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On the maximal operator of Walsh—Marcinkiewicz means

By KAROLY NAGY (Nyiregyhdza)

Abstract. In this paper we prove that the maximal operator M =
Sup,, cp %, where M, f is the nth Marcinkiewicz—Fejér mean of the 2-dimensional

Walsh—Fourier series, is bounded from the Hardy space Hy /3(G2) to the space Lo /3(G2).

1. Introduction

The a.e. convergence of Walsh-Fejér means o, f was proved by FINE [2]. In
1975 ScHIPP [12] showed that the maximal operator ¢* is of weak type (1,1)
and of type (p,p) for 1 < p < oo. The boundedness fails to hold for p = 1.
But, Fuuir [3] proved that o* is bounded from the dyadic Hardy space H; to
the space Ly. The theorem of Fuiil was extended by WEISz [17], he showed that
the maximal operator o* is bounded from the martingale Hardy space H,, to the
space L, for p > 1/2. Simon gave a counterexample [13], which showes that the
boundedness does not hold for 0 < p < 1/2. The counterexample for p = 1/2 due
to GOGINAVA [6]. In the endpoint case p = 1/2 two positive result was showed.
WEIsz [18] proved that o* is bounded from the Hardy space H;/ to the space
weak-L1 /5. In 2008 GOGINAVA [8] proved that the maximal operator ¢* defined
by

g% = sup 7|20nf|
nep log®(n +1)
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is bounded from the Hardy space Hj /o to the space L;/,. He also proved that for
any nondecreasing function ¢ : P — [1, 00) satisfying the condition

— log’(n+1
lim M = 400
the maximal operator sup,cp ‘Z&Lf)‘ is not bounded from the Hardy space H; /3 to

the space Ly 5.
In 1939 for the two-dimensional trigonometric Fourier partial sums S; ;(f)
MARCINKIEWICZ [10] has proved for f € Llog L([0, 27]?) that the means

M, f = % > 855(8)
j=1

converge a.e. to f as n — oco. ZHIZHIASHVILI [19] improved this result for f €
L([0, 27]?).

For the two-dimensional Walsh-Fourier series WEISZ [14] proved that the
maximal operator

n—1
M f =Sllpl ZSj,j(f)’
=0

n>1T1
- J

is bounded from the two-dimensional dyadic martingale Hardy space H,, to the
space L, for p > 2/3 and is of weak type (1,1). GOGINAVA [6] proved that the
assumption p > 2/3 is essential for the boundedness of the maximal operator M*
from the Hardy space H,(G?) to the space L,(G?). Namely, in the endpoint case
p = 2/3 he gave a counterexample for which the boundedness does not hold. In
the endpoint case p = 2/3, GOGINAVA [7] proved that the maximal operator M*
of the Walsh—Marcinkiewicz means of double Fourier series is bounded from the
Hardy space Hj/3 to the space weak-Ly/3.
In the present paper we prove that the maximal operator M* defined by

~ M7
M* := sup 7?! 5 7
neP log®?(n+ 1)

is bounded from the Hardy space Hj/3 to the space Ly,3. We also prove that for
any nondecreasing function ¢ : P — [1, 00) satisfying the condition

3/2
. log®“(n+1) — e
n—o00 %) n)
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[ M £
k w(n)
to the space Ly 3. That is, we prove the analogue of the theorems of GOGINAVA

the maximal operator sup,,cp is not bounded from the Hardy space Hs/3
mentioned above [8].

For Walsh-Kaczmarz—Marcinkiewicz means the author [9] proved, that it is
of weak type (1,1) and of type (p,p) for 1 < p < co. This theorem was extended
in [4].

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [11], [1].
Let P denote the set of positive integers, N := P U {0}. Denote Zy the discrete
cyclic group of order 2, that is Zy = {0, 1}, where the group operation is the mo-
dulo 2 addition and every subset is open. The Haar measure on Z, is given such
that the measure of a singleton is 1/2. Let G be the complete direct product of the
countable infinite copies of the compact groups Zs. The elements of G are of the
form x = (2o, 21,..., Tk, ...) with z; € {0,1}(k € N). The group operation on G
is the coordinate-wise addition, the measure (denoted by p) and the topology are
the product measure and topology. The compact Abelian group G is called the
Walsh group. A base for the neighborhoods of G can be given in the following way:

IQ(LIZ‘) = G,

I(z) =1, (0, ., &n-1) ={y €EG:y=(T0,- ., o1, YnsYntls---)}s

(x € G, n € N). These sets are called dyadic intervals. Let 0= (0:¢€ N) € G

denote the null element of G, and I, := I,(0)(n € N). Set e, := (0,...,

0,1,0,...) € G, the nth coordinate of which is 1 and the rest are zeros (n € N).
For k € N and z € G denote

ri(z) == (=1)""

the kth Rademacher function. If n € N, then n = >°°°/ n;2" can be written,
where n; € {0,1} (i € N), i.e. n is expressed in the number system of base 2.
Denote |n| := max{j € N :n; # 0}, that is 21"l <n < 2InI+1,

The Walsh—Paley system is defined as the sequence of Walsh—Paley functions:

[n]—1

wa(w) = [ k(@)™ = rpy (@) (1) =4 ™™ (z e GneP).
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The o-algebra generated by the dyadic 2-dimensional cube I? of measure
27% x 27F will be denoted by F, (k € N).

The space L,(G?),0 < p < co with norms or quasi-norms || - [|,, is defined in
the usual way (For details see e.g. WEISZ [15]).

Denote by f = (fn,n € N) the one-parameter martingale with respect to
(Fn,n € N). The maximal function of a martingale f is defined by

" =sup |fal.
neN

For 0 < p < oo the Hardy martingale space Hp(Gz) consists of all martingales
for which

1f1lg, = 7]l < oo
The Dirichlet kernels are defined by

n—1
= wi(x)
k=0
Recall that (see e.g. [11])

2, ifaeI,(0),
Dar(e) = {0, if 2 ¢ 1,,(0). M

The Fejér kernels are defined as follows

n—1
1
k=0

The Kroneker product (wp, m : n,m € N) of two Walsh system is said to be
the two-dimensional Walsh system. Thus,

Wr,m (ml,xQ) = Wy (:cl) Way, (332) .

If f € L(G?), then the number f (n,m) := Joz fwnm (n,m € N) is said to
be the (n, m)th Walsh—-Fourier coefficient of f. We can extend this definition to
martingales in the usual way (see WEISZ [15], [16]). Denote by S, ., the (n, m)th
rectangular partial sum of the Walsh—Fourier series of a martingale f. Namely,

|
A
,_.

n
Snm(f,m z? k:zw;“x L),
0 =0

m—

=
Il
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The Marcinkiewicz—Fejér means of a martingale f are defined by
1 n—1
M cpl o 22) = = sl p2).
n(f,l’,l’) nZSk,k(fvxax)
k=0
The 2-dimensional Dirichlet kernels and Marcinkiewicz—Fejér kernels are defined
by
1 n—1
Dy(z',2) = Dy(a")Di(2?), Kn(a',a®) == Dii(a', a?).
n
k=0
For the martingale f we consider the maximal operator
M f(at,a?) = sup M, (fiat, 2?)].

nepP

3. Auxiliary propositions and main results

First, we formulate our main theorems. Our theorems are the two-dimensional
analogue of the theorems of GOGINAVA (8] for Walsh-Fejér means.

Theorem 1. The maximal operator M* is bounded from the Hardy space
H2/3(G2> to the space L2/3(G2).

Theorem 2. Let ¢ : P — [1,00) be a nondecreasing function satisfying the

condition 3/2
— 1 1
o lg™ (n+1) _ T 0. (2)
n— oo p(n)
Then the maximal operator
| M £
sup
nepP @(n)

is not bounded from the Hardy space HQ/g(G2) to the space L2/3(G2).

To prove our Theorem 1 we need the following Lemmas of GOGINAVA [7,
Lemma 7, Lemma 9], GLUKHOV [5] and WEISZ [16]:

Lemma 1 (Goginava [7]). Let (x',2?) € (In\Ip41) X (Im2\Im241) and
0<I'<N,0<m?< N. Then

/ | (ot + 1, 2 + ) |du(t, 1)
INXIN

m241 N
C
§723N {211_m2 Z 2r1D2m2+1 (x1—|— en + 6T1) Z Daos (x2+ em2 + m}n2+1’571)

ri=l141 s=m241
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m2 S
4 ol 4m? Z Z Dos (z' 4+ ey + 67«1)}7 for n > 2N,
s=I1 rl=]141
with the notation z; ; 1= ZZ:Z. zses (Tii—1 =0).
Lemma 2 (GOGINAVA [7]). Let (z%,22)€ In x (In2\In211) and 0 <m2< N.
Then

m2 N—1
/ | K (2t + ¢, 2% 4 ) |du(tt, t?) < CoaN Z Do (2% 4 e,,2), forn > 2V,
INXIN

s=m?2

Lemma 3 (GLUKHOV [5]). There exists a constant ¢ such that

sup/ | K (2t 22)|du(zt, 2?) < c.
G2

n

A bounded measurable function a is a p-atom, if there exists a dyadic two-

dimensional cube I2, such that

a) f]2 ad,u =0,
b) llaflee < u(1%)71/7,
c) suppa C I
Lemma 4 (WEIsz [16]). Suppose that the operator T is sublinear and p-
quasilocal for any 0 < p < 1. If T is bounded from L, to L., then

ITfllp < cpllfllm, forall fe Hp.

4. Proofs of the theorems

First, we prove Theorem 1.

PROOF OF THEOREM 1. Lemma 3 yields the boundedness from the space
L to the space L. By Lemma 4, the proof will be complete, if we show that
the maximal operator M* is 2/3-quasilocal. That is, there exists a constant ¢
such that
/7|J§/[*a|2/3du <c< oo
12

for every 2/3-atom a. where the dyadic cube I? is the support of the 2/3-atom a.
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Let a be an arbitrary 2/3-atom with support 12, and u(1?) = 272, Without
loss of generality, we may assume that I? := Iy x Iy. It is evident that M,,(a) = 0
if n < 2% (with the notation M, (f) := M) Therefore, we set n > 2V,

log3/2(n+1)
By |laljco < 23" we have that

Mn el 2 1
e e e AL LR R O
log”*(n+1)  log”“(n+1) Jiyxiy

C23N

<— | (2 + 1 2 + ) |du(t, 1)
log®?(n + 1) /INxIN

and
3N

2
i sup / | K (xt 4t 2? + 2)|du(th, t2). (3)
INXIN

|M*a| <
N3/2 n>2N

We write that

/ |J\~/[*a|2/3du:/ 7|M*a|2/ddﬂ+/7 |M*a|2/3du
I

NXIN INXIN INXIN

+ /7 _IM*a|*3du =: Ly + Ly + Ls.

INXIN

First, we discuss Ly by the help of Lemma 2 and inequality (3) (the discussion
of Ly goes analogously). We introduce the notation J; := L\I;41 (¢t € N).

N-1

L= Z / IM*a(zt, 22) ¥ 2du(at, 2?)
m2—0 7 INXJ 2
o Nl 2/3
<X [ Ve [ K ) )| dutata?)
Nm2:0 InXJ,,2 n>2N JInyxIn
o N2 No1 2/3
2
< — Z / om-+N Z Das (2% 4+ ep2)|  du(zt, z?)
N m2—0 INXJ, 2 s=m?2

We decompose J,,2 as the following disjoint union:

N 2 2
sz = U Iﬁ 4 R
q?=m?2+1
where
I}VHQ’QQ _ {qu+1(0,...,0,xmz =1,0,...,0,z,2 =1), form?<g¢® <N,
IN(07...,071'm2:1707...70), fOI'qZ:N.
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From (1), we get

N 2/3

27N/3 ’
‘ dp(z?)

N—-1 , q
Ll - N Z \/Im27q2 2" Z 2

m2=0 ¢2=m?2+1""N s=m

c2—N/3

N
Z Z 22m2/3+2q2/32—q2 <ec.

m2=0 ¢g2=m?2+1

A

AN

Now, we discuss Lg.

N-1 N-1
- | e
11=0 m2=0" J11 %Iz
N-1 ll 1
=D B
11=0 m2=0"J11 X2
N-1

/ (M*a*®dy = Ls 1 + L 2.
J 1 xJ 2

l

We discuss Ls o (the discussion of L3 ; goes analogously). By the inequality (3)
we have that

-1
Cc
masy 3y S f
Nll 1 JiuxdJ, 2
2/3

23N sup | K (2t + 1 2% 4+ 42)|du(t %)) du(at, 2?)

n>2N JInxIN

LEYY

11=0 m2=I1

1 2
To discuss Lé”Qm , we write the set Jj1 in the form of following disjoint union:

m2+1
ll
Jo = U Im2+1
k=11+1
That is,
L m2+1
m? 2/3 1,2
L3,2 = E /llk | |/d/~L(9C»$)
I XJ o

k:l1+1 m241 m
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2
By Lemma 1, Eﬁ:ﬁllﬂ Dy2ir (- + e 4 e,1) =0 and
2
Z:}——;}H D,241 (-4 € +e,1) # 0 determine two cases. Thus, we write Ifngﬂ
1t 2 it 2
(I 2o ﬂUﬁ:Jg}HImzH(ell +em1)) U(I 2 (Uﬁ_ﬁﬂfmz“(ell +ep1 ))) Thus,

1 2 2 2
this divide the expression Lg 3" into two parts L3 51 and L3 22 - In L3 51 we

integrate on the set Il ﬁUmz+ I241(epn + ep1), while in L3"2’2 we integrate

m2 41 =141
on the set 1% i1 N( :}Q_tIHI 2 1(ep +e1)) = L,201(ep +eg). Using Lemma 1,
we immediately have
) m2+1 o, m? 2/3
- l 1 1
L32 1 S 2™ Z i 2l +m Z Dos(z" +epn +e)|  du(z).

k=I114+1 m2+41 s=I[1

Now, we decompose the set i in the following form of disjoint union:

2+1
m2+1
2+1 U Im2+1’

r=k+1
Wherellz_H:: +4+1(0,...,0, 2}, =1,0,...,0, 7, = 1,0,. =1)fork<r<
m? and 1" ¥ min = Im2q1(en +ex) for r= m? + 1. This ylelds

a2 , Mol m?+1 L, 2/3
Lyy ) <c27™ Z Z /zl,k,r ol +m ZQS dp(zh)

k=141 r=k+1 Im2+1 s=I1

m2+1 m2+1
< 027m2 Z Z 22(l1+m2+7’)/327’r‘ S C2l1/377’n2/3. (4)
k=141 r=k+1

. ll 2
Now, we turn our attention to L ’2"5 .

tm? 2/3
Lyyy <c Z / (2B du(t,2?)
k=i14171 m241(e1ter)xJ, 2
m2+1
2/3
<c Z Z / () Pdu(z", %)
k=141 1 In(ei+ep+al)XJ, 2

ie{m?+1,...,N—1}
ac; =0 otherwise
For fixed 2}, m? + 1 < i < N we decompose the set J,,> in the form of
following disjoint union:
N
m?,¢* /1
Iz = U Iy (mm2+1,q271)7

g?=m2+1
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2 2
where I7 % (2) 2y o q) = Tpga(0,0,0,22 5 = Lalo s @1 —2h),
2 2
for m2 < q2 < N and Ix »q ($3n2+1,q271) = IN(O,...,O,LL'm 1 $m2+1,...,
xh ), for ¢> = N. That is, by Lemma 1

m>+1 1

"ssz > z/j

1 m2,q2
L=l 2!1=0 2=m?+1 ~N(eteptal)xIy (!
7,6{m2+1,..4,N—1}
m;:O otherwise

L 'S . , m? 2/3
% <2l +k Z 9s +2l +m Z 2@) d/,é(.’L‘l,.fL'Q)

s=m2+1 s=11

)

m241,¢2-1

m+1

<ec Z Z 92(l'+m?+4¢*)/39—m?—¢*

k=I1+1 ¢2=m2+1
< c(m2 +1— 11)22l1/372m2/3.

This and inequality (4) yield that

. N—-1 N-1 c N-1 N-1
© t/3—m?/3 ;| © 21 /3—2m?/3
Lin< >, D 2 + 5 (m? 41— 11)2
11=0 m2=[* 11=0 m2=01
cN
< —<e.
Sy S
This completes the proof of Theorem 1. O

Next, we prove Theorem 2.
PROOF OF THEOREM 2. Let
fa(@!,2?) == (Dyasa (2') — Daa(2!))(Dyara (%) — Daa(z?)).
A simple calculation yields
1, ifi k=242t —1,
0, otherwise,
and
Siy(f32t,a?)
(Di(z') — Doa(2Y))(Dj(2?) — Daa(2?)), ifi,j=24+41,...,247 — 1,
= fa(zt, z?), if 4,7 > 2441,

0, otherwise.
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We can write the nth Dirichlet kernel in the following form:
Dy(x) = Dayni () + 7)) (2) Dyy_gini (¥)
Thus, we have for a nondecreasing function ¢ that

v sl 2 (Faal 22
M*fA(Il,;E2) = sup w > ma. |M2A+2 (fA,:L' s L )‘

neP ¢(n) o t:1§2f)§<2A (24 4 21)
1 2442t 1
= S 12
a t:1g12%}g(2A (24 + 26)p(24 + 2t) 1;) koo (fas ™, z%)
1 24421
2, max sarioga| 2 (D) = Daa(@)(Di(a®) = Do (Im‘
T 7 k=24+1
1 244271
e t‘lr<n2%)<(2A 214-‘1-17(214—0—1) Z TA(I'l)Dk72A (‘rl)/”A(x2)Dk)72A (xQ)’
T 7 k=24+41
1 2t—1
_ L )
T j1oigaa 24+1p(2A+1) Z Dy(z7)Dy(x7)
- 1=1

_ 1 t 1.2
T 2ATIH(2AHT) t:1$?§2A2 | Kot (27, 27)].

Since, we have

fa@!, 2?) = Su§|52",2"(fA;$17932)| = |fa(a’, 2?)]
ne
and
I fallf,s = 1fAll2/s = 274
We obtain

||J\~/[*fA||2/3 > c ot | K. 1.2 2/3d 1,2 5/
||fAHH2/3 = 24p(2441)2-4 \ J 2 m?;ﬁy‘ | Kot (27, %)) (e, ) .

To investigate the integral [, max;.<ar<oa (2| Ko (2!, 2%))?/3dp(at, 2?), we de-
compose the set G as the following disjoint union

A—-1
G =110 T\1).
s=0
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It is easy to show that, for (z!,z2) € I, x I,

(2 - D+ - 1)

Koo (2t 2%) = 6

Therefore,

a 2 Koe (21, 22 2/34 g2
/G><G t:lIgnzt}S(QA( (Ko (z7, 27)|) w(x, x?)

A-1
> max (2K t(x17gg2) 2/3du(x1,x2)
; /(Is\fs+1)><(fs\fs+1) t:1§2t§2A( 1K )
A—-1
2 / (2°| K52 (2, ) ) P du(at, 2?)
s=1 ¢ Ts\Is+1) x (Is\Is+1)
A-1 , ’ 2/3
25 _ 1 23-}-1 -1
- Z/ (28( A )> dp(a’,z?)
s=1 Y Is\Is+1) x (Ls\Ls41) 6
= 2/3
= ¢ / (2%)"* dp(at,2?) > e(A - 2).
=1 Y s\ Lsp1) X (Ls\Is41)

That is, }
IV fallass _ c(A+1)%2
Ifallmys — @244

for A big enough.
Now, let {ny : k& € P} be an increasing sequence of positive integers such

that 52

1

lim o8 T = +4o00.
k—oo  p(ng)

There exists a positive integer mj, such that Mk <y < 2+ 2™k, © is a nondec-
reasing function, then we have

3/2 3/2

I
> ¢ lim 08 Mk _ +00
k—o0 gp(nk)

Let {mg : k € P} C {m}, : k € P} be such that

!
fim (m},) :
k—o00 @(2"%)

(mk)B/z

koroo (27

= +-00.

This yields ~
IV frni—tllays _ e(mi)*
[ fri—1llrzy,s — p(27%)
k — oo completes the proof of this theorem. ([
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