Publ. Math. Debrecen 78/3-4 (2011), 625–631 DOI: 10.5486/PMD.2011.4827

Some applications of Bochner formula to submanifolds of a unit sphere

By GUOXIN WEI (Guangzhou)

Abstract. The aims of this paper are to give estimates for the eigenvalue of the Laplacian on submanifolds in a unit sphere $S^{n+p}(1)$ and to give some new characterizations of spheres in $S^{n+p}(1)$.

1. Introduction

Let M be an n-dimensional closed oriented manifold immersed in a unit sphere $S^{n+p}(1)$, where p is the codimension. One knows that minimal submanifolds and submanifolds with constant scalar curvature n(n-1) in $S^{n+p}(1)$ were studied by many others, they are very interesting topics since they come from the variational problems in differential geometry.

A well-known result about minimal submanifolds in $S^{n+p}(1)$ is due to SIMONS [11], if M is a minimal hypersurface in $S^{n+1}(1)$ and

$$S < n$$
,

then $S \equiv 0$ and M is a unit sphere $S^n(1)$. Many years later, LEUNG [8] has proved

Theorem 1.1 ([8]). Let M be a closed minimal submanifold in $S^{n+p}(1)$. Let f be an eigenfunction of the Laplacian on M corresponding to a non-zero eigenvalue λ , then

$$\int_{M} (\lambda + S - n) |\nabla f|^2 dv \ge 0, \tag{1.1}$$

Mathematics Subject Classification: 53C42; 53C20.

Key words and phrases: estimates for eigenvalues, submanifolds.

Guoxin Wei

equality holds if and only if either M is totally geodesic and λ is a non-zero eigenvalue or n = 2 and n + p = 2m and M is isometric to $S^2\left(\sqrt{\frac{m(m+1)}{2}}\right)$ and λ is a non-zero eigenvalue, where S denotes the squared norm of the second fundamental form of M.

On the other hand, by the study of Cheng–Yau's self-adjoint operator and some new estimates, LI [6] has obtained that if M is an *n*-dimensional closed hypersurface with constant scalar curvature n(n-1) in $S^{n+1}(1)$ and

$$S < \frac{n^2}{2(n-2)},$$

then $S \equiv 0$ and M is a unit sphere $S^n(1)$.

By comparing the results of Simons, Li and Leung, it is nature to ask the following:

Question 1. Does there exist the similar integral inequality with (1.1) for the eigenvalue of the Laplacian on submanifolds with constant scalar curvature n(n-1) in $S^{n+p}(1)$?

In this paper, we answer the above question and prove the following integral inequality:

Theorem 1.2. Let M be a closed submanifold in $S^{n+p}(1)$ with constant scalar curvature n(n-1). Let f be an eigenfunction of the Laplacian on M corresponding to a non-zero eigenvalue λ , then

$$\int_{M} \left(\lambda + \frac{2(n-2)}{n} S - n \right) |\nabla f|^2 dv \ge 0, \tag{1.2}$$

equality holds if and only if M is a geodesic sphere $S^n(1)$.

Finally, we do not assume that M has constant scalar curvature n(n-1) and obtain some other integral inequality which also involves the non-zero eigenvalue of the Laplacian. In fact, we prove

Theorem 1.3. Let M be a closed submanifold in $S^{n+p}(1)$. Let f be an eigenfunction of the Laplacian on M corresponding to a non-zero eigenvalue λ , then

$$\int_{M} \left(\lambda + \frac{n^2}{4(n-1)} \rho^2 - n \right) |\nabla f|^2 dv \ge 0, \tag{1.3}$$

equality holds if and only if M is a sphere, where $\rho^2 := S - nH^2$ is a non-negative function which vanishes exactly at the umbilical points of M, H is the mean curvature of M.

Remark 1. We do not assume that ρ^2 is constant in the above Theorem.

Some applications of Bochner formula...

2. Preliminaries

In order to prove our results, we introduce some preliminaries and notations in this section. Let $S^{n+p}(1)$ be a sphere of constant sectional curvature one. Let M be an n-dimensional closed hypersurface in $S^{n+p}(1)$. For any $p \in M$, we choose a local orthonormal frame $\{e_1, \ldots, e_{n+p}\}$ in $S^{n+p}(1)$ around p, such that e_1, \ldots, e_n are tangent to M and e_{n+1}, \cdots, e_{n+p} are normal to M. Take the corresponding dual coframe $\omega_1, \ldots, \omega_{n+p}$. In this paper, we make the following convention on the range of indices:

$$1 \leq A, B, C \leq n+p; \quad 1 \leq i, j, k \leq n; \quad n+1 \leq \alpha, \beta, \gamma \leq n+p.$$

The structure equations of $S^{n+p}(1)$ are (see [7])

$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} = \omega_{BA}, \tag{2.1}$$

$$d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB} - \omega_A \wedge \omega_B.$$
(2.2)

Restricted to M, we have $\omega_{\alpha} = 0$, thus

$$0 = d\omega_{\alpha} = \sum_{i} \omega_{\alpha i} \wedge \omega_{i}, \qquad (2.3)$$

from Cartan's lemma, we obtain

$$\omega_{i\alpha} = \sum_{j} h^{\alpha}_{ij} \omega_{j}, \quad h^{\alpha}_{ij} = h^{\alpha}_{ji}.$$
(2.4)

We then get the structure equations of M as follows:

$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} = \omega_{ji}, \tag{2.5}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} R_{ijkl} \omega_k \wedge \omega_l, \qquad (2.6)$$

where R_{ijkl} is the component of the curvature tensor of induced metric on M. If h_{ij}^{α} denotes the component of the second fundamental form of M, S denotes the squared norm of the second fundamental form, \vec{H} denotes the mean curvature vector and H denotes the mean curvature of M, then we have

$$S = \sum_{i,j,\alpha} (h_{ij}^{\alpha})^{2}, \quad \vec{H} = \sum_{\alpha} H^{\alpha} e_{\alpha}, \quad H^{\alpha} = \frac{1}{n} \sum_{k} h_{kk}^{\alpha}, \quad H = |\vec{H}|.$$
(2.7)

Guoxin Wei

M is called minimal if $\vec{H}\equiv 0,$ i.e., $\sum_k h_{kk}^\alpha=0$ for all $\alpha.$ The Gauss equations are

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{\alpha} (h^{\alpha}_{ik}h^{\alpha}_{jl} - h^{\alpha}_{il}h^{\alpha}_{jk}), \qquad (2.8)$$

$$R_{ik} = (n-1)\delta_{ik} + n\sum_{\alpha} H^{\alpha}h^{\alpha}_{ik} - \sum_{j,\alpha} h^{\alpha}_{ij}h^{\alpha}_{jk}, \qquad (2.9)$$

$$R = n(n-1) + n^2 H^2 - S,$$
(2.10)

where R is the scalar curvature.

The Codazzi equations are

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha}, \qquad (2.11)$$

where the covariant derivative of h_{ij}^{α} is defined by

$$\sum_{k} h_{ijk}^{\alpha} \omega_k = dh_{ij}^{\alpha} + \sum_{k} h_{kj}^{\alpha} \omega_{ki} + \sum_{k} h_{ik}^{\alpha} \omega_{kj} + \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha}.$$
 (2.12)

3. Proofs of theorems

Firstly, we prove the following Lemma.

Lemma 1 (Cf. Theorem B of [8]). Let M be a closed submanifold in $S^{n+p}(1)$. Let f be an eigenfunction on M corresponding to a non-zero eigenvalue λ , then

$$\lambda \int_{M} |\nabla f|^2 dv \ge \frac{n}{n-1} \int_{M} \operatorname{Ric}(\nabla f, \nabla f).$$
(3.1)

PROOF OF LEMMA 1. For any smooth function $u:M\to R,$ one has from Bochner formula that

$$\frac{1}{2}\triangle(|\nabla u|^2) = \operatorname{Ric}(\nabla u, \nabla u) + \langle \nabla u, \nabla(\triangle u) \rangle + |\operatorname{Hess} u|^2.$$
(3.2)

Since M is closed, one deduces from (3.2) and $\triangle f + \lambda f = 0$ that

$$\int_{M} \operatorname{Ric}(\nabla f, \nabla f) dv - \lambda \int_{M} |\nabla f|^{2} dv + \int_{M} |\operatorname{Hess} f|^{2} dv = 0.$$
(3.3)

Let I denotes the identity operator on the tangent bundle TM of M. By a direct calculation, we obtain for any $t \in R$,

$$\int_{M} |\operatorname{Hess} f - tf\mathbf{I}|^{2} dv = \int_{M} (|\operatorname{Hess} f|^{2} - 2tf \triangle f + nf^{2}t^{2}) dv$$

Some applications of Bochner formula...

$$= \int_{M} |\operatorname{Hess} f|^{2} dv + \left(2t + \frac{n}{\lambda}t^{2}\right) \int_{M} |\nabla f|^{2} dv$$

$$\geq \int_{M} |\operatorname{Hess} f|^{2} dv + \left(2 \times \left(-\frac{\lambda}{n}\right) + \frac{n}{\lambda}\left(-\frac{\lambda}{n}\right)^{2}\right) \int_{M} |\nabla f|^{2} dv$$

$$= \int_{M} |\operatorname{Hess} f|^{2} dv - \frac{\lambda}{n} \int_{M} |\nabla f|^{2} dv, \qquad (3.4)$$

it follows that

$$\int_{M} |\operatorname{Hess} f|^{2} dv = \int_{M} |\operatorname{Hess} f - tfI|^{2} dv + \frac{\lambda}{n} \int_{M} |\nabla f|^{2} dv \ge \frac{\lambda}{n} \int_{M} |\nabla f|^{2} dv.$$
(3.5)
Equality holds if and only if

q tу IJ

$$\operatorname{Hess} f = -\frac{\lambda}{n} f \mathrm{I}. \tag{3.6}$$

Thus, we conclude from (3.3) and (3.5) that

$$\lambda \int_{M} |\nabla f|^2 dv \ge \frac{n}{n-1} \int_{M} \operatorname{Ric}(\nabla f, \nabla f).$$

In order to prove Theorem 1.2 and Theorem 1.3, we need the following Lemma which can be found in [9].

Lemma 2. Let M^n be a submanifold of $S^{n+p}(1)$. Let Ric denotes the function that assign to each point of M the minimum Ricci curvature. Then

$$\operatorname{Ric} \ge \frac{n-1}{n} \left\{ n + 2nH^2 - S - \frac{n-2}{\sqrt{n-1}} \sqrt{nH^2} \sqrt{S - nH^2} \right\}.$$
 (3.7)

PROOF OF THEOREM 1.2. Since M has constant scalar curvature n(n-1), one has from the Gauss equation (2.10) that

$$n^2 H^2 = S.$$

According to Lemma 2 and the above equation, we obtain

$$\operatorname{Ric} \geq \frac{n-1}{n} \left\{ n + 2nH^2 - S - \frac{(n-2)\sqrt{n-1}}{n-1} \sqrt{nH^2} \sqrt{S - nH^2} \right\}$$
$$= (n-1)\{1 - (2n-4)H^2\} = (n-1)\left\{1 - \frac{2n-4}{n^2}S\right\}.$$
(3.8)

Substituting (3.8) into (3.1), we infer

$$\int_M \left(\lambda + \frac{2(n-2)}{n}S - n\right) |\nabla f|^2 dv \ge 0.$$

On the other hand, we obtain that equality holds if and only if M is a sphere by using of OBATA's result [10]. Combining with $S = n^2 H^2$, one concludes that $M = S^{n}(1)$. This completes the proof of Theorem 1.2.

Guoxin Wei

PROOF OF THEOREM 1.3. Using a well-known inequality, we have, for an arbitrary real number a > 0,

$$2|H||\rho| \le aH^2 + \frac{1}{a}\rho^2.$$
(3.9)

By using of Lemma 2, we infer

$$\operatorname{Ric} \geq \frac{n-1}{n} \left\{ n + nH^2 - \rho^2 - \frac{n(n-2)}{\sqrt{n(n-1)}|H|\rho} \right\}$$
$$\geq \frac{n-1}{n} \left\{ n + \left(n - \frac{n(n-2)}{2\sqrt{n(n-1)}} a \right) H^2 + \left(-1 - \frac{n(n-2)}{2\sqrt{n(n-1)}} \frac{1}{a} \right) \rho^2 \right\}.$$
(3.10)

Choosing $a = \frac{2\sqrt{n(n-1)}}{n-2}$, one obtains from (3.10)

$$\operatorname{Ric} \ge \frac{n-1}{n} \left\{ n - \frac{n^2}{4(n-1)} \rho^2 \right\}.$$
 (3.11)

Hence, we have from the above arguments and Lemma 1

$$\int_M \left(\lambda + \frac{n^2}{4(n-1)}\rho^2 - n\right) |\nabla f|^2 dv \ge 0.$$

Moreover, we then have that equality in the above formula implies that M is a sphere according to OBATA's result [10]. This finishes the proof of Theorem 1.3.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to the referee for his/her valuable comments. The author was partly supported by grant No. 11001087 of NSFC and by the Doctoral Program Foundation of the Ministry of Education of China (Grant No. 20104407120002).

References

[1] J. N. BARBOSA and A. BARROS, A lower bound for the norm of the second fundamental form of minimal hypersurfaces of \mathbb{S}^{n+1} , Arch. Math. (Basel) **81** (2003), 478–484.

^[2] Q.-M. CHENG and H. NAKAGAWA, Totally umbilical hypersurfaces, *Hiroshima J. Math.* 20 (1990), 1–10.

^[3] S. Y. CHENG and S. T. YAU, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.

Some applications of Bochner formula...

- [4] S. S. CHERN, M. DO CARMO and S. KOBAYASHI, Minimal submanifolds of the sphere with second fundamental form length, Functional Analysis and Related Fields, *Springer, New* York, 1970, 59–75.
- [5] B. LAWSON, Local rigidity theorems for minimal hypersurfaces, Ann. Math. 89 (1969), 187–197.
- [6] H. LI, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665–672.
- [7] H. LI, Global rigidity theorems of hypersurface, Ark. Math. 35 (1997), 327–351.
- [8] P. F. LEUNG, Minimal submanifolds in a sphere, Math. Z. 183 (1983), 75-86.
- [9] P. F. LEUNG, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), 1051–1061.
- [10] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
- [11] J. SIMONS, Minimal varieties in Riemannian manifold, Ann. of Math. 88 (1968), 62-105.

GUOXIN WEI SCHOOL OF MATHEMATICAL SCIENCES SOUTH CHINA NORMAL UNIVERSITY 510631, GUANGZHOU CHINA

 ${\it E-mail: weigx03@mails.tsinghua.edu.cn, weigx@scnu.edu.cn}$

(Received February 1, 2010; revised December 20, 2010)