Publ. Math. Debrecen 78/3-4 (2011), 583–593 DOI: 10.5486/PMD.2011.4793

Some generalizations of the Borsuk–Ulam Theorem

By DANIEL VENDRÚSCOLO, (São Carlos) PATRICIA E. DESIDERI (São Carlos) and PEDRO L. Q. PERGHER (São Carlos)

Abstract. Let S^n be the *n*-dimensional sphere, $A: S^n \to S^n$ the antipodal involution and \mathbb{R}^n the *n*-dimensional euclidean space. The famous Borsuk–Ulam Theorem states that, if $f: S^n \to \mathbb{R}^n$ is any continuous map, then there exists a point $x \in S^n$ such that f(x) = f(A(x)). In this paper we discuss some generalizations and variants of this theorem concerning the replacement either of the domain (S^n, A) by other free involution pairs (X, T), or of the target space \mathbb{R}^n by more general topological spaces. For example, we consider the cases where: i) (S^2, A) is replaced by a product involution $(X, T) \times (Y, S) = (X \times Y, T \times S)$, where X and Y are Hausdorff and pathwise connected topological spaces, the involution T is free and the fundamental group of X is a torsion group; ii) \mathbb{R}^n is replaced by $M^r \times N^s$, where M^r and N^s are closed manifolds with dimensions r and s, respectively, and r + s = n; iii) (S^2, A) is replaced by a product involution T^2 . We remark that i) includes the case in which $(X, T) \times (Y, S) = (X, T)$, by taking $(Y, S) = (\{\text{point}\}, \text{identity})$, and in particular the popular 2-dimensional Borsuk–Ulam Theorem.

1. Introduction

Generalizations of the Borsuk–Ulam Theorem as mentioned in the abstract can be placed in the following general setting: let X, Y be topological spaces, where X is equipped with a free involution $T : X \to X$, that is, with $T(x) \neq x$ for every $x \in X$. We say that $\{(X,T), Y\}$ satisfies the Borsuk–Ulam Theorem (in

Mathematics Subject Classification: Primary: 55M20; Secondary: 55M35.

Key words and phrases: Borsuk–Ulam Theorem, involution pair, covering space, deck transformation, equivariant map, CW-complex, generalized manifold, one-point union. Research partially supported by CNPq and FAPESP.

an abbreviated form, satisfies BUT) if, given any continuous map $f: X \to Y$, there exists at least one point $x \in X$ so that f(x) = f(T(x)). Results of this type obtained by replacing (S^n, A) by more general free involution pairs (X, T) can be found, for example, in [2], [10], [12] and [13]. In general lines, in these papers S^n is replaced by spaces X subject to certain homological conditions, and the free involutions $T: X \to X$ are arbitrary. Results referring to the replacement of \mathbb{R}^n by other spaces can be found, for example, in [11] (Y= a differentiable manifold), [8] (Y = a compact topological manifold), [1] (Y = a generalized manifold), [4],[5], [6] and [7] (Y = a finite CW-complex). Let X be a Hausdorff and pathwise connected topological space, equipped with a free involution $T: X \to X$. Let X/T be the orbit space of X by T and $p: X \to X/T$ the quotient map. Take a point $a \in X$, and consider the homomorphism induced in the fundamental groups, $p_*: \pi_1(X, a) \to \pi_1(X/T, \overline{a})$, where $\overline{a} = p(a)$. Denote by $h_X: \pi_1(X, a) \to H_1(X)$ the Hurewicz homomorphism, where $H_1(X)$ is the one-dimensional Z-homology group of X. In Section 2, we will obtain the following algebraic criterion for $\{(X,T), R^2\}$ satisfy BUT:

Theorem 1.1. Set $G = \pi_1(X/T, \overline{a}) - p_*(\pi_1(X, a))$. If there exists $\beta \in G$ such that $h_{X/T}(\beta)$ is a torsion element in $H_1(X/T)$, then $\{(X, T), R^2\}$ satisfies BUT.

As a consequence, we get that involution pairs as those mentioned in the abstract (item i), together with the target space R^2 , satisfy BUT, and in particular the fact that if $\pi_1(X, a)$ is a torsion group, then for any free involution $T: X \to X$, $\{(X,T), R^2\}$ satisfies BUT, which includes the popular 2-dimensional Borsuk–Ulam Theorem. Another consequence is the fact that $\{(S,T), R^2\}$ satisfies BUT, where S is any closed orientable surface with Euler characteristic congruent to 2 mod 4 (which includes S^2) and T is any free involution on S.

In Section 3, we consider the following weak version of the Borsuk–Ulam Theorem (WBUT): if G is a topological group, we say that $\{(X,T),G\}$ satisfies WBUT if, for every map $f: X \to G$, there exists $x \in X$ such that f(x) = f(T(x)) (mod 2-torsion). We will see that, for all involution pairs (X,T) considered in Section 2, $\{(X,T),T^2\}$ satisfies WBUT, where T^2 is the 2-dimensional torus, considered with its additive structure (mod 1).

Given a topological space X, we define BUT(X) as the smallest natural number n so that $\{(S^n, A), X\}$ satisfies BUT. In Section 4 we make some considerations about this number, which is a topological invariant. We will see that, if X is a finite n-dimensional CW-complex, then $n \leq BUT(X) \leq 2n$, and if X is a closed n-dimensional manifold, then BUT(X) = n or n + 1. This raises the

question of finding BUT(X) for specific n-dimensional CW-complexes X (or specific closed n-dimensional manifolds X). For example, we will see that, if X is a closed n-dimensional manifold satisfying the fact that its top-dimensional nonzero Z_2 -cohomology class $\alpha \in H^n(X, Z_2)$ is a cup product of lower dimensional classes, then BUT(X) = n.

2. A result related to the 2-dimensional Borsuk–Ulam Theorem in terms of the fundamental group

We will prove the algebraic criterion for $\{(X,T), R^2\}$ satisfy BUT given by Theorem 2.1, maintaining the notation used to state the result; we will use simple facts concerning covering spaces. If $\sigma : I = [0,1] \to X$ is a path with $\sigma(0) = a$, we denote by $[\sigma]$ the homotopy equivalence class of σ relative to the base point a; we set σ^{-1} for the inverse path $t \to \sigma(1-t)$. To prove the result, suppose by contradiction that there exists a continuous map $f : X \to R^2$ with $f(x) \neq$ f(T(x)) for every $x \in X$. Then a standard and well known construction yields an equivariant map $F : X \to S^1$, that is, satisfying F(T(x)) = -F(x) for every $x \in X$. Set $q : S^1 \to S^1/A$ for the quotient map. Because F is equivariant, it induces a continuous map $\overline{F} : X/T \to S^1/A$ in such a way that the diagram

$$\begin{array}{cccc} X & \stackrel{F}{\longrightarrow} & S^{1} \\ & \downarrow^{p} & & \downarrow^{q} \\ X/T & \stackrel{\overline{F}}{\longrightarrow} & S^{1}/A \end{array}$$

is commutative. Set F(a) = z, that is, $q(z) = \overline{z} = \overline{F}(\overline{a})$. Take $\beta \in G$ so that $h_{X/T}(\beta)$ is a torsion element in $H_1(X/T)$, and consider the commutative diagram

$$\pi_1(X/T, \overline{a}) \xrightarrow{\overline{F}_*} \pi_1(S^1/A, \overline{z})$$
$$\downarrow^{h_{X/T}} \qquad \qquad \downarrow^{h_{S^1/A}}$$
$$H_1(X/T) \xrightarrow{\overline{F}_*} H_1(S^1/A)$$

Then $\overline{F}_*h_{X/T}(\beta)$ is a torsion element in $H_1(S^1/A) \cong Z$, which means that $\overline{F}_*h_{X/T}(\beta) = 0$. Now choose a loop α in X/T which represents β . Then there exists a lifting $\overline{\alpha} : I \to X$ for α with $\overline{\alpha}(0) = a$. Since β does not belong to the image of p_* , one necessarily has that $\overline{\alpha}(1) = T(a)$, and since F is equivariant, $F\overline{\alpha}$ is a path in S^1 with initial point z and final point -z. Choose generators

 $c \in \pi_1(S^1, z), \ d \in \pi_1\left(\frac{S^1}{A}, \overline{z}\right)$, and a path μ in S^1 with initial point z and final point -z, so that $q\mu$ is a loop in $\frac{S^1}{A}$ representing d. Then the usual product of paths $(F\overline{\alpha}).(\mu^{-1})$ is a loop in S^1 with base point z, which means that, in $\pi_1(S^1, z), [(F\overline{\alpha}).(\mu^{-1})] = rc$ for some $r \in Z$. Since q has degree two, on then has $q_*([(F\overline{\alpha}).(\mu^{-1}])) = [qF\overline{\alpha}] - [q\mu] = [qF\overline{\alpha}] - d = rq_*(c) = \pm 2rd$. Thus $[qF\overline{\alpha}] \neq 0$, and since $h_{S^1/A}$ is an isomorphism, $h_{S^1/A}([qF\overline{\alpha}]) \neq 0$. This contradicts the fact that $h_{S^1/A}([qF\overline{\alpha}]) = \overline{F}_*h_{X/T}(\beta) = 0$.

Corollary 2.1. Let X be a Hausdorff and pathwise connected space, and (X,T) a free involution pair. If the fundamental group of X is a torsion group (which includes the case in which $X = S^2$), then $\{(X,T), R^2\}$ satisfies BUT.

PROOF. Choose a base point $a \in X$ and write $p: X \to X/T$ for the quotient map. Set $p(a) = \overline{a}$. One has that $p: X \to X/T$ is a two-fold covering, with {Identity, T} being the group of deck transformations of this covering. In this way, the quotient group

$$\frac{\pi_1(X/T,\overline{a})}{p_*(\pi_1(X,a))}$$

is isomorphic to Z_2 , the cyclic group of 2 elements. This means that $p_*(\pi_1(X, a))$ is a subgroup of $\pi_1(X/T, \overline{a})$ of index two. The fact that $\pi_1(X, a)$ is a torsion group then implies that $\pi_1(X/T, \overline{a})$ is a torsion group. In fact, if $\beta \in \pi_1(X/T, \overline{a}) - p^*(\pi_1(X, a))$, then $\beta^2 \in p^*(\pi_1(X, a))$ and so β^2 is a torsion element. In this way, β is a torsion element, which ends the proof.

Corollary 2.2. Let X, Y be Hausdorff and pathwise connected spaces, and (X,T) a free involution pair like those of Theorem 2.1 (which particularly includes the case in which the fundamental group of X is a torsion group). Let (Y,S) be a involution pair, which is not necessarily free. Then $\{(X,T) \times (Y,S), R^2\}$ satisfies BUT.

PROOF. Take points $a \in X$, $c \in Y$, and write $p: X \to X/T$ and $q: X \times Y \to X \times Y/T \times S$ for the quotient maps. Set $p(a) = \overline{a}$ and $q(a, c) = \overline{(a, c)}$. Consider the maps $\theta: X \to X \times Y$, $\Phi: X \times Y \to X$, $\theta(x) = (x, c)$, $\Phi(x, y) = x$. Then θ and Φ induce maps $\overline{\theta}: X/T \to X \times Y/T \times S$, $\overline{\Phi}: X \times Y/T \times S \to X/T$ so that $\overline{\Phi} \circ \overline{\theta}$ is the identity map. Take $\beta \in G = \pi_1(X/T, \overline{a}) - p_*(\pi_1(X, a))$ with $h_{X/T}(\beta)$ being a torsion element in $H_1(X/T)$. Then $\overline{\theta}_*(h_{X/T}(\beta))$ is a torsion element in $H^1(X \times Y/T \times S)$, and since $\overline{\theta}_* \circ h_{X/T} = h_{X \times Y/T \times S} \circ \overline{\theta}_*$, it suffices to show that $\overline{\theta}_*(\beta) \in \pi_1(X \times Y/T \times S, \overline{(a,c)})$ does not belong to $q_*(\pi_1(X \times Y, (a,c)))$. Otherwise, suppose $\overline{\theta}_*(\beta) = q^*(\omega)$ for some $\omega \in \pi_1(X \times Y, (a,c))$. Then $\beta = \overline{\Phi}_*(\overline{\theta}_*(\beta)) = \overline{\Phi}_*(q^*(\omega)) = p_*(\Phi_*(\omega))$, which contradicts the fact that $\beta \notin p_*(\pi_1(X, a))$.

Remark 2.1. Concerning product involution pairs $(X \times Y, T \times S)$ with T without fixed points, we note that if $\{(X, T), Z\}$ satisfies BUT and S has a fixed point, then it is easy to prove directly that $\{(X \times Y, T \times S), Z\}$ satisfies BUT. However, if S does not have fixed points, then we have no topological way to prove that $\{(X \times Y, T \times S), Z\}$ satisfies BUT, even if also $\{(Y, S), Z\}$ satisfies BUT.

Corollary 2.3 (D. L. GONÇALVES, [3]). Let S be a closed orientable surface with Euler characteristic congruent to 2 mod 4 and T a free involution on S. Then $\{(S,T), R^2\}$ satisfies BUT.

PROOF. S/T is a non-orientable closed surface with odd Euler characteristic, and in this case it is well known that there exists an element $\beta \in \pi_1(S/T)$ so that $h_S(\beta) \in H_1(S)$ is a torsion element, and that β belongs to $\pi_1(S/T) - p_*(\pi_1(S))$.

3. A weak Borsuk–Ulam theorem for maps into the 2-dimensional torus

Let (X,T) be a free involution pair and G a topological group. Set $i: G \to G$ for the involution $i(g) = g^{-1}$ and 2G for the set $\{g \in G/i(g) = g\}$; evidently, the neutral element $e \in G$ belongs to 2G. Note that the validity of BUT for $\{(X,T),G\}$ is equivalent to the fact that, for every $f: X \to G$, $F^{-1}(e)$ is nonempty, where $F: (X,T) \to (G,i)$ is the equivariant map F(x) = $f(x).(f(T(x)))^{-1}$. This motivates the following extension of the BUT property: we say that $\{(X,T),G\}$ satisfies the weak Borsuk–Ulam Theorem (in an abbreviated form, satisfies WBUT) if $F^{-1}(2G)$ is nonempty for every $f: X \to G$. If $2G = \{e\}$, BUT is equivalent to WBUT; for example, this happens with $G = R^n$, considered with its additive structure. We want to consider the case in which Gis the 2-dimensional torus $T^2 = \frac{[0,1] \times [0,1]}{[0,1]}$, where \sim identifies (t,0) to (t,1) and (0,t) to (1,t), considered with its additive structure (mod 1).

Theorem 3.1. Let (X,T) be an involution pair like those of Theorem 1.1. Then $\{(X,T),T^2\}$ satisfies WBUT.

PROOF. The argument follows the lines of the proof of Theorem 1.1, but with more technical sophistication. One has $2T^2 = \{r_1 = (0,0), r_2 = (0,\frac{1}{2}), r_3 = (\frac{1}{2},0), r_4 = (\frac{1}{2},\frac{1}{2})\}$. Consider $K \subset T^2$, $K = ([0,1] \times \{\frac{1}{4}\}) \cup ([0,1] \times \{\frac{3}{4}\}) \cup (\{\frac{1}{4}\} \times [0,1]) \cup (\{\frac{3}{4}\} \times [0,1]) / \sim$. K is invariant under the map $i: T^2 \to T^2$, and (K,i) is a free involution pair. Write $q: K \to K/i$ for the quotient map. We need

to describe the homomorphism $q_*: \pi_1(K,p) \to \pi_1(K/i,q(p))$, where the base point p is $p = (\frac{1}{4}, \frac{1}{4})$. To do this, set $A = \{(t, \frac{1}{4}), t \in I\}$, $B = \{(t, \frac{3}{4}), t \in I\}$, $C = \{(\frac{1}{4}, t), t \in I\}$, $D = \{(\frac{3}{4}, t), t \in I\}$ and $E = (\{(t, \frac{1}{4}), \frac{1}{4} \leq t \leq \frac{3}{4}\}) \cup (\{(\frac{3}{4}, t), \frac{1}{4} \leq t \leq \frac{3}{4}\}) \cup (\{(t, \frac{3}{4}), \frac{1}{4} \leq t \leq \frac{3}{4}\}) \cup (\{(\frac{1}{4}, t), \frac{1}{4} \leq t \leq \frac{3}{4}\})$. Then $\pi_1(K, p)$ is a free group in the generators a, b, c, d and e, which can be represented by loops whose images are $\frac{A}{\sim}$, $\frac{B}{\sim}$, $\frac{C}{\sim}$, $\frac{D}{\sim}$ and $\frac{E}{\sim}$, respectively. Up to isomorphism, $i_*: \pi_1(K, p) \to \pi_1(K, i(p))$ is the degree 2 isomorphism given by $i_*(a) = b$, $i_*(c) = d$ and $i_*(e) = e$; further, $i: \frac{E}{\sim} \to \frac{E}{\sim}/i$ is a two-fold covering. Therefore $\pi_1(K/i, q(p))$ is a free group in generators x, y and z, and up to isomorphism $q_*: \pi_1(K, p) \to \pi_1(K/i, q(p))$ can be described by $q_*(a) = x, q_*(b) = zxz^{-1}$, $q_*(c) = y, q_*(d) = zyz^{-1}$ and $q_*(e) = z^2$. If a word \mathcal{J} in a free group has a letter u, denote by s(u) the algebraic sum of the powers of u occuring in \mathcal{J} . Then, if $\mathcal{J} \in \pi_1(K)$ is a word in the letters a, b, c, d and $e, q_*(\mathcal{J}) \in \pi_1(K/i)$ is a word in the letters x, y and z with s(x) = s(a) + s(b), s(y) = s(c) + s(d) and s(z) = 2s(e).

We are now ready to proceed with the proof. Suppose by contradiction one has a map $f: X \to T^2$ so that the corresponding equivariant map $F: X \to T^2$ maps X into $T^2 - 2T^2$. We assert that there is an equivariant homotopy equivalence $h: (T^2 - 2T^2, i) \to (K, i)$. In fact, note that $T^2 - K$ is the disjoint union of four open disks, each one with one of the r_i 's in the center. Then h can be constructed in an equivariant way by using the radial projection around r_i , for each i = 1, 2, 3, 4. This gives the equivariant map $g = hF: X \to K$ and the commutative diagram

$$\begin{array}{cccc} X & \stackrel{g}{\longrightarrow} & K \\ p & & & \downarrow q \\ X/T & \stackrel{\overline{g}}{\longrightarrow} & K/i \end{array}$$

where $p: X \to X/T$ is the quotient map. Choose an initial base point $v \in X$. Since K is pathwise connected, up to isomorphism the corresponding base point $g(v) \in K$ can be replaced by $p = (\frac{1}{4}, \frac{1}{4})$. Thus, without loss, in what follows $\pi_1(K)$ will always be considered with base point p, and so we will omit mention to base points. One has the commutative diagram

$$\begin{array}{cccc} \pi_1(X) & \xrightarrow{g_*} & \pi_1(K) \\ p_* & & \downarrow^{q_*} \\ \pi_1(X/T) & \xrightarrow{\overline{g}_*} & \pi_1(K/i) \\ h_{X/T} & & \downarrow^{h_{K/i}} \\ H_1(X/T) & \xrightarrow{\overline{g}_*} & Z \times Z \times Z \end{array}$$

589

Take $\beta \in G = \pi_1(X/T) - p_*(\pi_1(X))$ as described in the hypothesis. Then, using the fact that $Z \times Z \times Z$ has not torsion elements, we get that $\overline{g}_* h_{X/T}(\beta) = 0$. On the other hand, choosing a loop α in X/T which represents β , there exists a lifting $\overline{\alpha}: I \to X$ for α with endpoints forming an orbit of T, and because q is equivariant, $q\overline{\alpha}$ is a path in K joining the points $w, i(w) \in K$, where w = q(v). Now we can choose a path μ in K joining w to i(w) so that $q\mu$ is a loop in K/irepresenting z: if $w \in E$, μ can be taken as a direct path in E from w to i(w), and if $w \notin E$, μ can be taken as a path in K which runs through two consecutive edges of the square E. Then the path $(g\overline{\alpha}).(\mu^{-1})$ is a loop in K, which means that $[(g\overline{\alpha}).(\mu^{-1})] \in \pi_1(K)$ is a word \mathcal{J} in the letters a, b, c, d and e. It follows that $q_*([(q\overline{\alpha}).(\mu^{-1}])) = [qg\overline{\alpha}].[q\mu^{-1}] = [qg\overline{\alpha}].z^{-1} = q_*(\mathcal{J})$. By the description of $q_*, q_*(\mathcal{J})$ is a word in the letters x, y and z such that the sum of the powers of z is even, and thus $[qg\overline{\alpha}]$ is a word in x, y, z with the sum of powers of z being odd. Then the coordinate of $h_{K/i}([qg\overline{\alpha}])$ corresponding to the $h_{K/i}(z)$ -factor is nonzero, which gives that $h_{K/i}([qg\overline{\alpha}]) = \overline{g}_* h_{X/T}(\beta)$ is nonzero.

Next we will give a source of explicit examples of free involutions pairs (X, T)for which $\{(X,T),T^2\}$ satisfies WBUT. This will be strongly based on the paper [3] of D. L. GONÇALVES. Suppose $T, P: X \to X$ are free involutions on X. We say that (X,T) and (X,P) are equivalent if there is an equivariant homeomorphism $f:(X,T)\to (X,P)$. This is an equivalence relation on the set of all free involutions on X; denote by Inv(X) the set of equivalence classes. Inv(X) may be empty; for example, if X has odd Euler characteristic, or if X is a smooth closed manifold that does not bound. The equivalence classes (X, [T]) are suitable objects to study the BUT (WBUT) property; in fact, if (X, T) and (X, P)are equivalent, then, for every space Y, $\{(X,T),Y\}$ satisfies BUT (WBUT) if and only if $\{(X, P), Y\}$ satisfies BUT (WBUT). In [3], D. L. GONÇALVES studied the BUT property for $\{(S,T), R^2\}$, where S is a closed surface (that is, a 2-dimensional closed manifold) and S is any free involution on S. It was shown that, if S is orientable, or if S is nonorientable and the Euler characteristic of S is even, then Inv(S) is nonempty (in the remaining cases, it is known that Inv(S) is empty, because S does not bound). Further, it was shown that Inv(S) has $2^r - 1$ elements, where r is the number of elements of a canonical system of generators of $\pi_1(S)$. For any S for which $\operatorname{Inv}(S)$ is nonempty, the elements of $\operatorname{Inv}(S)$ which satisfy the mentioned BUT property were explicitly determined; for example, if S is orientable and the Euler characteristic of S is congruent to $2 \mod 4$ (which includes the 2-dimensional sphere), then $\{(S,T), R^2\}$ satisfies BUT for every class [T] (see Corollary 2.3).

Corollary 3.2. Let S be a closed surface for which Inv(S) is nonempty. If (S,T) is a free involution pair, then $\{(S,T), T^2\}$ satisfies WBUT if and only if $\{(S,T), R^2\}$ satisfies BUT.

PROOF. Suppose that $\{(S,T), R^2\}$ satisfies BUT. By doing a case-by-case inspection on these (S,T), and taking into account the classification theorem of surfaces, we can see that, for each such a (S,T), there exists an element $\beta \in \pi_1(S/T)$ so that $h_S(\beta) \in H_1(S)$ is a torsion element, and with β belonging to $\pi_1(S/T) - p_*(\pi_1(S))$. Now suppose that $\{(S,T), R^2\}$ does not satisfy BUT. Then there exists a continuous map $f: S \to R^2$ such that $f(x) \neq f(T(x))$ for every $x \in S$. Take a homeomorphism $g: R^2 \to B$, where B is an open ball centered in (0,0) with radius equal to $\frac{1}{16}$, and consider the usual universal covering $h: R^2 \to T^2$. Then the equivariant map $F: (S,T) \to (T^2,i)$ which corresponds to the map $hgf: S \to T^2$ clearly satisfies the fact that $F^{-1}(2T^2)$ is empty. \Box

To increase the source of free involutions (X,T) for which $\{(X,T),T^2\}$ satisfies WBUT, one still has

Corollary 3.3. Consider product involutions $(X \times Y, T \times S)$ like those of Corollary 2.2. Then $\{(X \times Y, T \times S), T^2 \text{ satisfies WBUT}.$

4. A topological invariant coming from the Borsuk–Ulam theorem

Let X be a topological space. Taking into account the standard equivariant inclusion $S^{n-1} \to S^n$, it is easy to see that, if $\{(S^n, A), X\}$ satisfies BUT, then $\{(S^m, A), X\}$ satisfies BUT for every m > n, and if $\{(S^n, A), X\}$ does not satisfy BUT, then the same is true for $\{(S^m, A), X\}$ with m < n. Then either $\{(S^n, A), X\}$ does not satisfy BUT for every natural number n, or there exists the smallest natural number n for which $\{(S^n, A), X\}$ satisfies BUT. In the first case, we write BUT $(X) = \infty$, and in the second BUT(X) = n. If there exists a continuous injective map $X \to Y$ (and in particular if X is a subspace of Y), then BUT $(X) \leq$ BUT(Y), and in particular BUT(X) is a topological invariant (but not a homotopic invariant). Evidently, BUT $\{point\} = 0$ and BUT(X) > 0 if X has at least two points; in this case, BUT(X) = 1 if X is a discrete space. If $X = \{a, b\}$ has two points and is equipped with the trivial topology, then BUT $(X) = \infty$; in fact, using induction on n we can construct, for every $n \ge 0$, a subset $P \subset S^n$ such that $P \cap A(P) = \emptyset$ and $P \cup A(P) = S^n$. Next, we consider the map $f: S^n \to X$ that sends P into a and A(P) into b. We also have

 $\operatorname{BUT}(S^{\infty}) = \infty$, where $S^{\infty} = \lim_{n \to \infty} (S^n)$ with the weak topology. The Borsuk– Ulam Theorem implies that $\operatorname{BUT}(R^n) \leq n$, and in fact $\operatorname{BUT}(R^n) = n$. This is a very special particular case of the following

Theorem 4.1. Suppose X is a finite n-dimensional CW-complex. Then

- i) $n \leq BUT(X) \leq 2n;$
- ii) if X is a not closed topological manifold (which includes \mathbb{R}^n), then $\operatorname{BUT}(X) = n$;
- iii) if X is a closed topological manifold, then BUT(X) = n or n + 1. In this case, if X satisfies the fact that its top-dimensional nonzero Z_2 -cohomology class $\alpha \in H^n(X, Z_2)$ is a cup product of lower dimensional classes, then BUT(X) = n.

PROOF. In fact, the stated results follow immediately from known results of the literature. Inside the interior of an n-cell of X we can take a copy homeomorphic of S^{n-1} , which means that $BUT(X) \ge n$. On the other hand, in [5], D. L. GONÇALVES, P. PERGHER and J. JAWOROWSKI proved that, if $m \geq 2n$, then $\{(S^m, A), X\}$ satisfies BUT. This gives i). In [11], P. E. CONNER and E. E. FLOYD proved that if X is a differentiable manifold and m > n, then $\{(S^m, A), X\}$ satisfies BUT; in this case, they also proved that, if m = n and $f: S^m \to X$ is a continuous map satisfying the fact that its induced homomorphism in Z₂-cohomology $f^*: H^n(X) \to H^n(S^m)$ is trivial, then there exists $x \in S^m$ with f(x) = f(A(x)). In [8], MUNKHOLM showed the same result without the differentiability hypothesis, but with X compact. Recently, in [1], this Conner-Floyd result was proved for X a generalized manifold not necessarily compact (see the remark below). Since $H^n(X, Z_2) = 0$ if X is a not closed manifold, ii) and the first statement of iii) are established. The second statement of iii) follows from the fact that, for any map $f: S^n \to X, f^*: H^n(X) \to H^n(S^n)$ is a ring homomorphism and $H^j(S^n) = 0$ if 0 < j < n.

Remark 4.1. Using iii), we get that BUT(X) = dim(X) if $X = M^r \times N^s$, where M^r and N^s are closed manifolds with dimensions r, s > 0. The same is valid for real, complex and quaternionic projective spaces, Dold manifolds and projective space bundles associated to real, complex or quaternionic vector bundles over closed manifolds. One has $BUT(S^n) = n + 1$, and in fact it is the only example we know of a closed manifold with this property.

Remark 4.2. A generalized manifold of dimension n is a topological space X which is an ENR and, for every $x \in X$, $H_*(X, X - \{x\}; Z)$ is isomorphic to $H_*(R^n, R^n - \{0\}; Z)$. Recently, such manifolds have been extensively studied.

In [1], C. BIASI, E. L. SANTOS and D. DE MATTOS showed that the Conner-Floyd theorem mentioned above remains valid if we replace manifolds by generalized manifolds. In this way, $BUT(X) \leq n + 1$.

Remark 4.3. If X is a compact metric space of topological dimension n, then X can be imbedded in \mathbb{R}^{2n+1} , which gives that $\mathrm{BUT}(X) \leq 2n + 1$ (for the definition of topological dimension, see for example [9]). The same argument shows that, if $\mathrm{BUT}(X) = \infty$, then X cannot be imbedded in a euclidean space.

Remark 4.4. Take any pathwise connected topological space X, and consider $X^* = (X \times X) - \{(x, y) \in X \times X / x = y\}$; note that on X^* one has the free involution $T_X(x, y) = (y, x)$. If $H_n(X^*/T_X, Z_2) = 0$, then BUT $(X) \leq n$ (see [12; Theorem 3]).

Remark 4.5. The theorem established in this section raises the question of improving the estimative $n \leq \text{BUT}(X) \leq 2n$ for special families of *n*-dimensional CW-complexes X; for example, see the improvement for manifolds. In this setting, the next natural case after manifolds is the one-point union of two closed *n*-dimensional manifolds, $M^n \vee V^n$. The first unsolved case is $\text{BUT}(M^2 \vee V^2)$, where at least one of these closed surfaces is non-orientable. In this case, BUT(X) may be 3 or 4.

Remark 4.6. We point the following additional questions:

- i) to estimate $BUT(X \times Y)$ in terms of BUT(X) and BUT(Y) (certainly, $\max\{BUT(X), BUT(Y)\} \le BUT(X \times Y)$);
- ii) to find a space X with BUT(X) finite and such that X cannot be imbedded in a euclidean space, or to show that, if BUT(X) is finite, then X can be imbedded in some euclidean space.

ACKNOWLEDGEMENT We are very grateful to the referee for suggestions that helped to clarify considerably the original version.

References

- C. BIASI, D. DE MATTOS and E. L. DOS SANTOS, A Borsuk–Ulam Theorem for maps from a sphere to a generalized manifold, *Geom. Dedicata* 107 (2004), 101–110.
- [2] C. T. YANG, On the theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson I, Ann. of Math. 60, no. 2 (1954), 262–282.
- [3] D. L. GONÇALVES, The Borsuk–Ulam theorem for surfaces, Quaest. Math. 29, no. 1 (2006), 117–123.

- [4] D. L. GONÇALVES, J. JAWOROWSKI, P. L. Q. PERGHER and A. YU. VOLOVIKOV, Coincidences for maps of spaces with finite group actions, *Topology Appl.* 145, no. 1–3 (2004), 61–68.
- [5] D. L. GONÇALVES, J. JAWOROWSKI and P. L. Q. PERGHER, G-coincidences for maps of homotopy spheres into CW-complexes, Proc. Amer. Math. Soc. 130, no. 10 (2002), 3111–3115.
- [6] D. L. GONÇALVES, J. JAWOROWSKI and P. L. Q. PERGHER, Measuring the size of the coincident set, *Topology Appl.* 125, no. 3 (2002), 465–470.
- [7] D. L. GONÇALVES and P. L. Q. PERGHER, Z_p-coincidences for maps of spheres into CWcomplexes, *Kobe J. Math.* 15, no. 2 (1998), 191–195.
- [8] H. J. MUNKHOLM, A Borsuk–Ulam theorem for maps from a sphere to a compact topological manifold, *Illinois J. Math.* 13 (1969), 116–124.
- [9] J. NAGATA, A Survey of Dimension Theory, General Topology and its relations to modern Analysis and Algebra, II, Proc. Second Prague Topological Sympos., 1967, 259–270.
- [10] J. W. WALKER, A homology version of the Borsuk–Ulam theorem, Amer. Math. Monthly 90 (1983), 466–468.
- [11] P.E. CONNER and E.E. FLOYD, Differentiable Periodic Maps, Springer-Verlag, Berlin, 1964.
- [12] P. L. Q. PERGHER, D. DE MATTOS and E. L. DOS SANTOS, The Borsuk–Ulam theorem for general spaces, Arch. Math. (Basel) 81, no. 1 (2003), 96–102.
- [13] T. E. BARROS and C. BIASI, A note on the theorems of Lusternik-Schnirelmann and Borsuk–Ulam, Colloq. Math. 111, no. 1 (2008), 35–42.

DANIEL VENDRÚSCOLO DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE SÃO CARLOS CAIXA POSTAL 676 SÃO CARLOS, SP 13565-905 BRAZIL

E-mail: daniel@dm.ufscar.br

PATRICIA E. DESIDERI DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE SÃO CARLOS CAIXA POSTAL 676 SÃO CARLOS, SP 13565-905 BRAZIL

E-mail: patricia.desideri@gmail.com

PEDRO L. Q. PERGHER DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE SÃO CARLOS CAIXA POSTAL 676 SÃO CARLOS, SP 13565-905 BRAZIL

E-mail: pergher@dm.ufscar.br

(Received December 10, 2009; revised July 28, 2010)