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Mean values of L-functions and relative class numbers
of cyclotomic fields

By STÉPHANE R. LOUBOUTIN (Marseille)

Dedicated to Florence F.

Abstract. Using formulas for quadratic mean values of L-functions at s = 1, we

recover previously known explicit upper bounds on relative class numbers of cyclotomic

fields. We also obtain new better bounds.

1. Introduction

Various authors have given elementary proofs of upper bounds on relative

class numbers h−
f of cyclotomic fields Q(ζf ) of conductors f 6≡ 2 (mod 4). For

example, we have

h−
2m ≤ 2m

(
2m−1/32

)2m−3

(m ≥ 2) (1)

(see [Met3]) and

h−
p ≤ 2p (p/32)

(p−1)/4
(p ≥ 3 a prime number) (2)

(see [Feng]). H. Walum broached this question by studying mean values of L-

functions of prime conductors. In [Lou93] (and [Lou01]) we extended H. Walum’s

result on mean values of L-functions and obtained new and better bounds on

relative class numbers. Here, in Lemmas 3 and 6, we obtain a general result

for mean values of L-functions. By using Lemma 2, we recover these bounds on
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relative class numbers and improve upon them (see (16), (17), (18), (19) and (20)

below). We show that for p or m large enough, we can replace the constant 32

by any given constant less than 4π2 = 39.47841 . . . :

Proposition 1. Fix C < 4π2 = 39.47841 . . . . For p effectively large enough

we have

h−
p ≤ 2p(p/C)(p−1)/4.

For m effectively large enough we have

h−
2m ≤ 2m

√
2(2m−1/C)2

m−3

.

Using more sophisticated results, a better bound is known (see [MM]):

h−
p ≤ p31/4

( p

4π2

)p/4

.

2. The method

Let Kf = Q(ζf ) be a cyclotomic field of prime power conductor f = pm > 2,

p ≥ 2 a prime, and of degree 2n = φ(f) = pm−1(p− 1). Let K+
f be the maximal

real subfield of Kf , of degree n. Let df and d+f be the absolute values of the

discriminants of Kf and K+
f . Hence,

df/d
+
f =





√
pdf = p(1+pm−1(pm−m−1))/2 if p ≥ 3

√
4df = 21+2m−2(m−1) if p = 2

(see [Was, Lemma 4.19 and Proposition 2.1]). Let

wf =




2f = 2pm if p ≥ 3

f = 2m if p = 2

be the number of complex roots of unity in Kf . In particular,

wf

√
df/d

+
f =




2p · pφ(f)/4 if f = p ≥ 3
√
2 · 2m · (2m−1)φ(f)/4 if f = 2m ≥ 4.

(3)

Let X−
f be the set of the φ(f)/2 odd Dirichlet characters mod f > 2. Then,

h−
f = wf

√
df/d

+
f

∏

χ∈X−
f

1

2π
L(1, χ)
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(use [Was, Corollary 4.13 and page 42]). Now, we fix f0 ≥ 1, a product of small

distinct prime numbers q ≥ 2. We let χ0 be the trivial character mod f0. We

assume that f run over integers coprime with f0, and for χ ∈ X−
f , we let χ0χ be

the odd character mod f0f induced by χ. We have

∏

χ∈X−
f

L(1, χ) =

(∏

q|f0
Π(q, f)

)−1 ∏

χ∈X−
f

L(1, χ0χ),

where

Π(q, f) :=
∏

χ∈X−
f

(
1− χ(q)

q

)

(throughout the paper, q is a prime divisor of f0, and p a prime divisor of f).

The geometric mean being less than or equal to the arithmetic mean, we obtain:

Lemma 2. If gcd(f0, f) = 1, then

h−
f ≤

wf

√
df/d

+
f∏

q|f0 Π(q, f)
S(f0, f)

φ(f)/4, (4)

where

S(f0, f) :=
2

φ(f)

∑

χ∈X−
f

∣∣∣∣
1

2π
L(1, χ0χ)

∣∣∣∣
2

.

To use Lemma 2, we need formulae for the sums S(f0, f). If F is an n-

periodic function, we let
∑

amod∗ n F (a) denote a summation over any set of

representatives of (Z/nZ)∗. Recall from [Lou93] that if χ is an odd Dirichlet

character mod n ≥ 3 (we do not assume that χ is primitive), then

1

2π
L(1, χ) =

1

4n

∑

amod∗ n

χ(a) cot
(πa
n

)
(5)

and that, for n ≥ 2, we have

S̃(n) :=
∑

amod∗ n

cot2
(πa
n

)
=

n2

3

∏

p|n

(
1− 1

p2

)
− φ(n). (6)

By (5), we have

S(f0, f)=
1

16f2
0 f

2

∑

amod∗ f0f

∑

bmod∗ f0f

2

φ(f)

( ∑

χ∈X−
f

χ(a)χ(b)

)
cot

(
πa

f0f

)
cot

(
πb

f0f

)
.
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Changing b into ab and using |χ(a)| = 1 for gcd(a, f) = 1 and

∑

χ∈X−
f

χ(b) =





φ(f)/2 if b ≡ 1 (mod f)

−φ(f)/2 if b ≡ −1 (mod f)

0 otherwise,

we obtain

S(f0, f) =
1

8f2
0 f

2

∑

amod∗ f0f

∑

bmod∗ f0f
b≡1 (mod f)

cot

(
πa

f0f

)
cot

(
πab

f0f

)
.

Using (6) with n = f0f , we obtain:

Lemma 3. If gcd(f0, f) = 1, then

S(f0, f) =
1

24

{∏

q|f0

(
1− 1

q2

)}{∏

p|f

(
1− 1

p2

)}
− φ(f0)

2φ(f)

8f2
0 f

2
+

T (f0, f)

8f2
0 f

2
,

where

T (f0, f) =
∑

amod∗ f0f

∑

bmod∗ f0f
b≡1 (mod f)

b6≡1 (mod f0f)

(
1 + cot

(
πa

f0f

)
cot

(
πab

f0f

))
.

Since T (f0, f) = 0 for f0 = 1 and f0 = 2 (the sum over b is empty), from

Lemma 3, we deduce explicit formulae for S(1, f) and S(2, f):

Proposition 4. We have

S(1, f) =
1

24

∏

p|f

(
1− 1

p2

)
− φ(f)

8f2
.

In particular,

S(1, p) =
1

24

(
1− 1

p

)(
1− 2

p

)
(p ≥ 3 a prime) (7)

and

S(1, 2m) =
1

32

(
1− 1

2m−1

)
(m ≥ 1). (8)
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Proposition 5. We have

S(2, f) =
1

32

∏

p|f

(
1− 1

p2

)
− φ(f)

32f2
.

In particular,

S(2, p) =
1

32

(
1− 1

p

)
(p ≥ 3 a prime). (9)

Now, assume that f0 > 2. We will not be able to give explicit formulae for

T (f0, f) (see also [Lou99]), but Lemma 6 below will enable us to compute such

formulae for any given f0. Set ζl = exp(2πi/l). Write a = A+ kf0 ≡ A (mod f0)

and b = 1 +Bf ≡ 1 (mod f). We have

1 + cot

(
πa

f0f

)
cot

(
πab

f0f

)
= 2i cot

(
πAB

f0

)(
1

ζkf ζ
A
f0f

− 1
− 1

ζkf ζ
A(1+fB)
f0f

− 1

)

and

T (f0, f) = 2i
∑

Amod∗ f0

f0−1∑

B=1
gcd(1+Bf,f0)=1

cot

(
πAB

f0

)

×
f−1∑

k=0
gcd(A+kf0,f)=1

(
1

ζkf ζ
A
f0f

− 1
− 1

ζkf ζ
A(1+fB)
f0f

− 1

)
.

Now, if λl 6= 1, then
l−1∑

k=0

1

ζkl λ− 1
=

l

λl − 1

(evaluate the logarithmic derivative of xl − 1 at x = λ−1, if λ 6= 0). Hence, if

gcd(f0, f) = 1 and ω = ζf0f or ω = ζ1+fB
f0f

, then

∑

Amod∗ f0

cot

(
πAB

f0

) f−1∑

k=0
gcd(A+kf0,f)=1

1

ζkfω
A − 1

=
∑

Amod∗ f0

cot

(
πAB

f0

)∑

d|f
µ(d)

f−1∑

k=0
d|A+kf0

1

ζkfω
A − 1

=
∑

d|f
µ(d)

∑

Amod∗ f0

cot

(
πdAB

f0

) f−1∑

k=0
d|dA+kf0

1

ζkfω
dA − 1
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=
∑

d|f
µ(d)

∑

Amod∗ f0

cot

(
πdAB

f0

) f/d−1∑

k=0

1

ζkf/dω
dA − 1

= f
∑

d|f

µ(d)

d

∑

Amod∗ f0

cot

(
πdAB

f0

)
1

ωfA − 1

and

T (f0, f) = f
∑

d|f

µ(d)

d

∑

Amod∗ f0

∑

0 6=Bmod f0
gcd(1+Bf,f0)=1

cot

(
πdAB

f0

)

×
(
cot

(
πA

f0

)
− cot

(
πA(1 +Bf)

f0

))
.

If ff∗ ≡ d∗d ≡ A∗A ≡ 1 (mod f0), changing B into f∗(A∗B − 1) and A into fA

we change (dAB,A,A(1 + Bf)) into (d(B − A), fA, fB) with B 6= A. Finally,

changing A into d∗A and B into d∗B we obtain:

Lemma 6. Let f0 > 2 be given. Assume that gcd(f0, f) = 1. We have

T (f0, f) = f
∑

d|f

µ(d)

d
A(f0, f/d),

where the coefficients

A(f0, d) =
∑

Amod∗ f0

∑
B mod∗ f0

B 6=A

cot

(
π(B −A)

f0

)(
cot

(
πdA

f0

)
− cot

(
πdB

f0

))

are rational numbers which depend on d mod f0 only. Moreover,

A(f0, 1) = φ(f0)
2 − f2

0

3

∏

q|f0

(
1− 1

q2

)
.

Proof. Using cot(y − x)(cotx− cot y) = (cotx)(cot y) + 1 we obtain

A(f0, 1) =
∑

Amod∗ f0

∑

Bmod∗ f0
B 6=A

(
1 + cot

(
πA

f0

)
cot

(
πB

f0

))
.

Since
∑

Bmod∗ f0
cot

(
πB
f0

)
= 0 (change B into f0 −B), we obtain

A(f0, 1) = φ(f0)(φ(f0)− 1)−
∑

Amod∗ f0

cot2
(
πA

f0

)
= φ(f0)(φ(f0)− 1)− S̃(f0)
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and the desired result, by (6).

Finally, if a and b are rational integers, then cot(πa/f0) cot(πb/f0) is in Q(ζf0),

and such that σt(cot(πa/f0) cot(πb/f0)) = cot(πat/f0) cot(πbt/f0) whenever

gcd(t, f0) = 1, where σt is the automorphism of Q(ζf0) which sends ζf0 to ζtf0 .

It follows that the A(f0, d)’s are in Q(ζf0) and are invariant under the actions of

the Galois group of Q(ζf0)/Q. Hence, they are rational numbers. ¤

3. Some explicit formulae for S(f0, f)

Lemma 3 yields explicit formulae for S(1, f) and S(2, f), in which cases

T (1, f) = T (2, f) = 0. We have not been able to come up with a fully explicit

formula for S(f0, f) for f0 > 2. If f0 > 2 is given, Lemma 6 shows that

T (f0, p) = pA(f0, p)−A(f0, 1), (10)

where A(f0, p) depends on p mod f0 only. (In the same way, T (f0, p
m) =

pmA(f0, p
m) − pm−1A(f0, p

m−1) depends only on p mod f0 and of m mod the

order of p in (Z/f0Z)
∗). Therefore, for a given f0 we can compute all the φ(f0)

possible A(f0, p) depending only on p mod f0 and we end up with an explicit

formula for T (f0, p) and S(f0, p) which will depend on p mod f0.

For example, for p > 5 and f0 = 30 we have A(30, 1) = −128 and

p mod 30 1 7 11 13

A(30, p) −128 −112 160 64

T (30, p) −128(p− 1) −16(7p− 8) 32(5p+ 4) 64(p+ 2)

S(30, p) 2
75

(
1− 1

p

)
2
75

(
1− 11

12p

)
2
75

(
1 + 1

2p

)
2
75

f mod 30 17 19 23 29

A(30, p) −64 −160 112 128

T (30, p) −64(p− 2) −32(5p− 4) 16(7p+ 8) 128(p+ 1)

S(30, p) 2
75

(
1− 2

3p

)
2
75

(
1− 7

6p

)
2
75

(
1 + 1

4p

)
2
75

(
1 + 1

3p

)

Table 1.

In fact, if f = p is a prime, we have the following rather nice formula:

Theorem 7. Assume that f0 > 2 and set

C(f0) :=
1

24

∏

q|f0

(
1− 1

q2

)
.
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If gcd(f0, f) = 1, set

B(f0, f) :=
A(f0, f)− φ(f0)

2

8f2
0

,

which depends on f mod f0 only. Then,

S(f0, p) = C(f0) +
B(f0, p)

p
.

In particular, if p ≡ 1 (mod f0), then

S(f0, p) = C(f0)×
(
1− 1

p

)
. (11)

and if p ≡ −1 (mod f0), then

S(f0, p) = C(f0)×
(
1 +

1

p

)
− φ(f0)

2

4f2
0 p

.

Proof. For the first assertion, use Lemma 3, Lemma 6 and (10). For the

other assertions, notice that A(f0, f) = A(f0, 1) = A(f0, 1) if f ≡ 1 (mod f0) and

A(f0, f) = −A(f0, 1) = −A(f0, 1) if f ≡ −1 (mod f0). ¤

Proposition 8. If 3 does not divide f , then

S(3, f) =
1

27

∏

p|f

(
1− 1

p2

)
− φ(f)

18f2
+

T (3, f)

72f2
,

with

T (3, f) =
4f

3

(
f

3

)∏

p|f
(1−

(p
3

) 1

p
).

In particular,

S(3, p) =
1

27

(
1− 3− (p3 )

2p

)
(p 6= 3)

and

S(3, 2m) =
1

36

(
1− 1− (−1)m

2m

)
. (12)

If gcd(f, 6) = 1, then

S(6, f) =
1

36

∏

p|f

(
1− 1

p2

)
− φ(f)

72f2
+

T (6, f)

288f2
,
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with

T (6, f) = −4f

(
f

3

)∏

p|f
(1−

(p
3

) 1

p
).

In particular,

S(6, p) =
1

36

(
1− 1 + (p3 )

2p

)
(p > 3). (13)

Proof. Assume that f0 = 3 or f0 = 6. Then, f ≡ ±1 (mod f0) and

φ(f0) = 2. In Lemma 6, A must be equal to +1 or −1 mod f0 and B which can

take only one value mod f0 must be equal to −A mod f0. Hence, we obtain

A(f0, d) = 4 cot

(−2π

f0

)
cot

(
πd

f0

)
=





4

3

(
d

3

)
if f0 = 3

−4

(
d

3

)
if f0 = 6.

The desired result follows. ¤
Lemma 9 (E.g., see [Lou93, Lemme (c)]). Let l be the order of q mod f .

Then,

Π(q, f) =




(1 + q−l/2)φ(f)/l if lis even and ql/2 ≡ −1 (mod f)

(1− q−l)φ(f)/2l otherwise,

Moreover, if f = pk with p ≥ 3 and l is even, then ql/2 ≡ −1 (mod f).

Finally, e−1/2l ≤ Π(q, f) ≤ e1/l, hence Π(q, f) = 1 +O
(
log q
log f

)
.

Proof. To prove the lower bound on Π(q, f), notice that ql ≥ f + 1 and

φ(f) log(1 − 1/(f + 1)) ≥ (f − 1) log(1 − 1/(f + 1)) ≥ −1 for f > 0. To prove

the upper bound, notice that in the first case we have qf/2 ≥ f − 1 and (1 + 1/

(f − 1))φ(f) ≤ (1 + 1/(f − 1))f−1 ≤ exp(1) for f ≥ 2. ¤
Lemma 10. We have:

m 2 3 ≥ 4

Π(3, 2m) 1 + 3−1 1− 3−2m−2

1− 3−2m−2

Π(5, 2m) 1− 5−1 1− 5−2m−2

1− 5−2m−2

and Π(2, 3m) = 1 + 23
m−1

for m ≥ 1.

Proof. Using 32
k−3 ≡ 1 + 2k−1 (mod 2k) for k ≥ 4, and 52

k−3 ≡ 1 + 2k−1

(mod 2k) for k ≥ 3, we obtain that the order l of 3 mod 2m is equal to 2m−2 and

3l/2 6≡ −1 (mod 2m) for m ≥ 3, and that the order l of 5 mod 2m is equal to

2m−2 and 5l/2 6≡ −1 (mod 2m) for m ≥ 3. Using 23
k−2 ≡ −1+3k−1 (mod 3k) for

k ≥ 3, we obtain that the order l of 2 mod 3m is equal to 2 · 3m−1 and 2l/2 ≡ −1

(mod 2m) for m ≥ 1. ¤
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4. Proof of Proposition 1

Clearly, A(f0, f) = O(f4
0 ), and T (f0, f) = O(f4

0 f
∑

d|f
1
d ) = O(f4

0 f log f).

Therefore,

S(f0, f) =
1

24

{∏

q|f0

(
1− 1

q2

)}{∏

p|f

(
1− 1

p2

)}
+O

(
f2
0 log f

f

)

can be made less than 1/4π2 by putting enough prime factors in f0. By Lemma 9,

the desired result follows.

5. Upper bounds on relative class numbers

We are now in a position to obtain explicit upper bounds on relative class

numbers of cyclotomic fields. To simplify, we restrict ourselves to cyclotomic

fields of prime conductors p ≥ 3 or of 2-power conductors f = 2m ≥ 4.

5.1. The case f0 = 1. Using (3), (4) and (7), which yields S(1, p) ≤ 1/24, we

obtain

h−
p ≤ 2p

( p

24

)(p−1)/4

(p ≥ 3 a prime) (14)

(see also [Lep], [Met1] and [Met2]). Using (3), (4) and (8), which yields S(1, 2m) ≤
1/32, we obtain h−

2m ≤ 2m
√
2(2m−1/32)2

m−3

, a bound slightly weaker than (1).

5.2. The case f0 = 2. Using (3), (4) and (9), and Π(2, p) ≥ (1− 2−l)(p−1)/6 ≥
(1− 1/p)(p−1)/4, we obtain:

h−
p ≤ 2p

Π(2, p)

(
p

32

(
1− 1

p

))(p−1)/4

, (15)

which implies (2), a better bound than (14) (see also [Feng], and the recent worse

bound in [Jak]).

5.3. The cases f0 = 3. Using (3), (4), (12) and Lemma 10, we obtain

h−
2m ≤ 2m

√
2

1− 3−2m−2

(
2m−1

36

)2m−3

(m ≥ 2), (16)

which is a better bound than all the previously known ones quoted in [Met3].
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5.4. The cases f0 = 6. Using (3), (4) and (13), we obtain the following impro-

vement on (2):

h−
p ≤ 2p

Π(2, p)Π(3, p)

( p

36

)(p−1)/4

(p ≥ 5 a prime). (17)

5.5. The cases f0 = 15.

Proposition 11. We have

T (15, 2m) = 2m+3 ×





7 if m ≡ 0 (mod 4),

−8 if m ≡ 1 (mod 4),

−4 if m ≡ 2 (mod 4),

−10 if m ≡ 3 (mod 4).

Hence,

S(15, 2m) =
2

75

(
1− 2

3 · 2m +
T (15, 2m)

48 · 22m
)

≤ 2

75

(
1 +

1

2m+1

)
.

Using (4), and Lemma 10, we obtain a better bound than (16):

h−
2m ≤ 2m

√
2

(1− 3−2m−2)(1− 5−2m−2)

(
2m+1 + 1

150

)2m−3

(m ≥ 2). (18)

5.6. The case f0 = 30. According to Table 1, S(30, p) ≤ 2
75

(
1 + 1

2p

)
and we

obtain a better bound than (17):

h−
p ≤ 2p

Π(2, p)Π(3, p)Π(5, p)

(
2p+ 1

75

)(p−1)/4

(p ≥ 7 a prime). (19)

5.7. The case p ≡ 1 (mod f0). Using (3), (4) and (11), we obtain

h−
p ≤ 2p∏

q|f0 Π(q, p)

(
p

24

(∏

q|f0

(
1− 1

q2

))(
1− 1

p

))(p−1)/4

.

By Lemma 9, we deduce that if p ≥ p0(f0) is large enough, then

h−
p ≤ 2p

(
p

24

∏

q|f0

(
1− 1

q2

))(p−1)/4

(20)

(more explicitly, by Lemma 9 we have Π(q, p) ≥ exp
( − log q

2 log p

)
, which yields∏

q|f0 Π(q, p) ≥ exp
( − log f0

2 log p

)
, and using (1 − 1/p)(p−1)/4 ≤ exp(− 1

8 ) for p ≥ 3

we see that is suffices to have p ≥ p0(f0) := f4
0 ).
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