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Approximation by g-parametric operators

By ZOLTAN FINTA (Cluj-Napoca)

Abstract. We establish sufficient conditions to insure the convergence of a sequ-
ence of positive linear operators defined on C]0, 1]. As applications we obtain quantita-
tive estimates for some ¢-parametric operators.

1. Introduction

The development of the g-calculus has led to the discovery of g-parametric
operators. The first example in this direction was given by A. LuUPAS in 1987.
He introduced a g¢-analogue of the well-known Bernstein operators (see [10]),
denoted by Ry, 4(f,z), where n = 1,2,..., ¢ € (0,1), f € C[0,1] and = € [0,1].
In [14], OSTROVSKA defined the limit Lupag operator ]:Zoo,q(ﬁ x) and proved the
convergence of the sequence {R,, 4(f,2)} to R 4(f,2) as n — oo, uniformly for
x € [0,1]. The case q € (1,00) was also considered in [10] (resp. in [14]).

In 1992, L. LuPas [11] and independently, in 2000, TRIF [17] considered the
¢-Meyer-Konig and Zeller operators M, ,(f,z), where n = 1,2,..., ¢ € (0,1),
f€Clo,1] and z € [0,1]. WANG proved in [19], among others, that the sequence
{M,, 4(f,z)} converges to the limit g-Bernstein operator B 4(f,2) as n — oo,
uniformly for z € [0, 1].

Later, in 1997, PHILLIPS introduced a new generalization of the classical
Bernstein operators, based on g-integers (see [15] and [16]). He defined the so-
called g-Bernstein operators By, 4(f,z), where n =1,2,..., ¢ € (0,1), f € C[0,1]
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and z € [0, 1]. From the properties of g-Bernstein operators, we mention the follo-
wing one established by IL'INSKII and OSTROVSKA [8]: the sequence {B,, ((f, )}
converges to Boo ¢(f, ) as n — oo, uniformly for z € [0, 1].

Further important g-parametric operators were introduced and studied by
S. LEwaNowicz and P. WoZNY [9], M.-M. DERRIENNIC [3], V. GuUPTA [6],
A. AraL [1], V. Gupta and H. WANG [7], A. ARAL and V. GUPTA [2], and
G. Nowak [12], respectively.

Let (L) be a sequence of positive linear operators such that L, : C[0,1] —
C[0,1], n=1,2,... . Motivated by the above convergence results, we propose to
obtain sufficient conditions to insure the convergence of the sequence (L,,) to its
limit operator denoted by L.,. Moreover, the rate of approximation || L, f — Lo f||
will be estimated by the second order Ditzian-Totik modulus of smoothness of
f € C0,1], defined by

wy(f,t) = sup sup  |f(z + he(x) = 2f(z) + f(z — he(x))], (1)
0<h<t zthe(z)€[0,1]

where || - || denotes the uniform norm on C[0, 1] and ¢ is an admissible step-weight
function on [0, 1] (for details see [5]). The corresponding K-functional to (1) is
defined for f € C[0,1] and ¢ > 0 as follows:

Ko (f,t) = inf{|[f — gl +tle’g"[l - g € W2(9)},

where W2(p) = {g € C[0,1] : ¢’ € ACi,c[0,1],9%¢" € C[0,1]} and ¢’ € AC),.[0,1]
means that ¢ is differentiable and ¢’ is absolutely continuous on every interval
[a,b] C [0,1]. In view of [5, Theorem 2.1.1] there exists C' > 0 such that

CTWi(f,VE) < Ko o(f,1) < CWL(f,VE). (2)

Here we mention that C' will denote throughout this paper a positive constant
which can be different at each occurrence, and it is independent of n, f and =z.
Further, we use the notations eg(z) = 1, z € [0,1] and ex(z) = 2%, z € [0, 1].

In Section 2 is established our main theorem, and in Section 3 is applied this
theorem for some g-parametric operators.
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2. Main result

The next result is our main theorem.

Theorem 2.1. Let (L,)n,>1 be a sequence of positive linear operators on
C[0,1] and let (a,)n>1 be a positive sequence such that o, — 07 as n — oo. If
the positive sequence (,,)n>1 satisfies the conditions:

(i) Bn+ Bug1 + -+ Buyp_1 < Cay, for every n,p=1,2,...,

(ii) |Lng — Lny19l| < CBu||02g" || for every g € W2(p) and n = 1,2,...,
then there exists a positive linear operator L., on C[0,1] such that ||L,f —
Loof]| = 0 as n — oo, for every f € C[0,1]. Furthermore,

where f € C[0,1] and n = 1,2,... are arbitrary.

PROOF OF THEOREM 2.1. We mention that || L, f — Lo f|| = 0 as n — oo,
is a consequence of (3), because a,, — 07 as n — oco.

Furthermore, in view of (ii) and (i), we find for every g € W?(y) and n,p =
1,2,... that

HLng - Ln-&-ng < ”Lng - Ln+lg|| + ”Ln-'rlg - Ln+29H + 4+ ”Ln-‘rp—lg - Ln+p9”
< C(Bn+ Brpr+ -+ + Buyp-1)l*d" | < Canll®g" |- (4)

Let g = ep in (4). Then Lpeq = Lpipep for all n,p = 1,2,... In this case the
positivity of L, implies that

[Ln(f, )] < Ln([f],2) < La(l[flleo, ) = [| /| Ln(eo, ©) = [ f[| L1 (€0, 2)
< A Lreoll

for x € [0,1], f € C[0,1] and n = 1,2,... Hence ||L, f|| < ||Lieol|||f]| for f €
C[0,1] and n = 1,2,... This means that

[Ln]l < [|Lreo]| < oo (®)

foralln=1,2,...

On the other hand, W?(y) is dense in C[0,1]. Then, by the well-known
Banach-Steinhaus theorem (see [4]), it is sufficient to prove the convergence of
the sequence (L,g),>1 in C[0,1], for each g € W?(p). Because a,, — 0 as
n — oo, we get, in view of (4), that (L, g),>1 is a Cauchy-sequence and therefore
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converges in C[0,1]. In conclusion there exists an operator Lo, on C]0,1] such
that | Lnf — Lo f|| = 0 as n — oo, for all f € C[0,1]. This also implies that L
is a positive linear operator on C0, 1], because L,, are positive linear operators
foralln=1,2,...

Further, by (5),

LSl < NEall LA < 1 Lveoll 1] (6)

for each f € C]0,1]. Because we have the convergence L, f — Lo f in the uniform
norm for all f € €0, 1], then (6) implies

[Loo fII < I Lveoll L] (7)
for each f € CJ0,1].
Now let p — oo in (4). Then
IZng = Loogll < Conlle®g” |, ®)
where g € W2%(p) and n = 1,2,... By combining (6), (7) and (8), we find for
every f € C[0,1], that
”Lnf - Loof” < HLnf - Lng” + ”Lng - LoogH + ”Locg - Loof”
< 2[|Lyeoll |f = gll + Canllp®g" || < C{IIF — gll + anllo?q"|[}-

Taking the infimum on the right-hand side over all g € W?2(y), we get

HLnf - Loof” < CK2,sa(fa Ozn).

Hence, by (2), we obtain the estimate (3). This completes the proof of our
theorem. (]

We mention that WANG established in [18] a Korovkin-type theorem, which
insures for a sequence (L,,) of positive linear operators on C[0, 1] that there exists
an operator Lo, on C]0,1] such that ||L,f — Leo|| — 0 as n — oo, for each
f € C[0,1]. Our theorem is different from Wang’s result.

3. Applications

In this section we shall apply Theorem 2.1 for some g-parametric operators,
namely for the g-Bernstein operator defined by PHILLIPS [15], for the g-Meyer—
Konig and Zeller operator introduced by TRIF [17] (see also [11]) and for a ¢-
analogue of the Bernstein operator considered by LUPAS in [10].
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1° Let 0 < ¢ < 1. For each non-negative integer k, the g-integers [k] and the
g-factorials [k]! are defined by

L+q+--+¢"1, if k>1
0, if k=0

and
[1][2]...[k], if k>1

1, if k=0.

For integers 0 < k < n, the g-binomial coefficients are defined by

[n] B [n]!
k|l [k]'n— k)

In [15], PHILLIPS defined the following generalization of the classical Bernstein
operators, based on g-integers. For each n = 1,2,... and f € C[0,1], we define
the ¢-Bernstein operators as

(Bua)(w) = Buglf, ) gf(i)pnk(q, ),

where z € [0,1] and

n

pn,k(Qa Z‘) = |]€

x", if k=n.

] *(1—2)1—zq)...(1 —2¢"*1), f0<k<n-1
For ¢ = 1, we recover the well-known Bernstein operators.

By [15, (15)], we have B, 4(e2,x) = 2% + [n]"'z(1 — x), z € [0, 1]. Hence
Bn,q(62a .’L‘) - 1'2 =73 302(33)7 (9)

where p(z) = /2(1 —z), z € [0,1] and n =1,2,...
Using [13, (3.2)], we have for g € W2(p), x € [0,1] and n = 1,2,...,

Bn,q(gvx) - n+1,q ga Z an, Ic pn+1,k(an)a (10)
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where
onste) = gt (o= e () o ()
By Taylor’s formula, we find

(1) =0 (mem) (B - em) 7 ()

[k]/[n]
i /[k]k/[nﬂ] Gl:j - U) s

o (%) = (mem) + (o~ ) ()

[k—1]/[n] _
—|—/ ([k 1 - u> g" (u) du.
[k]/[n+1] [n]

Then, in view of (11), we obtain

ank(g) = n+1- K g <U€]> n qn+1—k[ (k] g ([k - 1])

[n+1] [n] n+1] [n]

1K+ g ] (k]
[n+ 1) ([n + 1])

:mfl}m<$imhm1)/(m@u>
- [n[;ti 1]k] /[]/[ +1] (Ej u) 9w du
n+1 k:
¥ m+£]<um]‘m@1)j n)
L )

)
L) gt

and

n+l-k[L ] [k—1]/[n k-1 y
+ [n+1] /[k]/[ +1] ( [n] a
41—k [k]/[n] E_ "
TS Avﬁﬂ(m )o@ do
qn+1 k[ ] [k=11/In} [k_ 1] — ) d(w) du
- [n+1] /[k]/[ +1] [n] )g (u) du 12)

because

[n+1— K] ([k} [£] ) ¢ k] ([k’— ] [¥] )

[n+ 1) [n] B [n+1] [n+ 1)
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= [n][n[k—]l—l]Q {ln+1—kJ([n+1] - [n]) F R (R =1+ 1) — Kl
- [n][TEkJ]rW {[n+1-kg" + " (=" n+1-k)} =0.

Taking into account (12), (9) and the estimate

/ (L~ wg” () du

(see [5, Lemma 9.6.1]), we have

< (t =)’ (@) e%g" |,

) [n—i—l—k] [k]/[n] @_u //u U

sl = ] AQMHJQM >g()d
qn+1—k[k,] (k=1)/[n] [k —1] —w) d(w) du
[n+1] /gvm+u ( "] >g e

<t H (WY e (B g

[n+ 1) [n]  [n+1] [n+ 1)

g TR (k-1 (k] (K] 2
n+ 1] ] ‘m+1) <n+1>w I
[n+1— K][E]([n+1] — [n])?

[n
Pl (n T 1] — k)
" F (k= 1][n + 1] — [K][n])? »
[n]2[n + 1]([n + 1] — [k]) }Hw [
[n+1 - Kllklg™"
[n)%[n + 1]g*[n+ 1 — k]
qn+1—k(_qk—1[n+ 1 _ k‘])2 )
mﬂn+u¢m+1k]}ﬂwgn

n—1

+ o

q n —
= o AT T R I+ 1k }nw2%«f[]|w2“w

[n]*[n + 1]
Then, by (10), (14) and Bj,11 (€0, z) = 1 (see [15, (13)]), we have

|Bn,q(9,2) — Bnt1,4(9,7)| < Z an k(9)| Prt1,k(q, )

k=1
n qnfl )
"
SE:“WnglmmmA%@
k=1

n—1

[n]?

IN
<

2 //|| 2 HH

Bn+1,q(607 )”90 = [] H(p

(14)
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Let B, = q"1/[n]?, n =1,2,..., where 0 < ¢ < 1. Then

q _
Bn+6n+1+"'+6n+p—1§ [n]2 (1+q+---+q” 1)
1 n—1 n—1
< 4 < 1 __
M21-q = (1-¢q")
for all n,p =1,2,..., i.e. we obtain the condition (i) of Theorem 2.1 with «,, =
" '/(1—¢")?* n=1,2,.... Obviously o, — 0T as n — oc.

1—1

ue to , we ge ngfnlg_72 g"||, which is the condition
Due to (15 get | Bn.qg — Bnt1,q9/l < 4= lleg”|l, which is th dit

(ii) of Theorem 2.1 for the g-Bernstein operator. Applying Theorem 2.1, we have
the following statement.

Let ¢ € (0,1) be given. Then there exists a positive linear operator Lo 4 on
C[0,1] such that

1Bnqf = Locafll < Cwl(f,v/a"=1/(1 —q"))

for all f € C[0,1] and n = 1,2,... . The operator Ly, 4 coincides with the limit
g-Bernstein operator By 4, because in [8] it is proved that {B,, 4f} converges to
By qf as m — oo, uniformly on [0, 1].

2° Let 0 < ¢ < 1. Foreach n=1,2,... and f € CJ0, 1], we define the ¢g-Meyer—
Konig and Zeller operators [17] as follows.

(Mg f)(x) = My q(f, )

& s > k n+k )
_ E}(l_fo)kZ:()f([n[jk]) L ark, if 0<z<1

For ¢ = 1, we recover the well-known Meyer—Konig and Zeller operators.
By [17, (2.3)—(2.4)], we have

| My q(e2,2) — 2| < [n i 1]x(1 —z)(1—zq")
n—1
T £2]1q][n ) SIS U
1 9 1 ) 4,

where n > 4 and p(z) = \/z(1 — z), z € [0,1].
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On the other hand, by [17, Theorem 3.3|, we have for z € [0,1], n = 1,2,...
and g € W2(g),

Mn,lZ(g7 CL’) - Mn+1,q(g> 33)

oo

:xH(lfqu)Z ntk
s=0

2|k ﬁ{fwﬂﬁZiEHg<m+@+u>

k1] [ k41 m+k+1] [ [k+1]
- [n+1] (m+k+ﬂ>_'[k+u (m+k+ﬂ>

[n+ &+ 1] k+1]
TR g(m+k+u)}' (17)

By Taylor’s formula, we obtain

o(wrerm)

1]
[

mi2i2> <n+@+] [ﬁ:ﬂﬂ>d<mﬁ23ﬂ>
+/ § 7[:+:+2] ( [n+ k]+ 1] u) g () du
g<MiZi2>_n+k+%£ﬂk+ﬂj<MﬁZEﬂ>

+A:tji:ﬂ<n+£+} QQQNWdu "
and
g(mﬁlfn)
() () ()

[k-+1]/[n+k—+1] [k
+ / ( +1] u> g" (u)du
k+1]/[n+k+2] [n+k+1]

( [k +1] ) ¢*ln+1] ,( [k +1]

“I\n+k+2 n+k+ﬂm+k+ﬂ n+k+2]
(k+1]/[n+k+1]

+/~ ( [k +1] 109%@&4 (19)
[k+1]/[n+k+2] +k+1]
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respectively. Then, in view of (17), (18), (19), (16), (13) and M, 4(eg,z) = 1,
x € [0,1] (see [17, (2.1)]), we have

= n+k| .
|Mn7q(g,l‘) - Mn+1 q(ga S H 1 7$q Z k X
s=0 k=0
o | gt n TR+ Kl MUELES)
n+1] [n+k+1] n+k+2 [k +1]

X(mﬁiﬂu"mﬁlﬂm)‘y(mﬁlﬂm)’

+xH17x Z n+k
s=0

k=0

X n+1[n+k+1]
n+1]

k

/[ 1/[n+k+1] ( [k] > //( )
—u ) g (u)du
(k+1]/[n+k+2) \ [+ k+1]

[n+k + 1] (/“*”/W+k“]< [k + 1] ) () d
—u ) g"(u)du
[k +1] (k1)/[ntkt2) \ [0+ k+1]
lefx Z n—]:k k
s=0 k=0

L)

X{7ﬁ1n+k+

/[k]/[n-i-k-‘rl] ( [k] ) //( )
—u ) g (u)du
(k+1]/[n+k+2) \ [+ k+1]

(k+1]/[n+k+1]
/ ( [k + 1] _u>g,,<u)du}
[

kt1)/ntht2) \ [+ E+1]
{7ﬁ1n+k+ (] [k +1] )2 n+k+1]

[n+k+1]
[k + 1]

oo

xﬁ 1—xz¢° Z
s=0

k
TL—|— xk

X

m+k+1] [n+k+2] [k +1]

E41 N\ o k1] 2
n—|— n
( e sy }go (i) Il

k

y 7H1n+k+ q**[n + 1)? [n+k+2]
T T k1P k422 [kt
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y [n+k+2] +[n+k+1] g2k 4 1)?
n+k—+2] —[k+1] k+1 [n+k+12n+k+ 22
n+k+ 2] [n+k+ 2] }H 2

k+1 n+k+2]—[k+1]

oo

n+k

k qn qk [n+k+2] H 2 //H
k

Tk ntk+

8

IT @ =z
s=0 k=0

2q™ - s n+k
S[nJrl]JCH(l_gcq)Z[ k

s=0 k=0

2 lle?g"|l

2 //”

Mn,q(eo,l‘)HQOQ NH = [ 1] ||§0

Hence ogn
q 2 1
M, .9 — M, < — 20
M09 = Msr,g9ll < =gy 107" (20)

forall n =1,2,... and g € W2(p).
In this case we consider 8, = ¢"/[n+1],n=1,2,... and 0 < ¢ < 1. Then

n n

q -1 q
- 1 n—1 < 1 p < -
Bt B+ Buipt S TE(b g+ ) S
for all n,p = 1,2,... We set a,, = ¢"/(1 —¢""), n=1,2,... Then a,, — 0" as

n — 00. In conclusion, in view of (20), we can apply Theorem 2.1.
Let g € (0,1) be given. Then there exists a positive linear operator Lo 4 on
C[0,1] such that

Mg f = Lo fll < Cwl(f,V/a" /(1 = q"+1))

for all f € C[0,1] and n =4,5,...
In this case Lo,q is identical with Be, 4, because in [19] it is proved that
{M,, qf} converges to By qf as n — oo, uniformly on [0, 1].

3° Let 0 < ¢ < 1. Following [10], the positive linear operators R, , : C[0,1] —
C10,1], defined by

_ 4 e R
(Rnqf)(@) = Ry q(f,2) Z f ( [n] ) [ ] l-z4zq)...1—xz+xzg™ 1)

are called the g-analogue of the Bernstein operators. For ¢ = 1, we recover the

well-known Bernstein operators. Due to [14, Lemma 1], we have

Ry q(e0, ) =1 (21)
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and ) + 3 .
ST o (1 —a). (22)

1
2
p— 1 .
|Ry q(€2,2) — 2% = —z(1 —x) p—— B

[n]
Thus we set p(z) = y/z(1 — x), x € [0,1]. Taking into account [10, (2)], we have
for g € W2(p),

Frt1,al9,2) = Bnalg,2) = 1—z+ J:Z]c)(.li(?— T+ xq") kz—o [n ; 1] gFE= D/ 2k
M [k +1] q*[n][n + 1] [k +1]
x(1=2) k{[k-l-l]g( [n] >_[k+1][n—k]g([n+1]>

*ﬁﬁgﬂ(ﬁb}' (23)

By Taylor’s formula, we find

9(%&”)=9($1ﬂ)+(ﬁa”—$

[k+1]/[n] +1 Y
- /k+1]/[n+1] ( u) g (w)d @
and
(] k+1 k] [k+1]\ , ([k+1]
<n) g(m 1) (m m+u)g<m+u>
[k [n] k] " u u
+/[+1]/[n+1] ( [n] u) g (u) du, (25)
respectively. Because
q"[n] I L q*[n][n +1]
k+1] [n—Fk [k+1])[n—k
and
¢“[n] ([k+1] [k+1]\  ¢"[r] (K] [k+1]Y _
it (Cor o) * i (i~ ) =
by combining (23), (24), (25), (22), (13) and (21), we obtain
) — x (1~ 2) S k(k—1)/2
|Rn+1,q(g’ ) qu(gv )‘ = (1 —x+xq) (1 7£L‘+93q ZO [ k ]

k
/il g
Jrostonn (R 4)70
[k+1]/[n+1]
(k]/[n]
/ (Uf] - u) g" (u) du
[k+1]/[n+1] [n]

n—1— qk[n]
x z*(1 - ) k{[k+1]

q"[n]
[n — k]

+
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@1 ~ 2) k(k—1)/2 .k n—1—k
= + (1 —x
" (l-z42zq...1—z+x¢") ;[ ‘| ( )

| () eI s (et 0

") (K] k+1\° o (k+1\, 2,
+ [n — k| ([n} [n—i—l]) ¥ <[n+1]>llsog ||}

zl-z 2 1 _1)/2
:(1—x+zq)(...(1)_x+xq g HZ ] k(k—1)/
o f ) [ P I+ 12
Xxk(lfx) k{[k;—i—l] MR+ 12 [k +1)(n+ 1] — [k + 1])
n q*[n] ¢*[n—k)? [+ 12 }
[n— K] [n]2[n + 12 [k + 1]([n + ]—%+H)
:(1—x+x$f(?—m+m Hﬁ’ﬂ}: ] K(k—1)/2
.’L’k T n—1—k qn_1+k[n + 1]
e [n][n — K[k + 1]
_ 29" | ! ' n+1 A~ .
_(1—x—|—xq),,,(1—x+xq’ﬂ) — [TLP k41 q(k+ k)2 ket (1_37) k

= ” 20| Z n + 1 gF D 25k (] — g)ntick

= TP Y9 (I-z4+2zq)...(1—z+xzq™)
1 | R afeo, ) = L),

- [P 4 [n]2

Similarly to the case 1°, we can choose the sequences (o, )n>1 and (Sp)n>1
as a, = ¢"1/(1 —¢")? and B, = ¢""1/[n]?, where n = 1,2,... and 0 < ¢ < 1.
By Theorem 2.1, we have the following statement.

Let q € (0,1) be given. Then there exists a positive linear operator Lo 4 on
C[0,1] such that

|Rnaf = Looafll < Cu(£.V/a /(1= ")
for all f € C[0,1] andn=1,2,...
The operator Lo 4 is identical with the limit g-analogue of the Bernstein
operator, denoted by R. 4, because in [14] it is proved that {R, ,f} converges
t0 Reo qf as n — oo, uniformly on [0, 1].
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