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Some generalizations of the Borsuk–Ulam Theorem

By DANIEL VENDRÚSCOLO, (São Carlos) PATRICIA E. DESIDERI (São Carlos)
and PEDRO L. Q. PERGHER (São Carlos)

Abstract. Let Sn be the n-dimensional sphere, A : Sn → Sn the antipodal invo-

lution and Rn the n-dimensional euclidean space. The famous Borsuk–Ulam Theorem

states that, if f : Sn → Rn is any continuous map, then there exists a point x ∈ Sn

such that f(x) = f(A(x)). In this paper we discuss some generalizations and variants

of this theorem concerning the replacement either of the domain (Sn, A) by other free

involution pairs (X,T ), or of the target space Rn by more general topological spaces.

For example, we consider the cases where: i) (S2, A) is replaced by a product involu-

tion (X,T ) × (Y, S) = (X × Y, T × S), where X and Y are Hausdorff and pathwise

connected topological spaces, the involution T is free and the fundamental group of X

is a torsion group; ii) Rn is replaced by Mr ×Ns, where Mr and Ns are closed mani-

folds with dimensions r and s, respectively, and r + s = n; iii) (S2, A) is replaced by

a product involution as described in i), and R2 is replaced by the 2-dimensional torus

T 2. We remark that i) includes the case in which (X,T ) × (Y, S) = (X,T ), by taking

(Y, S) = ({point}, identity), and in particular the popular 2-dimensional Borsuk–Ulam

Theorem.

1. Introduction

Generalizations of the Borsuk–Ulam Theorem as mentioned in the abstract

can be placed in the following general setting: let X,Y be topological spaces,

where X is equipped with a free involution T : X → X, that is, with T (x) 6= x

for every x ∈ X. We say that {(X,T ), Y } satisfies the Borsuk–Ulam Theorem (in
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an abbreviated form, satisfies BUT ) if, given any continuous map f : X → Y ,

there exists at least one point x ∈ X so that f(x) = f(T (x)). Results of this type

obtained by replacing (Sn, A) by more general free involution pairs (X,T ) can be

found, for example, in [2], [10], [12] and [13]. In general lines, in these papers Sn

is replaced by spaces X subject to certain homological conditions, and the free

involutions T : X → X are arbitrary. Results referring to the replacement of Rn

by other spaces can be found, for example, in [11] (Y= a differentiable manifold),

[8] (Y= a compact topological manifold), [1] (Y= a generalized manifold), [4],

[5], [6] and [7] (Y= a finite CW-complex). Let X be a Hausdorff and pathwise

connected topological space, equipped with a free involution T : X → X. Let

X/T be the orbit space of X by T and p : X → X/T the quotient map. Take a

point a ∈ X, and consider the homomorphism induced in the fundamental groups,

p∗ : π1(X, a) → π1(X/T, a), where a = p(a). Denote by hX : π1(X, a) → H1(X)

the Hurewicz homomorphism, where H1(X) is the one-dimensional Z-homology

group of X. In Section 2, we will obtain the following algebraic criterion for

{(X,T ), R2} satisfy BUT:

Theorem 1.1. Set G = π1(X/T, a) − p∗(π1(X, a)). If there exists β ∈ G

such that hX/T (β) is a torsion element in H1(X/T ), then {(X,T ), R2} satisfies

BUT.

As a consequence, we get that involution pairs as those mentioned in the

abstract (item i), together with the target space R2, satisfy BUT, and in particular

the fact that if π1(X, a) is a torsion group, then for any free involution T : X → X,

{(X,T ), R2} satisfies BUT, which includes the popular 2-dimensional Borsuk–

Ulam Theorem. Another consequence is the fact that {(S, T ), R2} satisfies BUT,

where S is any closed orientable surface with Euler characteristic congruent to

2 mod 4 (which includes S2) and T is any free involution on S.

In Section 3, we consider the following weak version of the Borsuk–Ulam

Theorem (WBUT): if G is a topological group, we say that {(X,T ), G} satisfies

WBUT if, for every map f : X → G, there exists x ∈ X such that f(x) = f(T (x))

(mod 2-torsion). We will see that, for all involution pairs (X,T ) considered in

Section 2, {(X,T ), T 2} satisfies WBUT, where T 2 is the 2-dimensional torus,

considered with its additive structure (mod 1).

Given a topological space X, we define BUT(X) as the smallest natural

number n so that {(Sn, A), X} satisfies BUT. In Section 4 we make some cons-

iderations about this number, which is a topological invariant. We will see that,

if X is a finite n-dimensional CW-complex, then n ≤ BUT(X) ≤ 2n, and if X

is a closed n-dimensional manifold, then BUT(X) = n or n + 1. This raises the
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question of finding BUT(X) for specific n-dimensional CW-complexes X (or spe-

cific closed n-dimensional manifolds X). For example, we will see that, if X is

a closed n-dimensional manifold satisfying the fact that its top-dimensional non-

zero Z2-cohomology class α ∈ Hn(X,Z2) is a cup product of lower dimensional

classes, then BUT(X) = n.

2. A result related to the 2-dimensional Borsuk–Ulam Theorem

in terms of the fundamental group

We will prove the algebraic criterion for {(X,T ), R2} satisfy BUT given by

Theorem 2.1, maintaining the notation used to state the result; we will use simple

facts concerning covering spaces. If σ : I = [0, 1] → X is a path with σ(0) = a,

we denote by [σ] the homotopy equivalence class of σ relative to the base point

a; we set σ−1 for the inverse path t → σ(1 − t). To prove the result, suppose

by contradiction that there exists a continuous map f : X → R2 with f(x) 6=
f(T (x)) for every x ∈ X. Then a standard and well known construction yields

an equivariant map F : X → S1, that is, satisfying F (T (x)) = −F (x) for every

x ∈ X. Set q : S1 → S1/A for the quotient map. Because F is equivariant, it

induces a continuous map F : X/T → S1/A in such a way that the diagram

X
F−−−−→ S1

yp

yq

X/T
F−−−−→ S1/A

is commutative. Set F (a) = z, that is, q(z) = z = F (a). Take β ∈ G so that

hX/T (β) is a torsion element in H1(X/T ), and consider the commutative diagram

π1(X/T, a)
F∗−−−−→ π1(S

1/A, z)yhX/T

yhS1/A

H1(X/T )
F∗−−−−→ H1(S

1/A)

Then F ∗hX/T (β) is a torsion element in H1(S
1/A) ∼= Z, which means that

F ∗hX/T (β) = 0. Now choose a loop α in X/T which represents β. Then there

exists a lifting α : I → X for α with α(0) = a. Since β does not belong to the

image of p∗, one necessarily has that α(1) = T (a), and since F is equivariant,

Fα is a path in S1 with initial point z and final point −z. Choose generators
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c ∈ π1(S
1, z), d ∈ π1

(
S1

A , z
)
, and a path µ in S1 with initial point z and final

point −z, so that qµ is a loop in S1

A representing d. Then the usual product

of paths (Fα).(µ−1) is a loop in S1 with base point z, which means that, in

π1(S
1, z), [(Fα).(µ−1)] = rc for some r ∈ Z. Since q has degree two, on then has

q∗([(Fα).(µ−1])) = [qFα] − [qµ] = [qFα] − d = rq∗(c) = ±2rd. Thus [qFα] 6= 0,

and since hS1/A is an isomorphism, hS1/A([qFα]) 6= 0. This contradicts the fact

that hS1/A([qFα]) = F ∗hX/T (β) = 0.

Corollary 2.1. Let X be a Hausdorff and pathwise connected space, and

(X,T ) a free involution pair. If the fundamental group of X is a torsion group

(which includes the case in which X = S2), then {(X,T ), R2} satisfies BUT.

Proof. Choose a base point a ∈ X and write p : X → X/T for the quotient

map. Set p(a) = a. One has that p : X → X/T is a two-fold covering, with

{Identity, T} being the group of deck transformations of this covering. In this

way, the quotient group
π1(X/T, a)

p∗(π1(X, a))

is isomorphic to Z2, the cyclic group of 2 elements. This means that p∗(π1(X, a))

is a subgroup of π1(X/T, a) of index two. The fact that π1(X, a) is a torsion

group then implies that π1(X/T, a) is a torsion group. In fact, if β ∈ π1(X/T, a)−
p∗(π1(X, a)), then β2 ∈ p∗(π1(X, a)) and so β2 is a torsion element. In this way,

β is a torsion element, which ends the proof. ¤

Corollary 2.2. Let X, Y be Hausdorff and pathwise connected spaces, and

(X,T ) a free involution pair like those of Theorem 2.1 (which particularly includes

the case in which the fundamental group of X is a torsion group). Let (Y, S) be a

involution pair, which is not necessarily free. Then {(X,T )× (Y, S), R2} satisfies

BUT.

Proof. Take points a ∈ X, c ∈ Y , and write p : X → X/T and q : X×Y →
X × Y/T × S for the quotient maps. Set p(a) = a and q(a, c) = (a, c). Consider

the maps θ : X → X × Y , Φ : X × Y → X, θ(x) = (x, c), Φ(x, y) = x. Then θ

and Φ induce maps θ : X/T → X × Y/T × S, Φ : X × Y/T × S → X/T so that

Φ ◦ θ is the identity map. Take β ∈ G = π1(X/T, a)− p∗(π1(X, a)) with hX/T (β)

being a torsion element in H1(X/T ). Then θ∗(hX/T (β)) is a torsion element in

H1(X × Y/T ×S), and since θ∗ ◦ hX/T = hX×Y/T×S ◦ θ∗, it suffices to show that

θ∗(β) ∈ π1(X×Y/T×S, (a, c)) does not belong to q∗(π1(X×Y, (a, c)). Otherwise,

suppose θ∗(β) = q∗(ω) for some ω ∈ π1(X × Y, (a, c)). Then β = Φ∗(θ∗(β)) =

Φ∗(q∗(ω)) = p∗(Φ∗(ω)), which contradicts the fact that β /∈ p∗(π1(X, a)). ¤
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Remark 2.1. Concerning product involution pairs (X × Y, T × S) with T

without fixed points, we note that if {(X,T ), Z} satisfies BUT and S has a fixed

point, then it is easy to prove directly that {(X × Y, T × S), Z} satisfies BUT.

However, if S does not have fixed points, then we have no topological way to

prove that {(X × Y, T × S), Z} satisfies BUT, even if also {(Y, S), Z} satisfies

BUT.

Corollary 2.3 (D. L. Gonçalves, [3]). Let S be a closed orientable surface

with Euler characteristic congruent to 2 mod 4 and T a free involution on S.

Then {(S, T ), R2} satisfies BUT.

Proof. S/T is a non-orientable closed surface with odd Euler characteristic,

and in this case it is well known that there exists an element β ∈ π1(S/T ) so that

hS(β) ∈ H1(S) is a torsion element, and that β belongs to π1(S/T )− p∗(π1(S)).

¤

3. A weak Borsuk–Ulam theorem for maps into

the 2-dimensional torus

Let (X,T ) be a free involution pair and G a topological group. Set i : G → G

for the involution i(g) = g−1 and 2G for the set {g ∈ G/ i(g) = g}; evi-

dently, the neutral element e ∈ G belongs to 2G. Note that the validity of

BUT for {(X,T ), G} is equivalent to the fact that, for every f : X → G,

F−1(e) is nonempty, where F : (X,T ) → (G, i) is the equivariant map F (x) =

f(x).(f(T (x)))−1. This motivates the following extension of the BUT property:

we say that {(X,T ), G} satisfies the weak Borsuk–Ulam Theorem (in an abbre-

viated form, satisfies WBUT ) if F−1(2G) is nonempty for every f : X → G. If

2G = {e}, BUT is equivalent to WBUT; for example, this happens with G = Rn,

considered with its additive structure. We want to consider the case in which G

is the 2-dimensional torus T 2 = [0,1]×[0,1]
∼ , where ∼ identifies (t, 0) to (t, 1) and

(0, t) to (1, t), considered with its additive structure (mod 1).

Theorem 3.1. Let (X,T ) be an involution pair like those of Theorem 1.1.

Then {(X,T ), T 2} satisfies WBUT.

Proof. The argument follows the lines of the proof of Theorem 1.1, but with

more technical sophistication. One has 2T 2 =
{
r1 = (0, 0), r2 =

(
0, 1

2

)
, r3 =(

1
2 , 0

)
, r4 =

(
1
2 ,

1
2

)}
. Consider K ⊂ T 2, K =

(
[0, 1] × {

1
4

}) ∪ (
[0, 1] × {

3
4

}) ∪({
1
4

}× [0, 1]
)∪ ({

3
4

}× [0, 1])/ ∼. K is invariant under the map i : T 2 → T 2, and

(K, i) is a free involution pair. Write q : K → K/i for the quotient map. We need
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to describe the homomorphism q∗ : π1(K, p) → π1(K/i, q(p)), where the base

point p is p =
(
1
4 ,

1
4

)
. To do this, set A =

{(
t, 1

4

)
, t ∈ I

}
, B =

{(
t, 3

4

)
, t ∈ I

}
,

C =
{(

1
4 , t

)
, t ∈ I

}
, D =

{(
3
4 , t

)
, t ∈ I

}
and E =

({(
t, 1

4

)
, 1

4 ≤ t ≤ 3
4

}) ∪({(
3
4 , t

)
, 1

4 ≤ t ≤ 3
4

}) ∪ ({(
t, 3

4

)
, 1

4 ≤ t ≤ 3
4

}) ∪ ({(
1
4 , t

)
, 1

4 ≤ t ≤ 3
4

})
. Then

π1(K, p) is a free group in the generators a, b, c, d and e, which can be represented

by loops whose images are A
∼ , B

∼ , C
∼ , D

∼ and E
∼ , respectively. Up to isomorphism,

i∗ : π1(K, p) → π1(K, i(p)) is the degree 2 isomorphism given by i∗(a) = b,

i∗(c) = d and i∗(e) = e; further, i : E
∼ → E

∼/i is a two-fold covering. Therefore

π1(K/i, q(p)) is a free group in generators x, y and z, and up to isomorphism

q∗ : π1(K, p) → π1(K/i, q(p)) can be described by q∗(a) = x, q∗(b) = zxz−1,

q∗(c) = y, q∗(d) = zyz−1 and q∗(e) = z2. If a word J in a free group has a letter

u, denote by s(u) the algebraic sum of the powers of u occuring in J . Then, if

J ∈ π1(K) is a word in the letters a, b, c, d and e, q∗(J ) ∈ π1(K/i) is a word in

the letters x, y and z with s(x) = s(a)+s(b), s(y) = s(c)+s(d) and s(z) = 2s(e).

We are now ready to proceed with the proof. Suppose by contradiction one

has a map f : X → T 2 so that the corresponding equivariant map F : X →
T 2 maps X into T 2 − 2T 2. We assert that there is an equivariant homotopy

equivalence h : (T 2 − 2T 2, i) → (K, i). In fact, note that T 2 −K is the disjoint

union of four open disks, each one with one of the ri’s in the center. Then h can

be constructed in an equivariant way by using the radial projection around ri,

for each i = 1, 2, 3, 4. This gives the equivariant map g = hF : X → K and the

commutative diagram

X
g−−−−→ K

p

y
yq

X/T
g−−−−→ K/i

where p : X → X/T is the quotient map. Choose an initial base point v ∈ X.

Since K is pathwise connected, up to isomorphism the corresponding base point

g(v) ∈ K can be replaced by p =
(
1
4 ,

1
4

)
. Thus, without loss, in what follows

π1(K) will always be considered with base point p, and so we will omit mention

to base points. One has the commutative diagram

π1(X)
g∗−−−−→ π1(K)

p∗

y
yq∗

π1(X/T )
g∗−−−−→ π1(K/i)

hX/T

y
yhK/i

H1(X/T )
g∗−−−−→ Z × Z × Z
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Take β ∈ G = π1(X/T ) − p∗(π1(X)) as described in the hypothesis. Then,

using the fact that Z×Z×Z has not torsion elements, we get that g∗hX/T (β) = 0.

On the other hand, choosing a loop α in X/T which represents β, there exists a

lifting α : I → X for α with endpoints forming an orbit of T , and because g is

equivariant, gα is a path in K joining the points w, i(w) ∈ K, where w = g(v).

Now we can choose a path µ in K joining w to i(w) so that qµ is a loop in K/i

representing z: if w ∈ E, µ can be taken as a direct path in E from w to i(w),

and if w /∈ E, µ can be taken as a path in K which runs through two consecutive

edges of the square E. Then the path (gα).(µ−1) is a loop in K, which means

that [(gα).(µ−1)] ∈ π1(K) is a word J in the letters a, b, c, d and e. It follows

that q∗([(gα).(µ−1])) = [qgα].[qµ−1] = [qgα].z−1 = q∗(J ). By the description of

q∗, q∗(J ) is a word in the letters x, y and z such that the sum of the powers of

z is even, and thus [qgα] is a word in x, y, z with the sum of powers of z being

odd. Then the coordinate of hK/i([qgα]) corresponding to the hK/i(z)-factor is

nonzero, which gives that hK/i([qgα]) = g∗hX/T (β) is nonzero. ¤

Next we will give a source of explicit examples of free involutions pairs (X,T )

for which {(X,T ), T 2} satisfies WBUT. This will be strongly based on the paper

[3] of D. L. Gonçalves. Suppose T, P : X → X are free involutions on X. We

say that (X,T ) and (X,P ) are equivalent if there is an equivariant homeomorp-

hism f : (X,T ) → (X,P ). This is an equivalence relation on the set of all free

involutions on X; denote by Inv(X) the set of equivalence classes. Inv(X) may

be empty; for example, if X has odd Euler characteristic, or if X is a smooth

closed manifold that does not bound. The equivalence classes (X, [T ]) are sui-

table objects to study the BUT (WBUT) property; in fact, if (X,T ) and (X,P )

are equivalent, then, for every space Y , {(X,T ), Y } satisfies BUT (WBUT) if

and only if {(X,P ), Y } satisfies BUT (WBUT). In [3], D. L. Gonçalves stu-

died the BUT property for {(S, T ), R2}, where S is a closed surface (that is, a

2-dimensional closed manifold) and S is any free involution on S. It was shown

that, if S is orientable, or if S is nonorientable and the Euler characteristic of S is

even, then Inv(S) is nonempty (in the remaining cases, it is known that Inv(S) is

empty, because S does not bound). Further, it was shown that Inv(S) has 2r − 1

elements, where r is the number of elements of a canonical system of generators

of π1(S). For any S for which Inv(S) is nonempty, the elements of Inv(S) which

satisfy the mentioned BUT property were explicitly determined; for example, if

S is orientable and the Euler characteristic of S is congruent to 2 mod 4 (which

includes the 2-dimensional sphere), then {(S, T ), R2} satisfies BUT for every class

[T ] (see Corollary 2.3).
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Corollary 3.2. Let S be a closed surface for which Inv(S) is nonempty. If

(S, T ) is a free involution pair, then {(S, T ), T 2} satisfies WBUT if and only if

{(S, T ), R2} satisfies BUT.

Proof. Suppose that {(S, T ), R2} satisfies BUT. By doing a case-by-case

inspection on these (S, T ), and taking into account the classification theorem of

surfaces, we can see that, for each such a (S, T ), there exists an element β ∈
π1(S/T ) so that hS(β) ∈ H1(S) is a torsion element, and with β belonging to

π1(S/T )−p∗(π1(S)). Now suppose that {(S, T ), R2} does not satisfy BUT. Then

there exists a continuous map f : S → R2 such that f(x) 6= f(T (x)) for every

x ∈ S. Take a homeomorphism g : R2 → B, where B is an open ball centered in

(0, 0) with radius equal to 1
16 , and consider the usual universal covering h : R2 →

T 2. Then the equivariant map F : (S, T ) → (T 2, i) which corresponds to the map

hgf : S → T 2 clearly satisfies the fact that F−1(2T 2) is empty. ¤

To increase the source of free involutions (X,T ) for which {(X,T ), T 2} sa-

tisfies WBUT, one still has

Corollary 3.3. Consider product involutions (X × Y, T × S) like those of

Corollary 2.2. Then {(X × Y, T × S), T 2 satisfies WBUT.

4. A topological invariant coming from the Borsuk–Ulam theorem

Let X be a topological space. Taking into account the standard equivari-

ant inclusion Sn−1 → Sn, it is easy to see that, if {(Sn, A), X} satisfies BUT,

then {(Sm, A), X} satisfies BUT for every m > n, and if {(Sn, A), X} does not

satisfy BUT, then the same is true for {(Sm, A), X} with m < n. Then either

{(Sn, A), X} does not satisfy BUT for every natural number n, or there exists

the smallest natural number n for which {(Sn, A), X} satisfies BUT. In the first

case, we write BUT(X) = ∞, and in the second BUT(X) = n. If there exists

a continuous injective map X → Y (and in particular if X is a subspace of Y ),

then BUT(X) ≤ BUT(Y ), and in particular BUT(X) is a topological invariant

(but not a homotopic invariant). Evidently, BUT({point}) = 0 and BUT(X) > 0

if X has at least two points; in this case, BUT(X) = 1 if X is a discrete space.

If X = {a, b} has two points and is equipped with the trivial topology, then

BUT(X) = ∞; in fact, using induction on n we can construct, for every n ≥ 0,

a subset P ⊂ Sn such that P ∩ A(P ) = ∅ and P ∪ A(P ) = Sn. Next, we cons-

ider the map f : Sn → X that sends P into a and A(P ) into b. We also have
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BUT(S∞) = ∞, where S∞ = limn(S
n) with the weak topology. The Borsuk–

Ulam Theorem implies that BUT(Rn) ≤ n, and in fact BUT(Rn) = n. This is a

very special particular case of the following

Theorem 4.1. Suppose X is a finite n-dimensional CW-complex. Then

i) n ≤ BUT(X) ≤ 2n;

ii) if X is a not closed topological manifold (which includes Rn), then

BUT(X) = n;

iii) if X is a closed topological manifold, then BUT(X) = n or n + 1. In this

case, if X satisfies the fact that its top-dimensional nonzero Z2-cohomology

class α ∈ Hn(X,Z2) is a cup product of lower dimensional classes, then

BUT(X) = n.

Proof. In fact, the stated results follow immediately from known results of

the literature. Inside the interior of an n-cell of X we can take a copy homeo-

morphic of Sn−1, which means that BUT(X) ≥ n. On the other hand, in [5],

D. L. Gonçalves, P. Pergher and J. Jaworowski proved that, if m ≥ 2n,

then {(Sm, A), X} satisfies BUT. This gives i). In [11], P. E. Conner and

E. E. Floyd proved that if X is a differentiable manifold and m > n, then

{(Sm, A), X} satisfies BUT; in this case, they also proved that, if m = n and

f : Sm → X is a continuous map satisfying the fact that its induced homo-

morphism in Z2-cohomology f∗ : Hn(X) → Hn(Sm) is trivial, then there exists

x ∈ Sm with f(x) = f(A(x)). In [8], Munkholm showed the same result wit-

hout the differentiability hypothesis, but with X compact. Recently, in [1], this

Conner-Floyd result was proved for X a generalized manifold not necessarily com-

pact (see the remark below). Since Hn(X,Z2) = 0 if X is a not closed manifold,

ii) and the first statement of iii) are established. The second statement of iii)

follows from the fact that, for any map f : Sn → X, f∗ : Hn(X) → Hn(Sn) is a

ring homomorphism and Hj(Sn) = 0 if 0 < j < n. ¤

Remark 4.1. Using iii), we get that BUT(X) = dim(X) if X = Mr × Ns,

where Mr and Ns are closed manifolds with dimensions r, s > 0. The same is

valid for real, complex and quaternionic projective spaces, Dold manifolds and

projective space bundles associated to real, complex or quaternionic vector bund-

les over closed manifolds. One has BUT(Sn) = n + 1, and in fact it is the only

example we know of a closed manifold with this property.

Remark 4.2. A generalized manifold of dimension n is a topological space X

which is an ENR and, for every x ∈ X, H∗(X,X − {x};Z) is isomorphic to

H∗(Rn, Rn − {0};Z). Recently, such manifolds have been extensively studied.
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In [1], C. Biasi, E. L. Santos and D. de Mattos showed that the Conner–

Floyd theorem mentioned above remains valid if we replace manifolds by genera-

lized manifolds. In this way, BUT(X) ≤ n+ 1.

Remark 4.3. If X is a compact metric space of topological dimension n,

then X can be imbedded in R2n+1, which gives that BUT(X) ≤ 2n + 1 (for

the definition of topological dimension, see for example [9]). The same argument

shows that, if BUT(X) = ∞, then X cannot be imbedded in a euclidean space.

Remark 4.4. Take any pathwise connected topological space X, and consider

X∗ = (X × X) − {(x, y) ∈ X × X /x = y}; note that on X∗ one has the free

involution TX(x, y) = (y, x). If Hn(X
∗/TX , Z2) = 0, then BUT(X) ≤ n (see [12;

Theorem 3]).

Remark 4.5. The theorem established in this section raises the question of

improving the estimative n ≤ BUT(X) ≤ 2n for special families of n-dimensional

CW-complexesX; for example, see the improvement for manifolds. In this setting,

the next natural case after manifolds is the one-point union of two closed n-

dimensional manifolds, Mn∨V n. The first unsolved case is BUT(M2∨V 2), where

at least one of these closed surfaces is non-orientable. In this case, BUT(X) may

be 3 or 4.

Remark 4.6. We point the following additional questions:

i) to estimate BUT(X × Y ) in terms of BUT(X) and BUT(Y ) (certainly,

max{BUT(X),BUT(Y )} ≤ BUT(X × Y ));

ii) to find a space X with BUT(X) finite and such that X cannot be imbedded

in a euclidean space, or to show that, if BUT(X) is finite, then X can be

imbedded in some euclidean space.
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Ann. of Math. 60, no. 2 (1954), 262–282.
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