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On the maximal operator of Walsh–Marcinkiewicz means

By KÁROLY NAGY (Nýıregyháza)

Abstract. In this paper we prove that the maximal operator M̃∗f :=

supn∈P
|Mnf|

log3/2(n+1)
, whereMnf is the nth Marcinkiewicz–Fejér mean of the 2-dimensional

Walsh–Fourier series, is bounded from the Hardy space H2/3(G
2) to the space L2/3(G

2).

1. Introduction

The a.e. convergence of Walsh–Fejér means σnf was proved by Fine [2]. In

1975 Schipp [12] showed that the maximal operator σ∗ is of weak type (1, 1)

and of type (p, p) for 1 < p ≤ ∞. The boundedness fails to hold for p = 1.

But, Fujii [3] proved that σ∗ is bounded from the dyadic Hardy space H1 to

the space L1. The theorem of Fujii was extended by Weisz [17], he showed that

the maximal operator σ∗ is bounded from the martingale Hardy space Hp to the

space Lp for p > 1/2. Simon gave a counterexample [13], which showes that the

boundedness does not hold for 0 < p < 1/2. The counterexample for p = 1/2 due

to Goginava [6]. In the endpoint case p = 1/2 two positive result was showed.

Weisz [18] proved that σ∗ is bounded from the Hardy space H1/2 to the space

weak-L1/2. In 2008 Goginava [8] proved that the maximal operator σ̃∗ defined

by

σ̃∗ := sup
n∈P

|σnf |
log2(n+ 1)
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is bounded from the Hardy space H1/2 to the space L1/2. He also proved that for

any nondecreasing function ϕ : P → [1,∞) satisfying the condition

lim
n→∞

log2(n+ 1)

ϕ(n)
= +∞

the maximal operator supn∈P
|σnf |
ϕ(n) is not bounded from the Hardy space H1/2 to

the space L1/2.

In 1939 for the two-dimensional trigonometric Fourier partial sums Sj,j(f)

Marcinkiewicz [10] has proved for f ∈ L logL([0, 2π]2) that the means

Mnf =
1

n

n∑

j=1

Sj,j(f)

converge a.e. to f as n → ∞. Zhizhiashvili [19] improved this result for f ∈
L([0, 2π]2).

For the two-dimensional Walsh–Fourier series Weisz [14] proved that the

maximal operator

M∗f = sup
n≥1

1

n

∣∣∣∣∣
n−1∑

j=0

Sj,j(f)

∣∣∣∣∣

is bounded from the two-dimensional dyadic martingale Hardy space Hp to the

space Lp for p > 2/3 and is of weak type (1, 1). Goginava [6] proved that the

assumption p > 2/3 is essential for the boundedness of the maximal operator M∗

from the Hardy space Hp(G
2) to the space Lp(G

2). Namely, in the endpoint case

p = 2/3 he gave a counterexample for which the boundedness does not hold. In

the endpoint case p = 2/3, Goginava [7] proved that the maximal operator M∗

of the Walsh–Marcinkiewicz means of double Fourier series is bounded from the

Hardy space H2/3 to the space weak-L2/3.

In the present paper we prove that the maximal operator M̃∗ defined by

M̃∗ := sup
n∈P

|Mnf |
log3/2(n+ 1)

is bounded from the Hardy space H2/3 to the space L2/3. We also prove that for

any nondecreasing function ϕ : P → [1,∞) satisfying the condition

lim
n→∞

log3/2(n+ 1)

ϕ(n)
= +∞
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the maximal operator supn∈P
|Mnf |
ϕ(n) is not bounded from the Hardy space H2/3

to the space L2/3. That is, we prove the analogue of the theorems of Goginava

mentioned above [8].

For Walsh–Kaczmarz–Marcinkiewicz means the author [9] proved, that it is

of weak type (1,1) and of type (p, p) for 1 < p ≤ ∞. This theorem was extended

in [4].

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [11], [1].

Let P denote the set of positive integers, N := P ∪ {0}. Denote Z2 the discrete

cyclic group of order 2, that is Z2 = {0, 1}, where the group operation is the mo-

dulo 2 addition and every subset is open. The Haar measure on Z2 is given such

that the measure of a singleton is 1/2. Let G be the complete direct product of the

countable infinite copies of the compact groups Z2. The elements of G are of the

form x = (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1}(k ∈ N). The group operation on G

is the coordinate-wise addition, the measure (denoted by µ) and the topology are

the product measure and topology. The compact Abelian group G is called the

Walsh group. A base for the neighborhoods ofG can be given in the following way:

I0(x) := G,

In(x) := In (x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )} ,

(x ∈ G, n ∈ N). These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G

denote the null element of G, and In := In(0)(n ∈ N). Set en := (0, . . . ,

0, 1, 0, . . . ) ∈ G, the nth coordinate of which is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G denote

rk(x) := (−1)
xk

the kth Rademacher function. If n ∈ N, then n =
∑∞

i=0 ni2
i can be written,

where ni ∈ {0, 1} (i ∈ N), i.e. n is expressed in the number system of base 2.

Denote |n| := max{j ∈ N :nj 6= 0}, that is 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

wn(x) :=

∞∏

k=0

(rk(x))
nk = r|n|(x) (−1)

∑|n|−1
k=0 nkxk (x ∈ G,n ∈ P) .
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The σ-algebra generated by the dyadic 2-dimensional cube I2k of measure

2−k × 2−k will be denoted by Fk (k ∈ N).

The space Lp(G
2), 0 < p ≤ ∞ with norms or quasi-norms ‖ · ‖p is defined in

the usual way (For details see e.g. Weisz [15]).

Denote by f = (fn, n ∈ N) the one-parameter martingale with respect to

(Fn, n ∈ N). The maximal function of a martingale f is defined by

f∗ = sup
n∈N

|fn| .

For 0 < p ≤ ∞ the Hardy martingale spaceHp(G
2) consists of all martingales

for which

‖f‖Hp
= ‖f∗‖p < ∞.

The Dirichlet kernels are defined by

Dn(x) :=

n−1∑

k=0

wk(x).

Recall that (see e.g. [11])

D2n(x) =

{
2n, if x ∈ In(0),

0, if x /∈ In(0).
(1)

The Fejér kernels are defined as follows

Kn(x) :=
1

n

n−1∑

k=0

Dk(x).

The Kroneker product (wn,m : n,m ∈ N) of two Walsh system is said to be

the two-dimensional Walsh system. Thus,

wn,m

(
x1, x2

)
= wn

(
x1

)
wm

(
x2

)
.

If f ∈ L(G2), then the number f̂ (n,m) :=
∫
G2 fwn,m (n,m ∈ N) is said to

be the (n,m)th Walsh–Fourier coefficient of f . We can extend this definition to

martingales in the usual way (see Weisz [15], [16]). Denote by Sn,m the (n,m)th

rectangular partial sum of the Walsh–Fourier series of a martingale f . Namely,

Sn,m(f ;x1, x2) :=

n−1∑

k=0

m−1∑

i=0

f̂(k, i)wk,i(x
1, x2).
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The Marcinkiewicz–Fejér means of a martingale f are defined by

Mn

(
f ;x1, x2

)
:=

1

n

n−1∑

k=0

Sk,k(f ;x
1, x2).

The 2-dimensional Dirichlet kernels and Marcinkiewicz–Fejér kernels are defined

by

Dk,l(x
1, x2) := Dk(x

1)Dl(x
2), Kn(x

1, x2) :=
1

n

n−1∑

k=0

Dk,k(x
1, x2).

For the martingale f we consider the maximal operator

M∗f(x1, x2) = sup
n∈P

|Mn(f ;x
1, x2)|.

3. Auxiliary propositions and main results

First, we formulate our main theorems. Our theorems are the two-dimensional

analogue of the theorems of Goginava [8] for Walsh–Fejér means.

Theorem 1. The maximal operator M̃∗ is bounded from the Hardy space

H2/3(G
2) to the space L2/3(G

2).

Theorem 2. Let ϕ : P → [1,∞) be a nondecreasing function satisfying the

condition

lim
n→∞

log3/2(n+ 1)

ϕ(n)
= +∞. (2)

Then the maximal operator

sup
n∈P

|Mnf |
ϕ(n)

is not bounded from the Hardy space H2/3(G
2) to the space L2/3(G

2).

To prove our Theorem 1 we need the following Lemmas of Goginava [7,

Lemma 7, Lemma 9], Glukhov [5] and Weisz [16]:

Lemma 1 (Goginava [7]). Let (x1, x2) ∈ (Il1\Il1+1) × (Im2\Im2+1) and

0 ≤ l1 < N , 0 ≤ m2 < N . Then
∫

IN×IN

|Kn(x
1 + t1, x2 + t2)|dµ(t1, t2)

≤ c

23N

{
2l

1−m2
m2+1∑

r1=l1+1

2r
1

D2m2+1(x
1+ el1 + er1)

N∑

s=m2+1

D2s(x
2+ em2 + x1

m2+1,s−1)
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+ 2l
1+m2

m2∑

s=l1

s∑

r1=l1+1

D2s(x
1 + el1 + er1)

}
, for n ≥ 2N ,

with the notation xi,j :=
∑j

s=i xses (xi,i−1 = 0).

Lemma 2 (Goginava [7]). Let (x1, x2)∈ IN × (Im2\Im2+1) and 0≤m2<N .

Then

∫

IN×IN

|Kn(x
1 + t1, x2 + t2)|dµ(t1, t2) ≤ c

2m
2

22N

N−1∑

s=m2

D2s(x
2 + em2), for n > 2N .

Lemma 3 (Glukhov [5]). There exists a constant c such that

sup
n

∫

G2

|Kn(x
1, x2)|dµ(x1, x2) ≤ c.

A bounded measurable function a is a p-atom, if there exists a dyadic two-

dimensional cube I2, such that

a)
∫
I2 adµ = 0,

b) ‖a‖∞ ≤ µ(I2)−1/p,

c) supp a ⊂ I2.

Lemma 4 (Weisz [16]). Suppose that the operator T is sublinear and p-

quasilocal for any 0 < p ≤ 1. If T is bounded from L∞ to L∞, then

‖Tf‖p ≤ cp‖f‖Hp for all f ∈ Hp.

4. Proofs of the theorems

First, we prove Theorem 1.

Proof of Theorem 1. Lemma 3 yields the boundedness from the space

L∞ to the space L∞. By Lemma 4, the proof will be complete, if we show that

the maximal operator M̃∗ is 2/3-quasilocal. That is, there exists a constant c

such that ∫

I2

|M̃∗a|2/3dµ ≤ c < ∞

for every 2/3-atom a. where the dyadic cube I2 is the support of the 2/3-atom a.
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Let a be an arbitrary 2/3-atom with support I2, and µ(I2) = 2−2N . Without

loss of generality, we may assume that I2 := IN×IN . It is evident that M̃n(a) = 0

if n ≤ 2N (with the notation M̃n(f) :=
|Mnf |

log3/2(n+1)
). Therefore, we set n > 2N .

By ‖a‖∞ ≤ 23N we have that

|Mn(a;x
1, x2)|

log3/2(n+ 1)
≤ 1

log3/2(n+ 1)

∫

IN×IN

|a(t1, t2)||Kn(x
1 + t1, x2 + t2)|dµ(t1, t2)

≤ c23N

log3/2(n+ 1)

∫

IN×IN

|Kn(x
1 + t1, x2 + t2)|dµ(t1, t2)

and

|M̃∗a| ≤ c23N

N3/2
sup
n>2N

∫

IN×IN

|Kn(x
1 + t1, x2 + t2)|dµ(t1, t2). (3)

We write that
∫

IN×IN

|M̃∗a|2/3dµ =

∫

IN×IN

|M̃∗a|2/3dµ+

∫

IN×IN

|M̃∗a|2/3dµ

+

∫

IN×IN

|M̃∗a|2/3dµ =: L1 + L2 + L3.

First, we discuss L1 by the help of Lemma 2 and inequality (3) (the discussion

of L2 goes analogously). We introduce the notation Jt := It\It+1 (t ∈ N).

L1 =

N−1∑

m2=0

∫

IN×Jm2

|M̃∗a(x1, x2)|2/3dµ(x1, x2)

≤ c

N

N−1∑

m2=0

∫

IN×Jm2

∣∣∣∣23N sup
n>2N

∫

IN×IN

|Kn(x
1+ t1, x2+ t2)|dµ(t1, t2)

∣∣∣∣
2/3

dµ(x1, x2)

≤ c

N

N−1∑

m2=0

∫

IN×Jm2

∣∣∣∣∣2
m2+N

N−1∑

s=m2

D2s(x
2 + em2)

∣∣∣∣∣

2/3

dµ(x1, x2).

We decompose Jm2 as the following disjoint union:

Jm2 =

N⋃

q2=m2+1

Im
2,q2

N ,

where

Im
2,q2

N :=

{
Iq2+1(0, . . . , 0, xm2 = 1, 0, . . . , 0, xq2 = 1), for m2 < q2 < N,

IN (0, . . . , 0, xm2 = 1, 0, . . . , 0), for q2 = N.
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From (1), we get

L1 ≤ c2−N/3

N

N−1∑

m2=0

N∑

q2=m2+1

∫

Im2,q2

N

∣∣∣∣2m
2

q2∑

s=m2

2s
∣∣∣∣
2/3

dµ(x2)

≤ c2−N/3

N

N−1∑

m2=0

N∑

q2=m2+1

22m
2/3+2q2/32−q2 ≤ c.

Now, we discuss L3.

L3 =

N−1∑

l1=0

N−1∑

m2=0

∫

Jl1×Jm2

|M̃∗a|2/3dµ

=

N−1∑

l1=0

l1−1∑

m2=0

∫

Jl1×Jm2

|M̃∗a|2/3dµ

+

N−1∑

l1=0

N−1∑

m2=l1

∫

Jl1×Jm2

|M̃∗a|2/3dµ = L3,1 + L3,2.

We discuss L3,2 (the discussion of L3,1 goes analogously). By the inequality (3)

we have that

L3,2 ≤ c

N

N−1∑

l1=0

N−1∑

m2=l1

∫

Jl1×Jm2

×
∣∣∣∣23N sup

n>2N

∫

IN×IN

|Kn(x
1 + t1, x2 + t2)|dµ(t1, t2)

∣∣∣∣
2/3

dµ(x1, x2)

=:
c

N

N−1∑

l1=0

N−1∑

m2=l1

Ll1,m2

3,2 .

To discuss Ll1,m2

3,2 , we write the set Jl1 in the form of following disjoint union:

Jl1 =

m2+1⋃

k=l1+1

I l
1,k
m2+1.

That is,

Ll1,m2

3,2 =

m2+1∑

k=l1+1

∫

Il1,k

m2+1
×Jm2

| |2/3dµ(x1, x2)
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By Lemma 1,
∑m2+1

r1=l1+1 D2m2+1(.+ el1 + er1) = 0 and
∑m2+1

r1=l1+1 D2m2+1(.+ el1 + er1) 6= 0 determine two cases. Thus, we write I l
1,k
m2+1 =

(I l
1,k
m2+1 ∩∪m2+1

r1=l1+1Im2+1(el1 + er1))
⋃
(I l

1,k
m2+1 ∩ (∪m2+1

r1=l1+1Im2+1(el1 + er1))). Thus,

this divide the expression Ll1,m2

3,2 into two parts Ll1,m2

3,2,1 and Ll1,m2

3,2,2 . In Ll1,m2

3,2,1 we

integrate on the set I l
1,k
m2+1∩∪m2+1

r1=l1+1Im2+1(el1 + er1), while in Ll1,m2

3,2,2 we integrate

on the set I l
1,k
m2+1∩ (∪m2+1

r1=l1+1Im2+1(el1 + er1)) = Im2+1(el1 + ek). Using Lemma 1,

we immediately have

Ll1,m2

3,2,1 ≤ c2−m2
m2+1∑

k=l1+1

∫

Il1,k

m2+1

∣∣∣∣2l
1+m2

m2∑

s=l1

D2s(x
1 + el1 + ek)

∣∣∣∣
2/3

dµ(x1).

Now, we decompose the set I l
1,k
m2+1 in the following form of disjoint union:

I l
1,k
m2+1 =

m2+1⋃

r=k+1

I l
1,k,r
m2+1,

where I l
1,k,r
m2+1 := Ir+1(0, . . . , 0, x

1
l1 = 1, 0, . . . , 0, x1

k = 1, 0, . . . , x1
r = 1) for k < r ≤

m2 and I l
1,k,r
m2+1 := Im2+1(el1 + ek) for r = m2 + 1. This yields

Ll1,m2

3,2,1 ≤ c2−m2
m2+1∑

k=l1+1

m2+1∑

r=k+1

∫

Il1,k,r

m2+1

∣∣∣∣2l
1+m2

r∑

s=l1

2s
∣∣∣∣
2/3

dµ(x1)

≤ c2−m2
m2+1∑

k=l1+1

m2+1∑

r=k+1

22(l
1+m2+r)/32−r ≤ c2l

1/3−m2/3. (4)

Now, we turn our attention to Ll1,m2

3,2,2 .

Ll1,m2

3,2,2 ≤ c

m2+1∑

k=l1+1

∫

Im2+1(el1+ek)×Jm2

( )
2/3

dµ(x1, x2)

≤ c

m2+1∑

k=l1+1

1∑

x1
i=0

i∈{m2+1,...,N−1}
x1
j=0 otherwise

∫

IN (el1+ek+x1)×Jm2

( )
2/3

dµ(x1, x2)

For fixed x1
i , m2 + 1 ≤ i < N we decompose the set Jm2 in the form of

following disjoint union:

Jm2 =

N⋃

q2=m2+1

Im
2,q2

N (x1
m2+1,q2−1),
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where Im
2,q2

N (x1
m2+1,q2−1) := Iq2+1(0, . . . , 0, x

2
m2 = 1, x1

m2+1, . . . , x
1
q2−1, 1 − x1

q2),

for m2 < q2 < N and Im
2,q2

N (x1
m2+1,q2−1) := IN (0, . . . , 0, x2

m2 = 1, x1
m2+1, . . . ,

x1
N−1), for q

2 = N . That is, by Lemma 1

Ll1,m2

3,2,2 ≤ c

m2+1∑

k=l1+1

1∑

x1
i=0

i∈{m2+1,...,N−1}
x1
j=0 otherwise

N∑

q2=m2+1

∫

IN (el1+ek+x1)×Im2,q2

N (x1
m2+1,q2−1

)

×
(
2l

1+k

q2∑

s=m2+1

2s + 2l
1+m2

m2∑

s=l1

2s
)2/3

dµ(x1, x2)

≤ c

m2+1∑

k=l1+1

N∑

q2=m2+1

22(l
1+m2+q2)/32−m2−q2

≤ c(m2 + 1− l1)22l
1/3−2m2/3.

This and inequality (4) yield that

L3,2 ≤ c

N

N−1∑

l1=0

N−1∑

m2=l1

2l
1/3−m2/3 +

c

N

N−1∑

l1=0

N−1∑

m2=l1

(m2 + 1− l1)22l
1/3−2m2/3

≤ cN

N
≤ c.

This completes the proof of Theorem 1. ¤

Next, we prove Theorem 2.

Proof of Theorem 2. Let

fA(x
1, x2) := (D2A+1(x1)−D2A(x

1))(D2A+1(x2)−D2A(x
2)).

A simple calculation yields

f̂A(i, k) =

{
1, if i, k = 2A, . . . , 2A+1 − 1,

0, otherwise,

and

Si,j(f ;x
1, x2)

=





(Di(x
1)−D2A(x

1))(Dj(x
2)−D2A(x

2)), if i, j = 2A + 1, . . . , 2A+1 − 1,

fA(x
1, x2), if i, j ≥ 2A+1,

0, otherwise.
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We can write the nth Dirichlet kernel in the following form:

Dn(x) = D2|n|(x) + r|n|(x)Dn−2|n|(x)

Thus, we have for a nondecreasing function ϕ that

M̃∗fA(x1, x2) = sup
n∈P

|Mn(fA;x
1, x2)|

ϕ(n)
≥ max

t:1≤2t≤2A

|M2A+2t(fA;x
1, x2)|

ϕ(2A + 2t)

≥ max
t:1≤2t≤2A

1

(2A + 2t)ϕ(2A + 2t)

∣∣∣∣
2A+2t−1∑

k=0

Sk,k(fA;x
1, x2)

∣∣∣∣

≥ max
t:1≤2t≤2A

1

2A+1ϕ(2A+1)

∣∣∣∣
2A+2t−1∑

k=2A+1

(Dk(x
1)−D2A(x

1))(Dk(x
2)−D2A(x

2))

∣∣∣∣

= max
t:1≤2t≤2A

1

2A+1ϕ(2A+1)

∣∣∣∣
2A+2t−1∑

k=2A+1

rA(x
1)Dk−2A(x

1)rA(x
2)Dk−2A(x

2)

∣∣∣∣

= max
t:1≤2t≤2A

1

2A+1ϕ(2A+1)

∣∣∣∣
2t−1∑

l=1

Dl(x
1)Dl(x

2)

∣∣∣∣

=
1

2A+1ϕ(2A+1)
max

t:1≤2t≤2A
2t|K2t(x

1, x2)|.

Since, we have

f∗
A(x

1, x2) = sup
n∈N

|S2n,2n(fA;x
1, x2)| = |fA(x1, x2)|

and

‖fA‖H2/3
= ‖f∗

A‖2/3 = c2−A.

We obtain

‖M̃∗fA‖2/3
‖fA‖H2/3

≥ c

2Aϕ(2A+1)2−A

(∫

G2

max
t:1≤2t≤2A

(2t|K2t(x
1, x2)|)2/3dµ(x1, x2)

)3/2

.

To investigate the integral
∫
G2 maxt:1≤2t≤2A(2

t|K2t(x
1, x2)|)2/3dµ(x1, x2), we de-

compose the set G as the following disjoint union

G = IA ∪
A−1⋃
s=0

(Is\Is+1).
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It is easy to show that, for (x1, x2) ∈ Is × Is

K2s(x
1, x2) =

(2s − 1)(2s+1 − 1)

6
.

Therefore,
∫

G×G

max
t:1≤2t≤2A

(2t|K2t(x
1, x2)|)2/3dµ(x1, x2)

≥
A−1∑
s=1

∫

(Is\Is+1)×(Is\Is+1)

max
t:1≤2t≤2A

(2t|K2t(x
1, x2)|)2/3dµ(x1, x2)

≥
A−1∑
s=1

∫

(Is\Is+1)×(Is\Is+1)

(2s|Kw
2s(x

1, x2)|)2/3dµ(x1, x2)

=

A−1∑
s=1

∫

(Is\Is+1)×(Is\Is+1)

(
2s

(2s − 1)(2s+1 − 1)

6

)2/3

dµ(x1, x2)

≥ c

A−1∑
s=1

∫

(Is\Is+1)×(Is\Is+1)

(
23s

)2/3
dµ(x1, x2) ≥ c(A− 2).

That is,
‖M̃∗fA‖2/3
‖fA‖H2/3

≥ c(A+ 1)3/2

ϕ(2A+1)

for A big enough.

Now, let {nk : k ∈ P} be an increasing sequence of positive integers such

that

lim
k→∞

log3/2 nk

ϕ(nk)
= +∞.

There exists a positive integer m′
k such that 2m

′
k ≤ nk < 2 · 2m′

k . ϕ is a nondec-

reasing function, then we have

lim
k→∞

(m′
k)

3/2

ϕ(2m
′
k)

≥ c lim
k→∞

log3/2 nk

ϕ(nk)
= +∞.

Let {mk : k ∈ P} ⊂ {m′
k : k ∈ P} be such that

lim
k→∞

(mk)
3/2

ϕ(2mk)
= +∞.

This yields
‖M̃∗fmk−1‖2/3
‖fmk−1‖H2/3

≥ c(mk)
3/2

ϕ(2mk)
.

k → ∞ completes the proof of this theorem. ¤
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[17] F. Weisz, Cesàro summability of one and two-dimensional Walsh–Fourier series, Anal.
Math. 22 (1996), 229–242.

[18] F. Weisz, θ-summability of Fourier series, Acta Math. Hungar. 103 (2004), 139–176.



646 K. Nagy : On the maximal operator of Walsh–Marcinkiewicz means

[19] L. V. Zhizhiashvili, Generalization of a theorem of Marcinkiewicz, Izv. Akad. Nauk USSR
Ser Math. 32 (1968), 1112–1122.
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