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Inversion techniques and combinatorial identities
Basic hypergeometric identities

By CHU WENCHANG (Beijing, China)

Abstract. Based on Carlitz’ q-analogue of the Gould–Hsu inverse series relations,
a new insight into basic hypergeometric formulas is offered. Most q-series identities are
revisited throught the embedding technique, and some new ones are demonstrated too.

0. Introduction

Recently, basic hypergeometric series (q-series) computation has at-
tracted new interest in the mathematical world for its wide application to
mathematics, physics and computer science. But the basic formulas often
involved in computation are so subtle that their derivation is not easy and
so in most situations they are only regarded as prescribed fact. Therefore
it seems desirable to gain new insight and to revisit the most well known
q-series identities so that the non-specialist may recover their connections
without need of reproving each individual formula.

During the past few years, Hsu and the author [11] thought that
the Gould–Hsu inverse relation [17] could be used to establish relations
among binomial identities (ordinary hypergeometric identities according
to Andrews’ view). This has been accomplished in the author’s work [9,
10] a short time ago. Now it is natural to consider the q-analogue of the
work mentioned above. That is the purpose of the present paper which
will show that most basic hypergeometric formulae can be reproduced in a
unified manner throught the Carlitz q-analogue [8] of the Gould–Hsu
inverse series relations.
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To make the paper self-contained, the basic theorem due to Carlitz
can be restated as follows: Let (ai) and (bi) be two complex sequences
such that the polynomials defined by

(0.1a) λ(x; n) =
n∏

k=1

(ak + qxbk)

differ from zero for −x, n ∈ N0 (the set of non-negative integers) with the
convention λ(x; 0) = 1. Then there hold the inverse relations:

f(n) =
n∑

k=0

(−1)k
[
n
k

]
λ(−k; n) g(k)(0.1b)

g(n) =
n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) ak+1 + q−kbk+1

λ(−n; k + 1)
f(k)(0.1c)

Interchanging a and b this reciprocal pair can be reformulated in an equiv-
alent manner:

f(n) =
n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 )λ(k; n) g(k)(0.1d)

g(n) =
n∑

k=0

(−1)k
[
n
k

] ak+1 + qkbk+1

λ(n; k + 1)
f(k),(0.1e)

provided that the polynomials defined by (0.1a) do not vanish for non-
negative integers x and n.

For the sake of brevity, the inverse pairs (0.1b)–(0.1c) and (0.1d)–
(0.1e) will be referred as C-pair and C ′-pair, respectively.

Let |q| < 1. As usual, a rΦs basic hypergeometric series with base q
is defined by (cf. e.g., [14])

(0.2a)

rΦs

[
a1, a2, . . . , ar

; Z
b1, . . . , bs

]
=

=
∞∑

k=0

(a1; q)k(a2; q)k . . . (ar; q)k

(b1; q)k(b2; q)k . . . (bs; q)k

zk

(q; q)k

(
(−1)kq(

k
2)

)(1−r+s)

whenever the series converges (e.g., if |z| < 1) where the q-shifted factorials
are defined by

(0.2b) (x, q)∞ =
∞∏

k=0

(1− xqk), (x; q)n = (x; q)∞/(xqn; q)∞.
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To simplify the notation we will also write (x)n in place of (x; q)n and
[

a1, a2, . . . , ar
; q

b1, b2 . . . , bs

]

n

=
(a1; q)n(a2; q)n . . . (ar; q)n

(b1; q)n(b2; q)n . . . (bs; q)n
(0.2c)

instead of factorial-fractions.
To carry out the exchange between C-pairs and q-series, the following

transformations

(xqk; q)n = (x; q)n(xqn; q)k/(x; q)k.(0.3a)

(xq−k; q)n = q−nk(x; q)n(qx−1; q)k/(q1−nx−1; q)k,(0.3b)

will be used frequently without indication.
In the following sections, various q-hypergeometric identities will be

demonstrated by means of the embedding technique (cf. [9-11]) and series-
composition. Throughout the paper the simple yet tedious calculations
will not be displayed in detail and are left to the reader.

1. q-analogue: Gauss-Vandermonde theorems and Abel-identities

For the q-shifted operator E : Ef(x) = f(qx), define the q-difference
operator [12]

(1.1) (E; q)n = (1−Eqn−1) . . . (1−Eq)(1−E) =
n∑

k=0

(−1)k
[
n
k

]
q(

k
2) Ek,

where
[
n
k

]
= (q)n/(q)k(q)n−k. The induction principle shows that

(E; q)n
(a)x

(b)x
(b/a)x = (b/a)n

(a)x

(b)x+n
(b/a)x,

which can be restated, when x = 0, as the q-analog of the Chu-Vander-
monde convolution:

(1.2a) 2Φ1


 q−n, a

; qnb/a
b


 =

[
b/a

; q
b

]

n

.

Reversing the summation order in the above gives that

(1.2b) 2Φ1

[
q−n, a

; q
b

]
= an

[
b/a

; q
b

]

n

.
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This pair of identities just corresponds to the C-pair or the C ′-pair if they
are telescoped. These formula can be also reformulated equivalently, as
q-binomial convolutions:

n∑

k=0

[
x
k

] [
y

n− k

]
q(x−k)(n−k) =

[
x + y

n

]
,(1.3a)

n∑

k=0

[
u + k

k

] [
v + n− k

n− k

]
q(1+v)k =

[
u + v + n + 1

n

]
.(1.3b)

Moreover, the limiting version of (1.2a) for a and b tending to zero
with b/a = x reduces to Euler’s identity

(1.4) (x, q)n =
n∑

k=0

(−1)k
[
n
k

]
q(

k
2)xk.

Now for a non-negative integer e, we have from (1.2b)
[

xqe

; q
x

]

k

=

[
xqk

; q
x

]

e

= qke
2Φ1

[
q−e, q−k

; q
x

]
.

Consider the composition

3Φ2


 q−n, xqe, a

; qn−eb/a
x, b


 =

=
n∑

k=0

[
q−n, a

; q
q, b

]

k

(qnb/a)k
2Φ1

[
q−e, q−k

; q
x

]
=

=
∑

i

(−1)iq−(i
2)

[
q−n, a, q−e

; q
q, b, x

]

i

(qnb/a)i·

· 2Φ1




q−n+i, aqi

; qn−ib/a
bqi


 ,

where the summation indices have been exchanged. By means of the q-
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Vandermonde formula, this can be simplified as a series-transformation:

(1.5a)

3Φ2


 q−n, xqe, a

; qn−eb/a
x, b


 =

=

[
b/a

; q
b

]

n

3Φ2


 q−e, a, q−n

; q
x, q1−n a/b


 ,

the reversal of which yields

(1.5b)

3Φ2

[
q−n, xqe, a

; q
x, b

]
=

= an

[
b/a

; q
b

]

n

3Φ2




q−e, a, q−n

; q1+ex/b
x, q1−n a/b


 .

This pair of transformations is useful for the evaluation of the q-series
involved in the members on the left when e is quite small, and for e = 0
they reduce to (1.2a) and (1.2b) respectively.

By embedding in the C ′-pair, we can establish the following inverse
relations

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 )(1−Aqk)n 1−A−B

1−Aqk −B

(
B

1−Aqk
; q

)

k

= Bnq(
n
2)

(1.6a)

n∑

k=0

(−1)k
[
n
k

] 1−Aqk

(1−Aqn)k+1
Bkq(

k
2) =(1.6b)

=
1−A−B

1−Aqn −B

(
B

1−Aqn
; q

)

n

,

n∑

k=0

[
n
k

]
q(

n−k
2 )(Cq−1(1−Aqk); q−1)n

1−A−B

1−Aqk −Bqk
·(1.7a)

· (Bq(1−Aqk)−1; q)k

(Cq−1(1−Aqk); q−1)k
Ck(1−Aqk)kq−(k+1

2 ) = (BCq−n; q)nq(
n
2)

n∑

k=0

(−1)k+n
[
n
k

] 1 + q−1AC − Cq−k−1

(Cq−1(1−Aqn); q−1)k+1
(BCq−k; q)kq(

k
2) =(1.7b)
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=
1−A−B

1−Aqn −B

(B(1−Aqn)−1; q)n

(Cq−1(1−Aqn); q−1)n
q−(n+1

2 )(1−Aqn)nCn.

Among these identities, (1.6b) and (1.7b) are special cases of (1.4)
and (1.5a), respectively, while their dual versions are the q-analogues of
the Abel-identities (cf. Jackson [19]; see also [15], Sec. 3.).

2. q–Saalschutz-type formulae

By using (1.2a)–(1.2b) after interchanging the summation indices, we
can manipulate the series composition as follows (where e is a non-negative
integer as in Section 1):

3Φ2




q−n, a, b
; q1+e

cqe, q1−nab/c


 =

=
n∑

k=0


 q−n, b

; q
q, q1−nab/c




k

(qa/c)k
2Φ1

[
q−k, qec/a

; q
qec

]
=

=
∑

i

(−1)iq−(i
2)


 q−n, b, qec/a

; q
q, qec, q1−nab/c




i

(qa/c)i·

· 2Φ1




q−n+i, bqi

; q1−ia/c
q1−n+i ab/c


 =

=


 q1−na/c

; q
q1−nab/c




n

3Φ2


 q−n, qec/a, b

; q
c/a, qec


 .

By (1.5b), this transformation may be restated as

3Φ2




q−n, a, b
; q1+e

cqe, q1−nab/c


 =(2.1a)

=


 c/a, qec/b

; q
qec, c/ab




n

3Φ2




q−e, b, q−n

; q/a
c/a, q1−n−eb/c


 ,

whose reversal reads as
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3Φ2


 q−n, a, b

; q
cqe, q1−nab/c


 =(2.1b)

=


 c/a, qec/b

; q
qec, c/ab




n

3Φ2


 q−e, b, q−n

; q
c/a, q1−n−eb/c


 .

It may be worth mentioning that the transformations (2.1a) and (2.1b)
imply those demonstrated in [1] and [25] as immediate consequences, on
account of the 3Φ2 symmetry with respect to e and n involved in the
members on the right, and e = 0 they reduce to the famous q-Saalschutz
theorem.

(2.1c) 3Φ2


 q−n, a, b

; q
c, q1−nab/c


 =


 c/a, c/b

; q
c, c/ab




n

In the remaining part of this section the terminating balanced q-series
will be evaluated through the summation formulae (2.1a–c).

From the term-splitting (qx)k/(x)k = (1 − x)−1 − qkx/(1 − x), it is
easy to see that

(2.2)

4Φ3

[
a, b, , c, qx

; q
d, e, x

]
=

=
1

1− x
3Φ2

[
a, b, c

; q
d, e

]
− x

1− x
3Φ2


 a, b, c

; q2

d, e


 .

As a linear combinations of two 2–balanced summations, we can derive
from (2.1a), (2.1b) and (2.1c) that

(2.3a)

4Φ3


 q−1w/a, q2a/w, −a1/2, q−n

; q
qa/w, w, −q1−na−1/2


 =

=


 a, qa1/2, q−1wa−1/2

; q
a1/2, −a1/2, w




n

.

Telescoping this into (0.1b) yields the C-pair as follows:

n∑

k=0

(−1)k
[
n
k

]
(−a1/2q−k; q)n


 q−1w/a, q2a/w, −a1/2

; q
qa/w, w, −qa−1/2




k

·
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·q(k+1
2 ) =


 a, qa1/2, −q−1wa−1/2

; q
a1/2, w




n

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) 1 + a1/2

(−a1/2q−n; q)k+1


 a, qa1/2, −q−1wa−1/2

; q
a1/2, w




k

=

= q(
n+1

2 )


 q−1w/a, q2a/w, −a1/2

; q
qa/w, w, −qa−1/2




n

.

The last relation may be reformulated as (cf. (1.11) in [23])

(2.3b)

4Φ3


 a, qa1/2, −q−1wa−1/2, q−n

; q
a1/2, w, −q1−na1/2


 =

=


 q−1w/a, q2a/w, −a1/2

; q
qa/w, w, −a−1/2




n

.

Similarly, we can establish the following C-pairs:

(2.4a)

4Φ3


 a, qa1/2, b, q−n

; q
a1/2, qa/b, q1−nb2


 =

=


−qa1/2b−1, b−1, ab−2

; q
−a1/2b−1, b−2, qa/b




n

(2.4b)

4Φ3


 ab−2, b−1, −qa1/2b−1, q−n

; q
qa/b, −a1/2b−1 q1−nb−2


 =

=


 a, qa1/2, b

; q
b2, a1/2, qa/b




n



Basic hypergeometric identities 309

where the last relation may be restated in a similar form as (2.4a)

(2.4c)

4Φ3


 a, −qa1/2, b, q−n

; q
−a1/2, qa/b, q1−nb2


 =

=


 qa1/2b−1, b−1, ab−2

; q
a1/2b−1, qab−1, b−2




n

,

and

(2.5a)

4Φ3


 a, b, qa(1 + b)/(a + b), q−n

; q
qa/b, a(1 + b)/(a + b), q1−nb2


 =

=


 b−1, ab−2

; q
b−2, qa/b




n

(2.5b)

3Φ2


 ab−2, b−1, q−n

; q
qa/b, q1−nb−2


 =

=
1 + a/b

1− a

(
1− a(1 + b)

a + b
qn

) 
 a, b

; q
b2, qa/b




n

.

The limiting versions of these two pairs correspond to the same hypergeo-
metric identities (cf. Bailey [7] for the notation of hypergeometric series):

4F3

[
a, 1 + a/2, b, −n

a/2, 1 + a− b, 1 + 2b− n

]
=

[
−b, a− 2b
−2b, 1 + a− b

]

n

3F2

[
a− 2b, −b, −n

1 + a− b, 1− 2b− n

]
=

[
1 + a/2 a, b

a/2, 1 + a− b, 2b

]

n

.

This shows that there are different basic analogues for some binomial iden-
tities.

From the separation

(1− aq2k)/(1− a) = (1− aqk)/(1−a) + aqk(1−qk)/(1− a),
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the following balanced 5Φ4-series can be expressed as a two 2-balanced
series in the forms (2.1a) and (2.1b), and so can be evaluated as

(2.6)

5Φ4


 a, qa1/2, −qa1/2, b, q−n

; q
a1/2, −a1/2, qa/b, q2−nb2


 =

=


−q1/2a1/2b−1, q1/2a1/2b−1, q−1b−1, q−1ab−2

; q
−q1/2a1/2b−1, q−1/2a1/2b−1, qab−1, q−1b−2




n

.

Telescoping this into the C-pair shows that this is a self-reciprocal
formula, i.e., the dual version possesses the same expression as the original
one under the parameter-replacement.

All the formulae (2.3)–(2.6) demonstrated above are q-analogues of
the k-balanced hypergeometric summations (for k = 1 and 2) contained
in Bailey’s book [7] (p.30). They have not been stated in the present
manner previously, except for (2.3a) (cf. [23]).

3. Watson-transform and Jackson-theorems

The most striking relations associated with the C-pair reads as

3Φ2


 aqn, qa/bc, q−n

; q
qa/b, qa/c


 = (qa/bc)n

[
b, c

; q
qa/b, qa/c

]

n

(3.1a)

6Φ5




a, qa1/2, −qa1/2, b, c, q−n

; q1+na/bc
a1/2, −a1/2, qa/b, qa/c, qn+1a


 =

(3.1b)

=


 qa, qa/bc

; q
qa/b, qa/c




n

,

which follows from telescoping in the manner

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
n )(aqk, q)n


 a, qa/bc

; q
qa/b, qa/c




k

=

= (qa/bc)nq(
n
2)

[
a, b, c

; q
qa/b, qa/c

]

n
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n∑

k=0

(−1)k
[
n
k

] 1− aq2k

(aqn; q)k+1
(qa/bc)kq(

k
2)

[
a, b, c

; q
qa/b, qa/c

]

k

=

=


 a, qa/bc

; q
qa/b, qa/c




n

.

Consider the series-composition (very-well-poised series)

8Φ7




a, qa1/2, −qa1/2, b, c, d, e, q−n

; q2+na2/bcde
a1/2, −a1/2, qa/b, qa/c, qa/d, qa/e, qn+1a


 =

=
n∑

k=0


 a, qa1/2, −qa1/2, d, e, q−n

; q
q, a1/2, −a1/2, qa/d, qa/e, qn+1a




k

·

·(q1+na/de)k
3Φ2


 aqk, qa/bc, q−k

; q
qa/b, qa/c


 =

=
n∑

i=0

(qa)2i

(q)i


 qa/bc, d, e, q−n

; q
qa/b, qa/c, qa/d, qa/e, qn+1a




i

·

·(−1)iq−(i
2)(q1+na/de)i·

· 6Φ5




aq2i, q1+ia1/2, −q1+ia1/2, qid, die, q−n+i

; q1+n−ia/de
qia1/2, −qia1/2, q1+ia/d, q1+ia/e, q1+n+ia




in which the last summation results from the interchange between summ-
ation-indices. In view of (3.1b), Watson’s q-analogue of Whipple’s trans-
form (e.g., cf. [14]) has been established:

8Φ7




a, qa1/2, −qa1/2, b, c, d, e, q−n

; q2+na2/bcde
a1/2, −a1/2, qa/b, qa/c, qa/d, qa/e, qn+1a


 =

(3.2)

=


 qa, qa/de

; q
qa/d, qa/e




n

4Φ3


 q−n, d, e, qa/bc

; q
qa/b, qa/c, de/qna


 .

When the 4Φ3 in the above reduces to a 3Φ2 series, it can be evaluated
by the q-Saalschutz theorem. In this case we obtain a balanced summation
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formula: Jackson’s q-analogue of Dougall’s formula (see [14] also)

(3.3a)

8Φ7


 a, qa1/2, −qa1/2, b, c, d, e, q−n

; q
a1/2, −a1/2, qa/b, qa/c, qa/d, qa/e, qn+1a


 =

=


 qa, qa/bc, qa/bd, qa/cd

; q
qa/bcd, qa/b, qa/c, qa/d




n

provided that q1+na2 = bcde.
Also, we can consider a 3-balanced very-well-poised series. In this case

the 4Φ3 in (3.2) can be separated through (2.2) and evaluated by means of
(2.1). After some trivial modification, we get another summation formula
(cf. [6, 21])

8Φ7




a, qa1/2, −qa1/2, b, c, d, e, q−n

; q2

a1/2, −a1/2, qa/b, qa/c, qa/d, qa/e, qn+1a


 =

=
(

qn +
(1− a/bcd)(1− qna2/bcd)(1− qn)

(1− a/bc)(1− a/bd)(1− a/cd)

)
·(3.3b)

·

 qa, a/bc, a/bd, a/cd

; q
a/bcd, qa/b, qa/c, qa/d




n

where qna2 = bcde.
Jackson’s theorem (3.3a) is of fundamental importance in q-series com-

putation. Here we display some examples.
Jackson’s q-analogue of the Dougall–Dixon formula

(3.3c)

6Φ5




a, qa1/2, −qa1/2, b, c, d,
; qa/bcd

a1/2, −a1/2, qa/b, qa/c, qa/d,


 =

=


 qa, qa/bc , qa/bd, qa/cd

; q
qa/bcd, qa/b, qa/c, qa/d



∞

which follows from (3.3a) or (3.3b) for n tending to infinity. This is the
non-terminating version of (3.1b).

Taking d equal to a1/2, −a1/2 and infinity in (3.3c), we obtain the
following q-Dixon formulae:
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4Φ3




a, −qa1/2, b, c
; qa1/2/bc

−a1/2, qa/b, qa/c


 =(3.4a)

=


 qa, qa/bc, qa1/2/b, qa1/2/c

; q
qa/b, qa/c, qa1/2, qa1/2/bc



∞

4Φ3




a, qa1/2, b, c
;−qa1/2/bc

a1/2, qa/b, qa/c


 =(3.4b)

=


 qa, qa/bc, −qa1/2/b, −qa1/2/c

; q
qa/b, qa/c, −qa1/2, −qa1/2/bc



∞

5Φ5




a, qa1/2, −qa1/2, b, c
;−qa/bc

0 a1/2, −a1/2, qa/b, qa/c


 =(3.4c)

=


 qa, qa/bc

; q
qa/b, qa/c



∞

.

For c = −a1/2, (3.4a) reduces to the q-analogue of Kummer’s formula:
(3.5)

2Φ1




a, b
;−q/b

qa/b


 =


 qa, −qa1/2/b, qa1/2/b, −q

; q
qa/b, −qa1/2, qa1/2, −q/b



∞

.

4. q-analogues of the Watson and Whipple summations

For the specialized Saalschutz summation

3Φ2


 q−n/2, q(1−n)/2, q1/2c2/b

; q
q3/2−n/b, q1/2c2


 =

=


 bq−1/2

; q1/2

c2




n


 c2

; q
bq−1/2




n

.

Changing the base from q to q2 and then embedding in (0.1b) yields the
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C-pair:

n∑

k=0

(−1)k
[

n
2k

]
(bq−1−2k; q2)n




q, qc2/b
; q2

qc2, q3/b




k

q(
2k+1

2 ) =

=

[
q−1b

; q
c2

]

n

(c2; q2)n

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) 1− bqk−1

(bq−1−n; q2)k+1

[
bq−1

; q
c2

]

k

(c2; q2)k =

=





0, (n odd)

q(
n+1

2 )




q, qc2/b

; q2

qc2, q3/b




m

(n = 2m).

The last one may be reformulated as the q-analogue of the Watson formula

4Φ3


 q−n, b, c, −c

; q
c2, (q1−nb)1/2, −(q1−nb)1/2


 =

=





0, (n odd)



q, qc2/b

; q2

qc2, q/b




m

(n = 2m),

which may also be expressed in a symmetrical version (cf. Andrews [4])

4Φ3




a, b, c, −c
; q

c2, (qab)2, −(qab)1/2


 =

=


 qa, qb, qc−2, qabc−2

; q2

q, qab, qac−2, qbc−2



∞
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where a or b is equal to q−n, n being a non-negative integer.
Again, the special Saalschutz formula

3Φ2


 q−n, q1/4ae, q1/4e/a

; q
q(1−n)/2e, q(2−n)/2e


 =




q1/4a, q1/4/a
; q1/2

q1/2e, e−1




n

could be used to establish the following C-pair:

n∑

k=0

(−1)k
[
n
k

]
(e−1q−k; q1/2)n

(q1/4ae, q1/4e/a; q)k

(eq1/2; q1/2)2k
q(

k+1
2 ) =

=


 q1/4a, q1/4/a

; q
eq1/2




n

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) 1− e−1q−k/2

(e−1q−n; q1/2)k+1




q1/4a, q1/4/a
; q1/2

eq1/2




k

=

= q(
n+1

2 )


 q1/4ae, q1/4e/a

; q
eq1/2, eq




n

.

Replacing the base q by q2, we may restate the last relation as the q-
analogue of the Whipple formula (cf. Jain [20]).

4Φ3


 q−n, −q−n, q1/2a, q1/2/a

; q
−q, e, q1−2ne−1


 =


 q1/2ae, q1/2e/a

; q2

e, eq




n

.

5. More evaluations

For the Hagen-Rothe identities (cf. [16]), one special case is

(5.1)
n∑

k=0

x

x + 2k

(
x + 2k

k

)(
y − 2k

n− k

)
=

(
x + y

n

)
,

whose hypergeometric reformulation has been rediscovered several times
(cf. [5]). Here we will discuss its q-analogue and the related C-pairs.

Consider the Saalschutz formula

3Φ2


 q−n, −q−n, b/c

; q
−b, q1−2n/c


 =

[
c2

; q2

b2

]

n

[
b

; q
c

]

2n

.
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After having changed the base from q to q1/2 and telescoped into (0.1c),
it will generate the C ′-pair:

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) 1− c−1q−k/2

(c−1q−n; q1/2)k+1

1− c

1− cqk/2


−q1/2, b/c

; q1/2

−b




k

=

= q(
n+1

2 )
[

c2

; q
b2

] 


b
; q1/2

cq1/2




2n

n∑

k=0

(−1)k
[
n
k

]
(c−1q−k; q1/2)n

[
c2

; q
b2

]

k




b
; q1/2

cq1/2




2k

q(
k+1
2 ) =

=
1− c

1− cqn/2


−q1/2, b/c

; q1/2

−b




n

.

The last equality can be translated into (cf. (4.3) in [5] and (4.22) in [15])

(5.2a)

4Φ3


 q−n, b, bq1/2, c2

; q
cq(1−n)/2, cq(2−n)/2, b2


 =

=
1− c

1− cqn/2



−q1/2, b/c

; q1/2

−b, c−1




n

.

Replace b and c by aq1/2 and cqn/2 respectively, in the above. Then the
following C ′-pair can be established through telescoping.

4Φ3


 q−n, aq1/2, aq, c2qn

; q
cq1/2, cq, a2q


 =(5.2b)

= (aq1/2)n 1− c

1− cqn



−q1/2, c/a

; q1/2

−q1/2a, c




n

,

6Φ5



−c, q(−c)1/2, −q(−c)1/2, c/a, q−n, −q−n

; aq2n+1

(−c)1/2, −(−c)1/2, −qa, −cqn+1, cqn+1


 =(5.2c)
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=


 qa, q2a, q2c2

; q2

qc, q2c, q2a2




n

.

Again, from (2.1) and (2.2) we can compute the balanced summation
(5.3a)

4Φ3


 q−n, −q−n, cq, a/c

; q
q1−2n/c, c, −aq


 =


 a, qa, q2c2

; q2

c, qc, q2a2




n

,

which may be used to yield the C-pair after the base change from q to
q1/2:

n∑

k=0

(−1)k
[
n
k

]
q(

n−k
2 ) 1− c−1q−k/2

(c−1q−n; q1/2)k+1



−q1/2, a/c

; q1/2

−aq1/2




k

=

= q(
n+1

2 )


 a, aq1/2, c2q

; q
cq, cq1/2, a2q




n

n∑

k=0

(−1)k
[
n
k

]
(c−1q−k; q1/2)n


 a, aq1/2, c2q

; q
cq, cq1/2, a2q




k

q(
k+1
2 ) =

=



−q1/2, a/c

; q1/2

−aq1/2




n

.

The last relation may be rewritten in the form (cf. [2,23,26])

(5.3b)

4Φ3


 q−n, a, aq1/2, c2q

; q
cq(1−n)/2, cq(2−n)/2, a2q


 =

=



−q1/2, a/c

; q1/2

−aq1/2, c−1




n

.

After following the replacement of c by cq(n−1)/2 this summation produces
a pair of q-series identities by means of the embedding process.
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4Φ3


 q−n, a, aq1/2, c2qn

; q
c, cq1/2, a2q


 = an



−q1/2, a/c

; q1/2

−q1/2a, c




n

,

(5.3c)

8Φ7



−c, qc1/2,−qc1/2, q(−c)1/2,−q(−c)1/2, c/a, q−n,−q−n

; aq2n

−c1/2, c1/2, (−c)1/2,−(−c)1/2,−qa,−cqn+1, cqn+1


 =

=


 a, qa, q2c2

; q2

c, qc, q2a2




n

(5.3d)

Among the formulae demonstrated above, (5.2b) and (5.3c) are in-
verses of each other. And they are the exact q-analogues of (5.1) if the
latter is reformulated as a hypergeometric summation. By specifying the
parameters in the Watson transformation (3.2) so that the 4Φ3-series in-
volved there may be evaluated through (5.2b) and (5.3c), we can establish
the following q-series identities, which have not appeared in the literature
explicitly.

8Φ7




u, qu1/2,−qu1/2, v1/2, q1/2v1/2, u/v, q1+nu2/v, q−n

; q1/2v/u
u1/2,−u1/2, qu/v1/2, q1/2u/v1/2, qv, q−nv/u, q1+nu


 =

(5.4a)

=




−q1/2, q1/2v1/2

; q1/2

−q1/2u/v, q1/2u/v1/2




n


 qu, qu2/v2

; q
qv, qu/v




n

.

8Φ7




u, qu1/2,−qu1/2, v1/2, q1/2v1/2, qu/v, qnu2/v, q−n

; q1/2v/u
u1/2,−u1/2, qu/v1/2, q1/2u/v1/2, v, q1−nv/u, q1+nu


 =

(5.4b)

=
1− u/v1/2

1− qnu/v1/2
q−n/2




−q1/2, v1/2

; q1/2

−q1/2u/v, u/v1/2




n


 qu, qu2/v2

; q
v, u/v




n

.
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8Φ7




u, qu1/2,−qu1/2, v1/2, q1/2v1/2, qu/v, q1+nu2/v, q−n

; q−1/2v/u
u1/2,−u1/2, qu/v1/2, q1/2u/v1/2, v, q−nv/u, q1+nu


 =

(5.4c)

= q−n/2



−q1/2, v1/2

; q1/2

−qu/v, q1/2u/v1/2




n


 qu, q2u2/v2

; q
v, qu/v




n

.

8Φ7




u, qu1/2,−qu1/2, v1/2, q1/2v1/2, u/v, qnu2/v, q−n

; q3/2v/u
u1/2,−u1/2, qu/v1/2, q1/2u/v1/2, qv, q1−nv/u, q1+nu


 =

(5.4d)

=
1− u/v1/2

1− qnu/v1/2



−q1/2, q1/2v1/2

; q1/2

−u/v, u/v1/2




n


 qu, u2/v2

; q
qv, u/v




n

.
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