2
0 − c) = c .

From (2.17) we get

2ax2
0 − 2ax2

0u0 = c(1− u2
0)

and consequently

2ax2
0(1− u0) = c(1− u0)(1 + u0).

Since u0 6= 1, the last equality implies

(2.18) 2ax2
0 = c(u0 + 1).

Since (a, c) = 1 and (x0, c) = 1, by (2.18) we get c | 2, thus c ≤ 2, and
this is impossible, because c > 2. Therefore u 6= x0 and by (2.14) and the
Definition 1 our Lemma follows.
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Lemma 2. Let S1, S2 be the matrices associated with the solutions
〈x1, y1〉 and 〈x2, y2〉 of (1.1). Then the matrix R = S1S2 = S2S1 has the
form

R =
[

x3 dy3
y3 x3

]

where
x3 = ax1x2 + by1y2, y3 = x1y2 + y1x2

and R is associated with the solution 〈x3, y3〉 of the Diophantine equation

u2 − dv2 = c2

where d = ab.

Proof. We have

(2.19) R = S1S2 = S2S1 =




√
a x1

d√
a

y1

1√
a

y1
√

a x1


 ·




√
a x2

d√
a

y2

1√
a

y2
√

a x2


 .

From (2.19) we get

(2.20) R =
[

ax1x2 + by1y2 d(x1y2 + y1x2)
x1y2 + y1x2 ax1x2 + by1y2

]
.

Putting in (2.20)

(2.21) x3 = ax1x2 + by1y2, y3 = x1y2 + y1x2

we get

(2.22) R =
[

x3 dy3
y3 x3

]
.

From (2.19) and the assumptions of our Lemma we get detS1 = det S2 = c
and therefore by Cauchy’s theorem on the product of determinants we
obtain

(2.23) detR = det S1 · det S2 = c2 .

On the other hand by (2.22) it follows that detR = x2
3−dy2

3 and therefore
by (2.23) we get

x2
3 − dy2

3 = c2, where d = ab

and the proof is complete.
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Lemma 3. All positive integral solutions of the equation

x2 − dy2 = z2

are given by the formulas

x = (am2 + bn2)%, y = 2mn%, z = (am2 − bn2)%

if d = ab is even, or

x = 1
2 (am2 + bn2)%, y = mn%, z = 1

2 (am2 − bn2)%

if d = ab is odd and % is any integer when m and n are odd, but % is even
when one of m and n is even and the other is odd. In all cases m,n are
positive integers and relatively prime.

For the proof see [1], Th. 40, p. 41.

3. Result

In this part of our paper we prove the following

Theorem. Let a, b and c > 2 be positive integers such that (a, b) =
(b, c) = (c, a) = 1 and d = ab is not a square of an integer.

Then the equation

(3.1) ax2 − by2 = c

has a solution in positive integers x, y with (x, y) = 1 iff there exists an
integer solution 〈u, v〉 of the equation

(3.2) u2 − dv2 = c2

Proof. Suppose that the assumptions of our Theorem are fulfilled
and let the equation (3.2) have an integer solution 〈u, v〉. By Lemma 3 it
follows that all positive integer solutions of (3.2) are given by the formulae

(3.3) u = (am2 + bn2)%, v = 2mn%, c = (am2 − bn2)%

if d = ab is even, or

(3.4) u = 1
2 (am2 + bn2)%, v = mn%, c = 1

2 (am2 − bn2)%

if d = ab is odd, where % is any integer when m and n are odd, but %
is even when one of m and n is even and the other is odd. In all cases
(m,n) = 1.

Let d = ab be even. Then by (3.3) in the case % = 1 we obtain

u = am2 + bn2, c = am2 − bn2
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and consequently

u + c

2
− u− c

2
= am2 − bn2 = c,

so denote that the equation ax2−by2 = c, has a solution in positive integers
m,n such that (m,n) = 1.

Let d = ab be odd. Then by (3.4) in the case % = 2%1 we have

u = (am2 + bn2)%1, c = (am2 − bn2)%1

where (m,n) = 1 and m,n are different parity. Thus for %1 = 1 we obtain

u + c

2
− u− c

2
= am2 − bn2 = c,

and we get a solution in positive integers m,n of the equation ax2−by2 = c.
Now we can assume that the equation (3.1) has a primitive solution 〈x0, y0〉
such that (x0, y0) = 1 and (x0, c) = 1. Then there exists a solution 〈x1, y1〉
given by (2.8). Since (x0, c) = 1 then by Lemma 1 we obtain that there
exists a singular solution 〈u, v〉 of (3.1).

By Lemma 2 it follows that there exists a solution in positive integers
of the equation (3.2). The proof is complete.

4. Application

Let K = Q(
√

d ), d > 0 be a given quadratic number field and let
h denote the class-number of this field. Then from well-known results of
C. S. Herz [4], (Cf. [12], p. 483) it follows that if h = 1 then

(4.1) d = p, 2q, qr

where p is a prime and q ≡ r ≡ 3 (mod 4) are primes
From this results follows that for the investigation of the famous Gauss

problem concerning the existence of infinitely many real quadratic number
fields with class-number h = 1 it suffices to consider one of the cases given
in (4.1). Consider the case d = p ≡ 3 (mod 4). Then if RK is the ring of
all integers of K = Q(

√
p ) and if α ∈ R then for some rational integers

x, y we have

(4.2) α = x + y
√

p and N(α) = x2 − py2 .

On the other hand it is well-known that if DK is the discriminant of K
then for every rational prime q we have

(4.3) (q) = P 2, N(P ) = q if q | DK
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and if q - DK then

(q) = P1P2, P1 6= P2, N(P1) = N(P2) = q if
(

DK

q

)
= +1(4.4)

(q) = P, N(P ) = q2 if
(

DK

q

)
= −1(4.5)

where P, P1, P2 are prime ideals in RK and
(

a
b

)
denotes the Legendre

symbol. In the case d = p ≡ 3 (mod 4) we have D = 4d = 4p. From
(4.3) we have q = 2 or p and if P = (α) then N(P ) = N((α)) = |N(α)|
and conversely. By (4.2) we obtain that this condition is equivalent to the
condition that the equation |x2 − py2| = 2 or p has a solution in integers
x, y. But it is easy to see that the equation |x2 − py2| = p has always the
solution x = 0, y = ±1 and it remains to investigate the equations

(4.6) x2 − py2 = 2, x2 − py2 = −2 .

Let 〈u0, v0〉 be the primitive solutions of Pell’s equation u2− pv2 = 1,
then we have (u0 − 1)(u0 + 1) = pv2

0 and we obtain

(4.7) p | u0 − 1 or p | u0 + 1 .

From (4.7) and Criterion 2 we get that one of the equations (4.6) has a
solution in integers x, y. Therefore we can investigate the cases (4.4) and
(4.5). Similarly as in the above case we obtain that if one of the equations

(4.8) x2 − py2 = q, x2 − py2 = −q .

has a solution in integers x, y for every odd prime q 6= p such that
(
DK

q

)
=(

p
q

)
= +1 then every prime ideal P of RK is principal and consequently

any integer ideal is also principal and we get that in this case h = 1.
Applying our Theorem to (4.8) we get the following

Corollary. Let K = Q(
√

p ), where p ≡ 3 (mod 4) is a prime. If the
equation

u2 − pv2 = q2

has an integer solution 〈u, v〉 for every odd prime q 6= p, such that
(

q
p

)
=

+1, then h = 1.
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