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Some applications of Bochner formula to submanifolds
of a unit sphere

By GUOXIN WEI (Guangzhou)

Abstract. The aims of this paper are to give estimates for the eigenvalue of the

Laplacian on submanifolds in a unit sphere Sn+p(1) and to give some new characteriza-

tions of spheres in Sn+p(1).

1. Introduction

Let M be an n-dimensional closed oriented manifold immersed in a unit

sphere Sn+p(1), where p is the codimension. One knows that minimal submani-

folds and submanifolds with constant scalar curvature n(n − 1) in Sn+p(1) were

studied by many others, they are very interesting topics since they come from the

variational problems in differential geometry.

A well-known result about minimal submanifolds in Sn+p(1) is due to Simons

[11], if M is a minimal hypersurface in Sn+1(1) and

S < n,

then S ≡ 0 and M is a unit sphere Sn(1). Many years later, Leung [8] has proved

Theorem 1.1 ([8]). Let M be a closed minimal submanifold in Sn+p(1).

Let f be an eigenfunction of the Laplacian on M corresponding to a non-zero

eigenvalue λ, then ∫

M

(λ+ S − n)|∇f |2dv ≥ 0, (1.1)
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equality holds if and only if either M is totally geodesic and λ is a non-zero

eigenvalue or n = 2 and n + p = 2m and M is isometric to S2
(√

m(m+1)
2

)

and λ is a non-zero eigenvalue, where S denotes the squared norm of the second

fundamental form of M .

On the other hand, by the study of Cheng–Yau’s self-adjoint operator and

some new estimates, Li [6] has obtained that if M is an n-dimensional closed

hypersurface with constant scalar curvature n(n− 1) in Sn+1(1) and

S <
n2

2(n− 2)
,

then S ≡ 0 and M is a unit sphere Sn(1).

By comparing the results of Simons, Li and Leung, it is nature to ask the

following:

Question 1. Does there exist the similar integral inequality with (1.1) for

the eigenvalue of the Laplacian on submanifolds with constant scalar curvature

n(n− 1) in Sn+p(1)?

In this paper, we answer the above question and prove the following integral

inequality:

Theorem 1.2. Let M be a closed submanifold in Sn+p(1) with constant

scalar curvature n(n − 1). Let f be an eigenfunction of the Laplacian on M

corresponding to a non-zero eigenvalue λ, then
∫

M

(
λ+

2(n− 2)

n
S − n

)
|∇f |2dv ≥ 0, (1.2)

equality holds if and only if M is a geodesic sphere Sn(1).

Finally, we do not assume that M has constant scalar curvature n(n−1) and

obtain some other integral inequality which also involves the non-zero eigenvalue

of the Laplacian. In fact, we prove

Theorem 1.3. Let M be a closed submanifold in Sn+p(1). Let f be an

eigenfunction of the Laplacian on M corresponding to a non-zero eigenvalue λ,

then ∫

M

(
λ+

n2

4(n− 1)
ρ2 − n

)
|∇f |2dv ≥ 0, (1.3)

equality holds if and only if M is a sphere, where ρ2 := S−nH2 is a non-negative

function which vanishes exactly at the umbilical points of M , H is the mean

curvature of M .

Remark 1. We do not assume that ρ2 is constant in the above Theorem.
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2. Preliminaries

In order to prove our results, we introduce some preliminaries and notations

in this section. Let Sn+p(1) be a sphere of constant sectional curvature one.

Let M be an n-dimensional closed hypersurface in Sn+p(1). For any p ∈ M ,

we choose a local orthonormal frame {e1, . . . , en+p} in Sn+p(1) around p, such

that e1, . . . , en are tangent to M and en+1, · · · , en+p are normal to M . Take the

corresponding dual coframe ω1, . . . , ωn+p. In this paper, we make the following

convention on the range of indices:

1 ≤ A,B,C ≤ n+ p; 1 ≤ i, j, k ≤ n; n+ 1 ≤ α, β, γ ≤ n+ p.

The structure equations of Sn+p(1) are (see [7])

dωA =
∑

B

ωAB ∧ ωB , ωAB = ωBA, (2.1)

dωAB =
∑

C

ωAC ∧ ωCB − ωA ∧ ωB . (2.2)

Restricted to M , we have ωα = 0, thus

0 = dωα =
∑

i

ωαi ∧ ωi, (2.3)

from Cartan’s lemma, we obtain

ωiα =
∑

j

hα
ijωj , hα

ij = hα
ji. (2.4)

We then get the structure equations of M as follows:

dωi =
∑

j

ωij ∧ ωj , ωij = ωji, (2.5)

dωij =
∑

k

ωik ∧ ωkj − 1

2
Rijklωk ∧ ωl, (2.6)

where Rijkl is the component of the curvature tensor of induced metric on M . If

hα
ij denotes the component of the second fundamental form of M , S denotes the

squared norm of the second fundamental form, ~H denotes the mean curvature

vector and H denotes the mean curvature of M, then we have

S =
∑

i,j,α

(hα
ij)

2, ~H =
∑
α

Hαeα, Hα =
1

n

∑

k

hα
kk, H = | ~H|. (2.7)
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M is called minimal if ~H ≡ 0, i.e.,
∑

k h
α
kk = 0 for all α.

The Gauss equations are

Rijkl = (δikδjl − δilδjk) +
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk), (2.8)

Rik = (n− 1)δik + n
∑
α

Hαhα
ik −

∑

j,α

hα
ijh

α
jk, (2.9)

R = n(n− 1) + n2H2 − S, (2.10)

where R is the scalar curvature.

The Codazzi equations are

hα
ijk = hα

ikj , (2.11)

where the covariant derivative of hα
ij is defined by

∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
kjωki +

∑

k

hα
ikωkj +

∑

β

hβ
ijωβα. (2.12)

3. Proofs of theorems

Firstly, we prove the following Lemma.

Lemma 1 (Cf. Theorem B of [8]). LetM be a closed submanifold in Sn+p(1).

Let f be an eigenfunction on M corresponding to a non-zero eigenvalue λ, then

λ

∫

M

|∇f |2dv ≥ n

n− 1

∫

M

Ric(∇f,∇f). (3.1)

Proof of Lemma 1. For any smooth function u : M → R, one has from

Bochner formula that

1

2
4(|∇u|2) = Ric(∇u,∇u)+ < ∇u,∇(4u) > +|Hessu|2. (3.2)

Since M is closed, one deduces from (3.2) and 4f + λf = 0 that
∫

M

Ric(∇f,∇f)dv − λ

∫

M

|∇f |2dv +
∫

M

|Hess f |2dv = 0. (3.3)

Let I denotes the identity operator on the tangent bundle TM of M . By a direct

calculation, we obtain for any t ∈ R,
∫

M

|Hess f − tfI|2dv =

∫

M

(|Hess f |2 − 2tf4f + nf2t2)dv
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=

∫

M

|Hess f |2dv +
(
2t+

n

λ
t2
)∫

M

|∇f |2dv

≥
∫

M

|Hess f |2dv +
(
2×

(
−λ

n

)
+

n

λ

(
−λ

n

)2
)∫

M

|∇f |2dv

=

∫

M

|Hess f |2dv − λ

n

∫

M

|∇f |2dv, (3.4)

it follows that∫

M

|Hess f |2dv =

∫

M

|Hess f − tfI|2dv + λ

n

∫

M

|∇f |2dv ≥ λ

n

∫

M

|∇f |2dv. (3.5)

Equality holds if and only if

Hess f = −λ

n
fI. (3.6)

Thus, we conclude from (3.3) and (3.5) that

λ

∫

M

|∇f |2dv ≥ n

n− 1

∫

M

Ric(∇f,∇f). ¤

In order to prove Theorem 1.2 and Theorem 1.3, we need the following

Lemma which can be found in [9].

Lemma 2. Let Mn be a submanifold of Sn+p(1). Let Ric denotes the

function that assign to each point of M the minimum Ricci curvature. Then

Ric ≥ n− 1

n

{
n+ 2nH2 − S − n− 2√

n− 1

√
nH2

√
S − nH2

}
. (3.7)

Proof of Theorem 1.2. Since M has constant scalar curvature n(n− 1),

one has from the Gauss equation (2.10) that

n2H2 = S.

According to Lemma 2 and the above equation, we obtain

Ric ≥ n− 1

n

{
n+ 2nH2 − S − (n− 2)

√
n− 1

n− 1

√
nH2

√
S − nH2

}

= (n− 1){1− (2n− 4)H2} = (n− 1)

{
1− 2n− 4

n2
S

}
. (3.8)

Substituting (3.8) into (3.1), we infer
∫

M

(
λ+

2(n− 2)

n
S − n

)
|∇f |2dv ≥ 0.

On the other hand, we obtain that equality holds if and only if M is a sphere

by using of Obata’s result [10]. Combining with S = n2H2, one concludes that

M = Sn(1). This completes the proof of Theorem 1.2. ¤
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Proof of Theorem 1.3. Using a well-known inequality, we have, for an

arbitrary real number a > 0,

2|H||ρ| ≤ aH2 +
1

a
ρ2. (3.9)

By using of Lemma 2, we infer

Ric ≥ n− 1

n

{
n+ nH2 − ρ2 − n(n− 2)√

n(n− 1)|H|ρ

}

≥ n− 1

n

{
n+

(
n− n(n− 2)

2
√
n(n− 1)

a

)
H2 +

(
− 1− n(n− 2)

2
√
n(n− 1)

1

a

)
ρ2

}
. (3.10)

Choosing a =
2
√

n(n−1)

n−2 , one obtains from (3.10)

Ric ≥ n− 1

n

{
n− n2

4(n− 1)
ρ2
}
. (3.11)

Hence, we have from the above arguments and Lemma 1

∫

M

(
λ+

n2

4(n− 1)
ρ2 − n

)
|∇f |2dv ≥ 0.

Moreover, we then have that equality in the above formula implies that M is a

sphere according to Obata’s result [10]. This finishes the proof of Theorem 1.3.
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