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Continuous solutions of an iterative-difference equation
and Brillouët-Belluot’s problem

By YINGYING ZENG (Chengdu) and WEINIAN ZHANG (Chengdu)

Abstract. It is an open problem proposed by N. Brillouët-Belluot to solve the

equation f2(x) = f(x + a) − x. Although some related results have been obtained, the

problem has remained open. In this paper we prove that it has no continuous real

solutions, finally answering Brillouët-Belluot’s problem. Furthermore, we give existence

of continuous real solutions for the general equation f2(x) = λf(x + a) + µx on the

whole R in some cases which neither include the equation f2(x) = f(x+ a)− x nor are

considered in [J. Difference Equ. Appl. 16(11) (2010), 1237–1255].

1. Introduction

The equation

f2(x) = f(x+ a)− x, x ∈ R, (1.1)

was proposed byN. Brillouët-Belluot in [3] when she investigated continuous

solutions f : R→ R of the functional equation

x+ f(y + f(x)) = y + f(x+ f(y)). (1.2)

This was mentioned by K. Baron again in [2] three years later. Actually, equa-

tion (1.1) is reduced from equation (1.2) by putting y = 0 and letting a = f(0).

Obviously, for a = 0 equation (1.1) is of the form f2(x) = f(x) − x, which has

no continuous real solutions by Theorem 11 in [6] or Theorem 5 in [8]. So we
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only need to consider equation (1.1) in the case a 6= 0, called a second order

iterative-difference equation.

Obviously, equation (1.2) has no (continuous real) solutions if equation (1.1)

has no (continuous real) solutions for any constant a, but the converse may not

be true. Hence, it remains interesting to study the existence of continuous real

solutions for equation (1.1) although nonexistence of continuous real solutions,

existence of special solutions and the form of complex solutions continuous at a

point for equation (1.2) were given in [5], [7] and [1] respectively. Recently, in [4]

the equation

f2(x) = λf(x+ a) + µx, x ∈ J, (1.3)

where J is an interval of R, λ, µ and a are all real and aλ 6= 0, a generalized

form of (1.1), was discussed. The authors searched all affine solutions and proved

the existence of bounded continuous solutions on compact intervals under the

condition

|λ| > max{2, 2
√
2|µ| } or 1 + 2|µ| < |λ| ≤ 2.

Then they constructed continuous solutions and piecewise continuous solutions

when

µ ≥ 0 and 0 < 1− µ ≤ λ/2

and give their maximal extensions. Finally, they proved that equation (1.3) has

no continuous solution f on R such that either f(x) − f(y) < −(µ/λ)(x − y) if

λ > 0 or f(x)−f(y) > −(µ/λ)(x−y) if λ < 0 for all x > y, which actually implies

that equation (1.1) has no continuous solution f such that f(x) − f(y) < x − y

where x > y.

In this paper we will consider equation (1.3) again, where we always assume

that aλ 6= 0. We prove that equation (1.3) has no continuous real solutions in the

case that λ = 1 and µ ≤ −1, which implies the nonexistence of continuous real

solutions for equation (1.1) and gives a negative answer to the Brillouët-Belluot’s

open problem. Furthermore, we give the existence of continuous real solutions

for equation (1.3) on the whole R in some cases which neither include the form

f2(x) = f(x+ a) + µx nor are considered in [4].

Without loss of generality, we can assume that a = 1 in equation (1.3), i.e.,

f2(x) = λf(x+ 1) + µx. (1.4)
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Otherwise, we turn to consider g(x) := 1
af(ax), which satisfies

g2(x) =
1

a
f2(ax) =

1

a
[λf(ax+ a) + µax] =

λ

a
f(a(x+ 1)) + µx = λg(x+ 1) + µx,

an equation of the form (1.4). Hence we only need to consider equation (1.4).

2. Answer to Brillouët-Belluot’s problem

Regarding Brillouët-Belluot’s open problem mentioned in the beginning of

the Introduction, we consider equation (1.4) in the case that λ = 1, µ ≤ −1, i.e.,

f2(x) = f(x+ 1) + µx. (2.1)

Then we get that equation (1.1) has no continuous real solution, which negatively

answers to Brillouët-Belluot’s open problem.

Theorem 1. For µ ≤ −1 equation (2.1) has no continuous solutions defined

on R.

Proof of Theorem 1. By reductio ad absurdum, suppose (2.1) has a con-

tinuous solution f : R→ R. Then the graph of f intersects the line y = x+ 1 at

most at the point (0, 1). Hence, one of the following cases holds:

(C−−) f(x) < x+ 1 for x ∈ R\{0},
(C−+) f(x) < x+ 1 for x ∈ (−∞, 0) and f(x) > x+ 1 for x ∈ (0,∞),

(C+−) f(x) > x+ 1 for x ∈ (−∞, 0) and f(x) < x+ 1 for x ∈ (0,∞),

(C++) f(x) > x+ 1 for x ∈ R\{0}.

Consider f in the case (C−−), in which f(x) ≤ x+ 1 for all x ∈ R. Thus,
lim

x→−∞
f(x) = −∞. (2.2)

Moreover, f(x+ 1) = f2(x)− µx ≤ f(x) + 1− µx for all x ∈ R. It follows that
f(x0 + 1) < f(x0) (2.3)

for each fixed x0 < −1. Applying (2.3) repeatedly, we get f(x0) < f(x0 − 1) <

· · · < f(x0 − n). Thus, by (2.2),

f(x0) ≤ lim
n→+∞

f(x0 − n) = lim
x→−∞

f(x) = −∞,
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which is a contradiction because f takes only finite values.

Consider f in the case (C−+), in which f(0) = 1 and there exists a point

c1 ∈ (−1, 0) such that f(c1) = 0. It implies that

1 = f2(c1) = f(c1 + 1) + µc1 > c1 + 2 + µc1 = 2 + (1 + µ)c1

because c1 + 1 > 0 and f(c1 + 1) > (c1 + 1) + 1 in the case (C−+). This is a

contradiction because (1 + µ)c1 ≥ 0.

Consider f in the case (C+−). Then, f(0) = 1 and

f(x) > 0 ∀x ≤ 0. (2.4)

Otherwise, suppose that f(c2) = 0 for c2 < 0. Since f(x) > x + 1 for all x < 0,

we see that c2 < −1. Thus, f(c2 + 1) > (c2 + 1) + 1 and therefore

1 = f2(c2) = f(c2 + 1) + µc2 > 2 + (1 + µ)c2,

which is in contradiction to the fact that (1 + µ)c2 ≥ 0. This contradiction gives

a proof to (2.4). We further claim that

lim
x→−∞

f(x) = +∞. (2.5)

Otherwise, there is a sequence {xn} on the negative half x-axis such that xn →
−∞ but f(xn) → b as n → ∞, where b = −∞ or is finite. It is impossible to

have b = −∞ because of (2.4). If b is finite, then from equation (2.1) we get

limn→∞ f(xn + 1) = limn→∞ f2(xn) − µ limn→∞ xn = f(b) − µ limn→∞ xn =

−∞, which contradicts (2.4), too. On the other hand, there exists a sequence

{yn} ⊂ (0,+∞) tending to +∞ such that f(yn) → +∞ as n → ∞. In fact, if

limn→∞ yn = +∞ and {f(yn)} tends to −∞ or to a finite number b, then the

sequence {yn + 1} is what we need because

lim
n→∞

f(yn + 1) = lim
n→∞

f2(yn)− µ lim
n→∞

yn = +∞

by (2.5) and the continuity of f . This implies that f((x,+∞)) ⊃ (f(x),+∞)

for all x > −∞. Therefore, f2((0,+∞)) ⊃ f((f(0),+∞)) = f((1,+∞)) ⊃
(f(1),+∞). In particular, if ζ > max{f(1), 2}, then there exists x ∈ (0,+∞)

such that f2(x) = ζ. Consequently,

2 < ζ = f2(x) = f(x+ 1) + µx < x+ 2 + µx = (1 + µ)x+ 2 ≤ 2,
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a contradiction.

Consider f in the case (C++), in which

f(x) > x+ 1, for all x 6= 0. (2.6)

We also claim (2.5). Otherwise, there exists a sequence {xn} ⊂ (−∞, 0) tending to

−∞ such that f(xn) → −∞ because in the case that f(xn) → b, a finite number,

from equation (2.1) we have limn→∞ f(xn+1) = limn→∞ f2(xn)−µ limn→∞ xn =

f(b) − µ limn→∞ xn = −∞, i.e., {xn + 1} is what we need. On the other hand,

from (2.6) we easily see that

lim
x→+∞

f(x) = +∞. (2.7)

By the continuity, f(R) = R and therefore f2(R) = R. However, in the case

(C++) we have f(x + 1) ≥ (x + 1) + 1, implying that f2(x) = f(x + 1) + µx ≥
x+ 2 + µx = (1 + µ)x+ 2 ≥ 2 for all x ≤ 0. Moreover, f2(x) > 1 when x > 0 by

f(x) > x + 1 > 1 > 0 when x > 0. This implies that f2(x) > 1 for all x ∈ R, a
contradiction which gives a proof to (2.5).

Fix M > f(0) arbitrarily and let

α := inf{x ∈ R | f(x) = M}.

By (2.5) and the continuity of f we see that α ∈ (−∞, 0). Moreover,

f(α) = M, f(x) > M ∀x < α. (2.8)

In particular, f(α− 1) > M = f(α). We further define

β := sup{x ∈ R | f(x) = f(α− 1)}.

Since f(0) < M < f(α−1), by (2.7) and the continuity of f we see that β ∈ (0,∞).

Moreover,

f(β) = f(α− 1), f(x) > f(β) ∀x > β. (2.9)

Note that f(β) > β + 1 by (2.6), i.e., f(β) − 1 > β. Thus, f(α − 1) = f(β) <

f(f(β)− 1). By (2.5) and the continuity of f we see that there exists α′ < α− 1

satisfying

f(α′) = f(f(β)− 1). (2.10)
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Thus, f2(α′) = f2(f(β)−1) and f(α′+1)+µα′ = f2(β)+µ(f(β)−1) by equation

(2.1). It follows that f2(β)− f(α′ + 1) = −µ[f(β)− (α′ + 1)], implying that

f2(β)− f(α′ + 1)

f(β)− (α′ + 1)
= −µ,

where we note that f(β) > M > 0 > α > α′ +1 in the denominator. This means

that the slope of the line `1 connecting points (α′+1, f(α′+1)) and (f(β), f2(β))

is equal to −µ. Similarly, according to (2.9),

f(β + 1)− f(α)

(β + 1)− α
=

(f2(β)− µβ)− (f2(α− 1)− µ(α− 1))

(β + 1)− α
= −µ,

i.e., the slope of the line `2 connecting points (α, f(α)) and (β + 1, f(β + 1)) is

equal to −µ. However, by the choice of α′ and (2.8) we have α′ + 1 < α < 0

and f(α′ + 1) > f(α). On the other hand, f(β) > β + 1 > 0 by (2.6) and

f2(β) < f(β+1) by equation (2.1). Moreover, f(β+1) > f(β) = f(α−1) > f(α)

by (2.8) and (2.9). It follows that

f2(β)− f(α′ + 1)

f(β)− (α′ + 1)
<

f(β + 1)− f(α)

f(β)− (α′ + 1)
<

f(β + 1)− f(α)

(β + 1)− α
,

implying that the two lines `1 and `2 cannot be parallel. The contradiction proves

the theorem in the case (C++).

The proof is completed. ¤

3. Generalized equation

In this section we find continuous solutions for the generalized equation (1.4).

Given a real constant k, let

X (R; k) := {f : R→ R | sup
x∈R

|f(x)− kx| < +∞}.

Clearly, functions in this class are unbounded when k 6= 0. This class forms a

complete metric space equipped with the metric

d(f, g) := sup
x∈R

|f(x)− g(x)|.
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In fact, suppose that {fn} is a Cauchy sequence in the space, i.e., for any ε > 0

there exists an integer Nε such that d(fn, fm) < ε for allm, n ≥ Nε. In particular,

for any x in R, |fn(x) − fm(x)| ≤ d(fn, fm) < ε when n,m ≥ Nε. So {fn(x)}
is a Cauchy sequence for every x in R. Let f(x) = limn→+∞ fn(x), x ∈ R. If

n,m ≥ Nε, then |fn(x)− f(x)| ≤ |fm(x)− f(x)|+ d(fm, fn) < |fm(x)− f(x)|+ ε

for every x ∈ R. Letting m → +∞ gives that |fn(x) − f(x)| ≤ ε when n ≥ Nε,

which is independent of x. Also supx∈R |f(x) − kx| ≤ supx∈R |fn(x) − f(x)| +
supx∈R |fn(x) − kx| < +∞ for n ≥ Nε, implying that f ∈ X (R; k). Hence

d(fn, f) ≤ ε for n ≥ Nε. What has been just shown is that d(fn, f) → 0 as

n → +∞. This means that X (R; k) is complete. Given a constant L such that

L ≥ |k|, let X (R; k, L) := X (R; k) ∩ C0,L(R), where

C0,L(R) = {f : R→ R | Lip(f) ≤ L} (3.1)

and Lip(f) denotes the Lipschitz constant of f . Being a closed subset of the set

X (R; k), X (R; k, L) is also a complete metric space.

Theorem 2. Suppose that either (C1) |λ| ∈ (2,+∞) and µ ∈ [−λ2/4, λ2/4]

or (C2) |λ| ∈ (1, 2] and µ ∈ (1− |λ|, |λ| − 1). Then equation (1.4) has a solution

f ∈ X (R; k, L), where k and L are some real constants with L ≥ |k|. More

concretely,

(D1) k = k+ and L = L− when λ ∈ (−∞,−2) and µ ∈ [− λ2

4 , λ2

4

]
,

(D2) k = k+ and L = L− when λ ∈ [−2,−1) and µ ∈ (λ+ 1,−λ− 1),

(D3) k = k− and L = L− when λ ∈ (1, 2] and µ ∈ (1− λ, λ− 1),

(D4) k = k− and L = L− when λ ∈ (2,+∞) and µ ∈ [− λ2

4 , λ2

4

]
,

where k± :=
λ±

√
λ2+4µ

2 and L± :=
|λ|±

√
λ2−4|µ|
2 .

Proof. The strategy of the proof is to use Banach’s fixed point theorem.

As assumed in the theorem, λ 6= 0. For given constants k, L with L ≥ |k|, define
a mapping T : X (R; k, L) → C0(R) by

T f(x) :=
1

λ
{f2(x− 1)− µ(x− 1)}, x ∈ R,

where f ∈ X (R; k, L). Then the solution is a fixed point of the mapping. Obvio-

usly,

sup
x∈R

|T f(x)− kx| ≤ 1

|λ| supx∈R
|f2(x− 1)− kf(x− 1)|+ k

|λ| supx∈R
|f(x− 1)− k(x− 1)|

+ sup
x∈R

∣∣∣∣
(
k2

λ
− µ

λ
− k

)
x+

µ− k2

λ

∣∣∣∣
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≤ 1 + k

|λ| sup
x∈R

|f(x)− kx|+ sup
x∈R

∣∣∣∣
(
k2

λ
− µ

λ
− k

)
x+

µ− k2

λ

∣∣∣∣ < +∞

if

k2

λ
− µ

λ
− k = 0. (3.2)

Moreover, for x1, x2 ∈ R,

|T f(x1)− T f(x2)| ≤ 1

|λ| {|f
2(x1 − 1)− f2(x2 − 1)|+ |µ(x1 − x2)|}

≤ L2 + |µ|
|λ| |x1 − x2| ≤ L|x1 − x2|

if

L2 + |µ|
|λ| ≤ L. (3.3)

It implies that T maps X (R; k, L) into itself if (3.2) and (3.3) are both satisfied.

Furthermore, for arbitrary f1, f2 ∈ X (R; k, L),

|T f1(x)− T f2(x)| ≤ 1

|λ| |f1(f1(x− 1))− f2(f2(x− 1))|

≤ 1

|λ| {|f1(f1(x− 1))− f1(f2(x− 1))|+ |f1(f2(x− 1))− f2(f2(x− 1))|}

≤ L+ 1

|λ| d(f1, f2) ∀x ∈ R,

i.e.,

d(T f1, T f2) ≤ L+ 1

|λ| d(f1, f2).

It implies that T is a contraction if

|λ| > L+ 1. (3.4)

Thus, by Banach’s fixed point theorem, T has a unique fixed point in the class

X (R; k, L), provided (3.2), (3.3) and (3.4) hold.

The conditions on λ and µ are given by relations (3.2), (3.3) and (3.4).

Equation (3.2) has a real solution k if and only if

λ2 + 4µ ≥ 0. (3.5)
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Similarly, inequality (3.3) has a real solution L if and only if

λ2 − 4|µ| ≥ 0. (3.6)

Clearly, (3.6) implies (3.5). Then under condition (3.6), we can get

k = k− or k = k+ (3.7)
and

L− ≤ L ≤ L+ (3.8)

from (3.2) and (3.3) respectively, where k± and L± are defined in the theorem.

Note that (3.4) and the restriction L ≥ |k|, given just before (3.1), require

|k| ≤ L < |λ| − 1. (3.9)

Thus we need conditions on λ and µ to guarantee that the intersection of (3.8)

and (3.9) is nonempty. It follows from (3.8) and (3.9) that the following three

inequalities all hold:
L− < |λ| − 1, (3.10)

|k| < |λ| − 1, (3.11)

|k| ≤ L+. (3.12)

From (3.10) we get that

either |λ| > 2 and |µ| ≤ λ2

4
(3.10 a)

or 1 < |λ| ≤ 2 and |µ| < |λ| − 1. (3.10 b)

Moreover, (3.6) and (3.11) imply that

either λ < −2 and −λ2

4
≤ µ < λ+ 1 (3.11 a−)

or 1 < λ ≤ 2, 1−λ < µ ≤ λ2

4
and 1−λ < µ < 2λ2−3λ+1 (3.11 b−)

or λ > 2 and −λ2

4
≤ µ ≤ λ2

4
(3.11 c−)

as k = k−, and that

either λ < −2 and −λ2

4
≤ µ ≤ λ2

4
(3.11 a+)

or − 2 ≤ λ < −1, λ+ 1<µ≤ λ2

4
and λ+ 1<µ< 2λ2+3λ+ 1 (3.11 b+)

or λ > 2 and −λ2

4
≤ µ < 1− λ (3.11 c+)
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as k = k+. Similarly, from (3.6) and (3.12) we can see that

either λ < −1 and −λ2

4
≤ µ ≤ 0 (3.12 a−)

or λ > 1 and −λ2

4
≤ µ ≤ λ2

4
(3.12 b−)

as k = k−, and that

either λ < −1 and −λ2

4
≤ µ ≤ λ2

4
(3.12 a+)

or λ > 1 and −λ2

4
≤ µ ≤ 0 (3.12 b+)

as k = k+. Considering the intersection of those inequalities from (3.10 a) to

(3.12 b+) as k = k− and k = k+, we get that

either λ < −2 and −λ2

4
≤ µ < λ+ 1

or 1 < λ ≤ 2 and 1− λ < µ < λ− 1

or λ > 2 and −λ2

4
≤ µ ≤ λ2

4
(3.13)

and

either λ < −2 and −λ2

4
≤ µ ≤ λ2

4
or − 2 ≤ λ < −1 and λ+ 1 < µ < −λ− 1

or λ > 2 and −λ2

4
≤ µ < 1− λ (3.14)

respectively, which imply the conditions (C1) and (C2) in the theorem. There-

fore, under (C1) or (C2), T has a unique fixed point in X (R; k, L), which gives

a continuous solution of equation (1.4).

Furthermore, under (C1) or (C2) we can give appropriate choices of L. We

can see that L− ≥ |k| if and only if either

either λ < −2 and µ = −λ2

4
or 1 < λ ≤ 2 and 1− λ < µ < λ− 1

or λ > 2 and −λ2

4
≤ µ ≤ λ2

4
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as k = k− or

either λ < −2 and −λ2

4
≤ µ ≤ λ2

4
or − 2 ≤ λ < −1 and λ+ 1 < µ < −λ− 1

or λ > 2 and µ = −λ2

4

as k = k+. Thus the best choices of k and L are the following:

(D1) k = k+ and L = L− when λ ∈ (−∞,−2) and µ ∈ [− λ2

4 , λ2

4

]
,

(D2) k = k+ and L = L− when λ ∈ [−2,−1) and µ ∈ (λ+ 1,−λ− 1),

(D3) k = k− and L = L− when λ ∈ (1, 2] and µ ∈ (1− λ, λ− 1),

(D4) k = k− and L = L− when λ ∈ (2,+∞) and µ ∈ [−λ2

4 , λ2

4 ].

The proof is completed. ¤

Remark that for λ ∈ (−∞,−2) and µ ∈ [−λ2

4 , λ + 1), a subcase of the case

(D1), we can actually find another solution. In fact, from (3.13) we see that in

the subcase we can find a solution with k = k−, a different constant from k+, to

which the case (D1) is corresponding from (3.14). Similarly, for λ ∈ (2,+∞) and

µ ∈ [−λ2

4 , 1− λ), a subcase of the case (D4), we can also find another solution.

There are some differences between Theorem 2 of [4] and our Theorem 2.

When λ = 5 and µ = 4, we cannot apply Theorem 2 of [4] to give the existence

of bounded continuous solutions of equation (1.4) because |λ| ≤ max{2, 2
√
2|µ|}.

However, our Theorem 2 implies equation (1.4) has a solution in X (R; 5−√
41

2 , 1)

because λ, µ satisfy the condition (D4). More generally, when |λ| > 2 and λ2

8 ≤
|µ| ≤ λ2

4 , Theorem 2 of [4] is not available but our Theorem 2 is applicable.

Another difference is that Theorem 2 of [4] gives bounded continuous solutions

on a compact interval but the solutions obtained in our Theorem 2 defined on the

whole R are unbounded when k 6= 0.

Theorem 2 does not answer to the following cases:

(E1) |λ| ∈ (0, 1],

(E2) |λ| ∈ (1, 2] and |µ| ∈ [|λ| − 1,+∞),

(E3) |λ| ∈ (2,+∞) and |µ| ∈ (λ
2

4 ,+∞).

When λ = 1 and µ ≤ −1, a special case of (E1), our Theorem 1 gives the

nonexistence of continuous real solutions. Equation (1.1) is exactly the equation

(1.3) with λ = 1 and µ = −1, which lies in the case (E1). Therefore, although

Brillouët-Belluot’s open problem is answered by Theorem 1, the existence or
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nonexistence of continuous solutions of the generalized equation (1.3) remains

unknown almostly in cases (E1), (E2) and (E3).
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