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Functional equation of Dhombres type in the real case

By LUDWIG REICH (Graz), JAROSLAV SMÍTAL (Opava)

and MARTA ŠTEFÁNKOVÁ (Opava)

Abstract. We consider continuous solutions f : R+ → R+ = (0,∞) of the func-

tional equation f(xf(x)) = ϕ(f(x)) where ϕ is a given continuous map R+ → R+. If ϕ

is an increasing homeomorphism the solutions are completely described, if not there are

only partial results. In this paper we bring some necessary conditions upon a possible

range Rf . In particular, if ϕ|Rf has no periodic points except for fixed points then

there are at most two fixed points in Rf , and all possible types of Rf and all possible

types of behavior of f can be described. The paper contains techniques which essentially

simplify the description of the class of all solutions.

1. Introduction

Let ϕ be a continuous map of the unit interval [0, 1]. By S(ϕ) we denote the

set of all continuous solutions of the generalized Dhombres functional equation

f(xf(x)) = ϕ(f(x)), x ∈ (0,∞). (1)

This equation, with ϕ(y) = y2, was studied in 1975 by J. Dhombres in [3].

Equation (1) belongs to the class of functional equations of invariant curves, see

[7] for more information. In general, it is difficult to give a solution. In 1991,
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Jarczyk [4] studied the additive version of (1) and obtained some conditions

sufficient for existence of continuous solutions. A survey of recent results con-

cerning iterative equations, including equations of the above type, can be found

in [1].

If ϕ is an increasing homeomorphism the class S(ϕ) is well described. In

particular, the range Rf of a non-constant solution contains no fixed points of ϕ,

with the exception for 1: it is easy to see that if 1 ∈ Rf then it is a fixed point

of ϕ. A characterization of monotone solutions, and of continuous solutions can

be found in [5], [6] and [9]. For decreasing homeomorphisms only partial results

are known (see [10]). In [8] there was for the first time considered the general

case of an arbitrary continuous function ϕ; this paper presents some technical

results which make possible a classification of the solutions. In the present paper,

we consider only regular solutions f , i.e., solutions for which there are no points

u < v such that f(u) > 1 > f(v). Actually, we consider special case, Rf ⊆ (0, 1].

But the other cases of regular solutions can be reduced to this one type, see [8].

Obviously, Rf is an interval and, by [8], if Rf ⊆ (0, 1] then Rf = ϕ(Rf ) is an

ϕ-invariant set.

In the next section we will give a characterization of behavior of solutions

for ϕ without periodic points except for the fixed points, and for Rf containing a

fixed point as a boundary point. Then, in Section 3, we will develop techniques

for construction of more complex solutions. Using this, we will be able to give our

main result, a characterization of all possible types of Rf provided all periodic

points of ϕ are fixed points, see Theorem 3.8. This solves one of the problems

from [8]. Moreover, our results will give credibility to the conjecture that there

are no solutions such that Rf contains periodic points of ϕ of period > 2, cf. [8].

Let f ∈ S(ϕ). Then τf , or simply τ , defined by τf (x) = xf(x) is a continuous

map from (0,∞) to itself. The forward orbit of x0 ∈ (0,∞) is the sequence

{xn}n≥0 defined by xn = τnf (x0), n ∈ N, where τnf denotes the nth iterate of τf
and N the set of non-negative integers. Thus,

τnf (x) = xf(x)ϕ(f(x))ϕ2(f(x)) . . . ϕn−1(f(x)), n ∈ N. (2)

Here ϕn denotes the nth iterate of ϕ. If ϕ is a homeomorphism then there is a

unique orbit {xn}n∈Z of x0 defined by xn = τnf (x0), n ∈ Z, and if Rf is contained

in a compact subinterval of (0, 1) then, for every orbit, limn→∞ xn = 0 and

limn→−∞ xn = ∞.

However, we will be working with continuous not necessarily homeomorphic

maps ϕ. For such maps, every point x0 has the orbit in the sense of Whyburn and

Kuratowski, consisting of all x such that there are m,n ∈ N with τmf (x0) = τnf (x).
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But this notion is too general to be useful for our purposes. Therefore we define

a subset of Whyburn–Kuratowski orbit, a generalized orbit {xn}n∈Z of x0, briefly

GOf (x0), as follows: For n ∈ N, we let xn = τnf (x0) as before. For u ∈ (0,∞), let

Γu be the map (u,∞) → (0, 1) given by Γu(v) = u/v. If the graphs of f(·) and

Γx0
(·) have a point in common, denote its first coordinate by x−1. By induction,

if for some n ∈ Z\N the graphs of f(·) and Γxn
(·) intersect let us denote by xn−1

a point such that f(xn−1) = Γxn
(xn−1). Obviously, in general GOf (x0) is not

uniquely determined. It may even not exist. But it has some useful properties

which are summarized in the following Lemma. Its proof is obvious.

Lemma 1.1. Let f ∈ S(ϕ) and let {xn}n∈Z = GOf (x0). Then τf (xn) =

xn+1 and ϕ(f(xn)) = f(xn+1), n ∈ Z. Moreover,

for Jn := [xn+1, xn], Jn+1 ⊆ τf (Jn) and Rf |Jn+1
⊆ ϕ(Rf |Jn

), n ∈ Z. (3)

If the range Rf of f is contained in a compact interval [p, q] ⊂ (0, 1) then GOf (x0)

exists for any x0, limn→∞ xn = 0, and limn→−∞ xn = ∞.

In Section 2 we need some results from [8]. Let us recall that a fixed point u

of ϕ is attracting from the right if there is a δ > 0 such that, for any y ∈ [u, u+δ),

limn→∞ ϕn(y) = u; it is repulsing from the right if ϕ(y) > y for every y in a right

neighborhood of u. Similarly for the “left”. A set A is ϕ-invariant if ϕ(A) = A.

Lemma 1.2 (See Corollary 3.3 in [8]). Let f ∈ S(ϕ), and let L = [u, v] ⊆ Rf

be a non-degenerate ϕ-invariant interval end-points of which are fixed points of ϕ.

Then for every y ∈ Rf , y 6= 1, there is an n ∈ N such that ϕn(y) ∈ L.

Lemma 1.3 (See Proposition 3.5 in [8]). Let f ∈ S(ϕ) with Rf ⊆ (0, 1), and

let Rf contain a compact ϕ-invariant set F 6= ∅. Assume that Rf \ F contains

a fixed point a of ϕ which is attracting from the right if maxF > a, and is

attracting from the left if minF < a. Then minF < a < maxF , and there are

points u, v ∈ J such that u < a < v, ϕ(u) = v, ϕ(v) = u, and limn→∞ ϕn(y) = a,

for every y ∈ (u, v).

Other terminology and related results concerning the equation are given later

in this text, or can be found in [8], [9], or [10]. For some well-known results

concerning dynamical systems we refer to [2].
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2. Solutions with ϕ possessing no periodic points of period > 1

The following result must be known but we are not able to give a reference.

Lemma 2.1. Let Per(ϕ) = Fix(ϕ), p = minFix(ϕ), and q = maxFix(ϕ).

If some u ∈ Fix(ϕ) is repulsing from the right then [u, q] is ϕ-invariant, if u is

repulsing from the left then [p, u] is ϕ-invariant.

Proof. By the symmetry, we may assume that ϕ(y) > y in (u, u + δ] and

[u, q] is not ϕ-invariant. Let L =
⋃

n≥0 ϕ
n([u, u + δ]). Then L must contain a

z < u and hence, there are w ∈ (u, u+ δ] and k > 0 such that ϕk(w) = z. Since

ϕk(w) < w and ϕk(y) > y for every y > u which is sufficiently close to u, there

is a v ∈ (u,w) such that ϕk(v) = v. By the hypothesis, v ∈ Fix(ϕ). It follows

that ϕk([v, w]) ⊃ [z, v] ⊃ [u, v]. Since ϕ(y) > y on (u, u + δ], there is an s > 0

such that ϕs([u, v]) ⊇ [u,w] and hence ϕs+j([u, v]) ⊇ [u,w], for every j ≥ 0.

Consequently, ϕs+k([u, v]) ∩ ϕs+k([v, w]) ⊇ [u,w]. In other words, ψ := ϕk+s is

turbulent and hence, it has a periodic point of period 3 (see [2], Lemma II.3),

which is a contradiction. ¤

Theorem 2.2. Let f ∈ S(ϕ) with Rf ⊆ (0, 1]. If Per(ϕ)∩Rf = Fix(ϕ)∩Rf

then Rf contains at most one fixed point of ϕ different from 1.

Proof. Assume that Rf ∩ (0, 1) contains more than one fixed point of ϕ.

By Lemma 1.2, Fix(ϕ) ∩ Rf is a nowhere dense set. Otherwise there would be

a compact interval L ⊂ Fix(ϕ) ∩ Rf and a point y ∈ Fix(ϕ) ∩ Rf \ L such that

fn(y) ∈ L, for some n ≥ 0, which is impossible.

If Rf ∩ (0, 1) contains exactly two fixed points u < v such that ϕ(y) > y

for y ∈ (u, v) then v cannot be attracting since otherwise, by Lemma 1.3 with

F := {u} and a := v, u would be a periodic point of ϕ of period 2. Hence,

v < supRf and ϕ(y) > y for y > v. Since Rf is ϕ-invariant, supRf is a fixed

point of ϕ attracting from the left, contrary to Lemma 1.3. If ϕ(y) < y in (u, v)

the argument is similar.

If Rf ∩ (0, 1) contains exactly three fixed points p < q < r of ϕ then, by

Lemma 1.3, q cannot be attracting. Hence, it is repulsing from the left or from

the right. In the first case, by Lemma 2.1, [q, r] is ϕ-invariant and, by Lemma 1.2,

ϕn(p) ∈ [q, r], for some n, which is impossible. Similarly in the second case.

Finally, if there are more than three fixed points of ϕ in Rf ∩ (0, 1) then,

since Fix(ϕ) is nowhere dense, there are fixed points p < q < r < s in Rf ∩ (0, 1)

such that ϕ(y) 6= y, for y ∈ (q, r). If ϕ(y) > y in (q, r) then, by Lemma 2.1, [p, q]
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is ϕ-invariant and, by Lemma 1.2, r is eventually mapped to it. Similarly in the

other case. ¤

Lemma 2.3. Let p, q be fixed points of ϕ, 0 ≤ p < q < 1, and let f ∈ S(ϕ).
Assume that one of the following conditions is satisfied:

(i) (p, q] ⊆ Rf |(0,α) for some α > 0, or (p, q] ⊆ Rf |(α,∞) for every α > 0.

(ii) [p, q) ⊆ Rf |(0,α) for some α > 0, or [p, q) ⊆ Rf |(α,∞) for every α > 0.

Then for every δ > 0 there are points b1 < a2 < a1 < b0 < a0, such that

ai = τ if (a0), b1 = τf (b0),

f(ai) = q and |f(bj)− p| < δ, i = 0, 1, 2, j = 0, 1, in the case (i), (4)

and

|f(ai)− q| < δ and f(bj) = p, i = 0, 1, 2, j = 0, 1, in the case (ii). (5)

Proof. Fix a k ∈ N such that qk+2 > pk, and let δ > 0 satisfy qk+2 >

(p + δ)k. Let η > 0 be such that |x − y| ≤ η implies |ϕj(x) − ϕj(y)| < δ,

0 ≤ j ≤ k.

(i) There are v < u such that f(u) = q and f(v) < p + η. Indeed, if

Rf |(0,α) ⊇ (p, q] for an α > 0, let u < α such that f(u) = q. If Rf |(0,u] ⊇ (p, q] we

are done. Otherwise, by the hypothesis, Rf |[u,α] ⊇ (p, q] hence, by the continuity,

Rf |[u,α] ⊇ [p, q]. Then there is a w > u such that f(w) = p and, by induction,

f(wpn) = p for every n ≥ 0. Indeed, by (1), f(wpn) = p yields f(wpn+1) =

f(wpnf(wpn)) = ϕ(f(wpn)) = ϕ(p) = p. Since limn→∞ wpn = 0 we can take

v = wpn for a suitable n ∈ N. If Rf |(α,∞) ⊃ (p, q] for every α the existence of u, v

is obvious.

It follows that there are u0 > v0 such that f(u0) = q, f(v0) < p + η, and

f(x) < q for x ∈ [v0, u0). Let {un}n≥0 and {vn}n≥0 be the forward orbits of u0

and v0, respectively. By the choice of k and η, there is an m, 0 ≤ m ≤ k, such

that vm+1 < um+2 < um+1 < vm < um, f(um) = f(um+1) = f(um+2) = q and

f(vm), f(vm+1) < p+ δ. Put a0 = um and b0 = vm.

(ii) Similarly to the first part there are points v < u such that f(v) = p and

f(u) > q − η. The remainder of the proof is similar. ¤

Lemma 2.4. Let p, q be fixed points of ϕ, 0 ≤ p < q < 1, and let p ≤
ϕ(y) < y, for p < y < q. If f ∈ S(ϕ) such that Rf ⊆ (0, q] and q ∈ Rf then

f ≡ q.

Proof. By Lemma 1.3 with F = {q} and a = p, p /∈ Rf . Hence Rf ⊆
(p, q]. Let f(x0) = q for some x0 > 0 and let {xn}n∈N = {x0q

n}n∈N be the
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forward orbit of x0. Put Jn := [xn+1, xn] and zn := min f |Jn
. By (3), (0, x0] =⋃

n≥0 τ
n
f (J0) since τf (x) is decreasing. Hence, f((0, x0]) =

⋃
n≥0 ϕ

n(f(J0)) and,

by (3), minϕn(f(J0)) ≤ ϕn(z0). Then inf f((0, x0]) = infn≥0 minϕn(f(J0)) ≤
infn≥0 ϕ

n(z0) = p if z0 < q which is impossible since p /∈ Rf . Thus, z0 = q and

f |(0,x0] ≡ q. ¤

Theorem 2.5. Let p, q ∈ Fix(ϕ), 0 ≤ p < q < 1 such that y 6= ϕ(y), for

p < y < q. If f ∈ S(ϕ), Rf ⊆ (0, q], q ∈ Rf , and Rf 6= {q}, then

(i) y < ϕ(y) for y ∈ (p, q); (ii) lim
t→0

f(t) = q;

(iii) Rf = (p, q]; (iv) lim
t→∞

f(t) = p.

Proof. Lemma 2.4 implies (i), and Lemma 1.3 applied to F = {p} and

a = q implies p /∈ Rf . Thus, Rf ⊆ (p, q]. To prove (ii), let f(x0) = q, for

some x0 > 0, and let {xn}n≥0 be the forward orbit of x0. Then, by (1), we

have f(xn) = q for every n ∈ N. Put Jn := [xn+1, xn] and zn := min f |Jn ,

n ∈ N; then zn ∈ (p, q]. By (3), [zn, q] = Rf |Jn
⊆ ϕn(Rf |J0

) = ϕn([z0, q]). Since

f((0, xk]) =
⋃

n≥k f(Jn) =
⋃

n≥k[zn, q],

inf f((0, xk]) = inf
n≥k

zn = inf
n≥k

min([zn, q]) ≥ inf
n≥0

minϕn+k([z0, q])

= minϕk([z0, q]) → {q}, for k → ∞,

since ϕ(y) > y in (p, q), and (ii) follows.

Next we show that

inf
x>0

f(x) = p. (6)

Indeed, assume infx>0 f(x) = s > p. By Lemma 1.1, there is GO(x0) = {xn}n∈Z.
Put Jn = [xn+1, xn] and zn = min f |Jn . There is a δ > 0 such that ϕ([s, q]) =

[s+ δ, q]. Since s = infn∈Z zn, there is an m such that zm+1 < s+ δ. On the other

hand, zm ≥ s implies

zm+1 ∈ Rf |Jm+1
⊆ ϕ(Rf |Jm

) = ϕ([zm, q]) ⊆ ϕ([s, q]) = [s+ δ, q].

This contradiction proves (6) and hence, (iii).

To prove (iv) we first show that

the set E(q) := {x > 0; f(x) = q} is upper bounded in (0,∞). (7)

Assume the contrary. By the hypothesis, E(q) 6= ∅ hence, by (ii) and (6), (p, q] ⊆
Rf |(α,∞), for every α > 0. Let 0 < δ < q − p. By Lemma 2.3(i), there are points
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b1 < a2 < a1 < b0 < a0 satisfying (4). Since τf ([b0, a0]) ⊇ [b1, a1] there is a

u ∈ (b0, a0) with τf (u) = a2. Then, by (1), ϕ(v) = q, for v = f(u). So, v 6= p,

and v = q would imply τf (u) > a2. Thus, p < v < q and there is the minimal

h ∈ (p, q) with ϕ(h) = q. Without loss of generality we may assume h > p + δ.

Let u0 ∈ [b0, a0] be the minimal, and u1 ∈ [a1, b0] the maximal point such that

f(u0) = f(u1) = h. Obviously, a1 < u1 < b0 < u0 < a0, and there is the minimal

u2 ∈ [a1, u1] such that f(u2) = h. Then a1 < u2 ≤ u1,

Rf |[a1,u2] = [h, q], and Rf |(u1,u0) ⊂ (p, h). (8)

Since h is minimal, ϕ(f([b0, u0))⊂ (p, q), and since u0 is minimal and τf ([b0, a0])⊇
[b1, a1], we have τf (u0) ≤ a2. Finally, by the first condition in (8), τf ([a1, u2]) ⊇
(b1, a2]. Summarizing, we have τf (b0) = b1 < τf (u2) ≤ τf (u1) < τf (u0) ≤ a2 and

hence, there is a point r ∈ (b0, u0) with τf (r) = τf (u1). Since h is minimal, the

second condition in (8), and (1) imply q > ϕ(f(r)) = f(τf (r)) = f(τf (u1)) = q,

a contradiction. This proves (7).

To finish the proof of (iv) assume on the contrary that lim supx→∞ f(x) =

r > p. Then there are points v1 < v2 < · · · → ∞ such that limn→∞ f(vn) = r.

Since ϕ(y) > y in (p, q), by (1) we have limn→∞ f(τf (vn)) = limn→∞ ϕ(f(vn)) =

ϕ(r) > r which is a contradiction unless r = q. Thus, lim supx→∞ f(x) = q.

Let w0 be such that τf (w0) > maxE(q) =: x0 (see (7)), and let {wn}n≥0 be

its forward orbit. Since wn → 0, there is a k ≥ 0 such that x0 ∈ [wk+1, wk].

Hence, there is a c ∈ [wk, wk−1] such that τf (c) = x0. Put f(c) = d. Then, by

(7), d < q and, by (1), ϕ(d) = q. Consequently, ϕ(y) = q for d ≤ y ≤ q and

lim supx→∞ f(x) = q yields f(x) = q, for every x ≥ x0, contrary to (7). ¤
Lemma 2.6. Let p, q be fixed points of ϕ, 0 < p < q < 1, and let y <

ϕ(y) ≤ q, for p < y < q. If f ∈ S(ϕ) such that Rf ⊆ [p, 1] and p ∈ Rf , then

f ≡ p.

Proof. By Lemma 1.3 applied to F = {p} and a = q, q /∈ Rf . Hence,

Rf ⊆ [p, q). Let f(x0) = p, and let {xn}n∈N be the forward orbit of x0. Put

Jn = [xn+1, xn], and zn = max f |Jn . Similarly as in the proof of Lemma 2.4,

f((0, x0]) =
⋃

n≥0 f
n(J0) whence, sup f((0, x0]) = supn≥0 max fn(J0) ≥

supn≥0 ϕ
n(z0) = q if z0 < q which is impossible since q /∈ Rf . Thus, z0 = p and

f |(0,x0] ≡ p. ¤
Theorem 2.7. Let p, q be fixed points of ϕ, 0 < p < q < 1 such that

y 6= ϕ(y), for p < y < q. If f ∈ S(ϕ), Rf ⊆ [p, 1], p ∈ Rf , and Rf 6= {p}, then
(i) y > ϕ(y) for y ∈ (p, q); (ii) lim

t→0
f(t) = p ;

(iii) Rf = [p, q); (iv) lim
t→∞

f(t) = q.
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Proof. Lemma 2.6 implies (i), and Lemma 1.3 applied to F = {q} and a = p

implies q /∈ Rf . To prove (ii), let f(x0) = p, for some x0 > 0, and let {xn}n≥0 be

the forward orbit of x0. By (1), f(xn) = p, for every n. Put Jn := [xn+1, xn] and

zn := max f |Jn
, n ∈ N; then zn ∈ [p, q). By (3), [p, zn] = Rf |Jn

⊆ ϕn(Rf |J0
) =

ϕn([p, z0]). Since f((0, xk]) =
⋃

n≥k f(Jn) =
⋃

n≥k[p, zn],

sup f((0, xk]) = sup
n≥k

zn = sup
n≥k

max([p, zk]) ≤ sup
n≥0

maxϕn+k([p, z0])

= maxϕk([p, z0]) → {p}, for k → ∞,

since ϕ(y) < y in (p, q), and (ii) follows.

Next we show that

sup
x>0

f(x) = q. (9)

Indeed, assume supx>0 f(x) = s < q. By Lemma 1.1, there is GO(x0) = {xn}n∈Z.
Put Jn = [xn+1, xn] and zn = max f |Jn . There is a δ > 0 such that ϕ([p, s]) =

[p, s − δ]. Since s = supn∈Z zn, there is an m such that zm+1 > s − δ. On the

other hand, since zm ≤ s, (3) implies

zm+1 ∈ Rf |Jm+1
⊆ ϕ(Rf |Jm

) = ϕ([p, zm]) ⊆ ϕ([p, s]) = [p, s− δ].

This contradiction proves (9) and hence, (iii).

To prove (iv) we first show that

the set E(p) := {x > 0; f(x) = p} is upper bounded in (0,∞). (10)

Assume the contrary. By the hypothesis, E(p) 6= ∅ hence, by (i), (ii) and (9),

[p, q) ⊆ Rf |(α,∞) = [p, q), for every α > 0. Let 0 < δ < q − p. By Lemma 2.3(ii)

there are points b1 < a2 < a1 < b0 < a0 satisfying (5). Since τf (b1) < b1, by

the continuity, τf ((b1, a1]) ⊃ [b1, a2]. Hence, there is a u ∈ (b1, a1) such that

τf (u) = b1. Put v = f(u). Then, by (1), ϕ(v) = p. So, v 6= q, and v = p

would imply τf (u) < τf (b0) = b1. Thus, p < v < q and there is the maximal

h ∈ (p, q) with ϕ(h) = p. Without loss of generality we may assume h < q−δ. Let

u0 ∈ [b0, a0] and u1 ∈ [a1, b0] the minimal points such that f(u0) = f(u1) = h.

Obviously, a1 < u1 < b0 < u0 < a0, and there is the maximal u2 ∈ [u1, b0] such

that f(u2) = h. Then a1 < u1 ≤ u2,

Rf |[b0,u0) = [p, h), and Rf |[a1,u1) ⊆ (h, q). (11)

Since ϕ(y) < y in (p, q), (3) implies τf (u0) < a2, and since u1 < u0, we have

τf (u0) ∈ τf ((a1, u1)). Then there is an r ∈ (a1, u1) with τf (r) = τf (u0). By the
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maximality of h, p /∈ ϕ(h, q). Hence, the second condition in (11) and (1) imply

p < ϕ(f(r)) = f(τf (r)) = f(τf (u0)) = ϕ(f(u0)) = p, which is a contradiction.

This proves (10).

To finish the proof of (iv) assume on the contrary that lim infx→∞ f(x) =

r < q. Then there are points v1 < v2 < · · · → ∞ such that limn→∞ f(vn) = r.

Since ϕ(y) < y in (p, q), by (1) we have limn→∞ f(τf (vn)) = limn→∞ ϕ(f(vn)) =

ϕ(r) < r which is a contradiction unless r = p. Thus, lim infx→∞ f(x) = p.

Let w0 be such that τf (w0) > maxE(p) =: x0 (see (10)), and let {wn}n≥0 be

its forward orbit. Since wn → 0, there is a k ≥ 0 such that x0 ∈ [wk+1, wk].

Hence, there is a c ∈ [wk, wk−1] such that τf (c) = x0. Put f(c) = d. Then, by

(10), d > p and, by (1), ϕ(d) = p. Consequently, ϕ(y) = p for d ≥ y ≥ p and

lim infx→∞ f(x) = p yields f(x) = p, for every x ≥ x0, contrary to (9). ¤

Theorem 2.8. Let p ∈ (0, 1) be a fixed point of ϕ such that ϕ([p, 1]) = [p, 1]

and ϕ(y) 6= y for y ∈ (p, 1). Let f ∈ S(ϕ) such that 1 ∈ Rf and f 6≡ 1. Then, for

some a > 0, one of the following is true.

(i) ϕ(y) < y for y ∈ (p, 1), f(t) = 1 for t ≥ a, Rf ⊆ [p, 1], and limt→0 f(t) = p;

(ii) ϕ(y) > y for y ∈ (p, q), f(t) = 1 for t ≤ a, Rf |(a,∞) = (p, 1) and

limt→∞ f(t) = p.

Moreover, in case (i), there can be p ∈ Rf .

Proof. By Proposition 2.2 in [8], if there are points u < v < w such that

f(u) = f(w) = 1 and f(v) < 1 then ϕ has a periodic point of period 3. Hence, in

our case, A = {x > 0; f(x) = 1} is a connected set.

(i) Assume a0 := minA > 0. Let y ∈ Rf |(0,a0). Since y < 1 there is a

maximal x0 < a0 such that f(x0) = y. Then Rf |(x0,a0) = (f(x0), 1). Let {xn}n≥0

be the forward orbit of x0. Since τf ([x0, a0]) ⊇ [x1, a0], there is a u ∈ (x0, a0) with

τf (u) = x0. Since f(u) ∈ Rf |(x0,a0), f(u) > f(x0) and, by (1), ϕ(f(u)) = f(x0).

This implies ϕ(y) < y in (p, 1). For Jn = [xn+1, xn] and zn = max f(Jn), n ≥ 0,

we get, similarly as in the proof of Theorem 2.7, that limt→0 f(t) = p.

To finish the proof assume a1 := maxA < ∞. Let x0 > a1/p, and let

{xn}n≥0 be the forward orbit of x0. Then f(x0) ∈ [p, 1) hence, x1 = x0f(x0) ∈
(a1, x0). Let Jn = [xn+1, xn], n ∈ N. Since ϕ(y) < y in (p, 1), by (3) we get

Rf |(0,x0] ⊆
⋃

n≥0 ϕ
n(Rf |J0

) ⊆ f(J0) ⊆ [p, 1) – a contradiction. Thus, for a := a0
we have the situation described in (i).

(ii) So assume A = (0, a]. Then ϕ(y)>y for y ∈ (p, 1). Indeed, let x0 >a,

and let {xn}n≥0 be its forward orbit. Since f(x0) < 1, ϕ(y) < y would imply
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limn→∞ f(xn) = limn→∞ ϕn(f(x0)) = p and, by (2), limn→∞ xn = 0, a contra-

diction. Similarly, p /∈ Rf since, by (1), f(u) = p would imply f(upn) = p < 1 for

n ≥ 0 and limn→∞ upn = 0, which is impossible. To finish the argument assume

on the contrary that lim supt→∞ f(t) = r > p. Then, similarly as in the proof of

Theorem 2.5, we get lim supt→∞ f(t) = 1 which is impossible since f(t) < 1 for

t > a and ϕ(y) > y, for p < y < 1. Thus, r = p. The fact that Rf |(a,∞) = (p, 1)

is obvious.

It remains to show an example satisfying (i), with p ∈ Rf . Let f(x) =
1
2 for

x ≤ 3
4 , f(x) = 2x − 1 for 3

4 < x ≤ 1, and f(x) = 1 for x > 1. Let ϕ(y) = 1
2 for

1
2 ≤ y ≤ 1

2 (
√
7 − 1), and ϕ(y) = y2 + y − 1 for 1

2 (
√
7 − 1) < y ≤ 1. It is easy to

verify that, for p = 1
2 , ϕ(y) < y in (p, 1), f ∈ S(ϕ) and Rf = [p, 1]. ¤

Remark 2.9. The example given in the last part of the proof of Theorem 2.8

gives a positive answer to the problem in [8], whether the range of a solution of

(1) can contain two fixed points of ϕ. Note that similar behavior is impossible if

ϕ is a homeomorphism of [p, 1] with ϕ(y) 6= y in (p, 1). For details and examples,

see [5]. Theorem 2.2 shows that the results given in Theorems 2.5, 2.7 and 2.8

are the best possible ones.

3. Technical tools for solutions with more complex ϕ

Let ψ be a continuous map [p, q] → [p, q], where 0 ≤ p < q < 1. In this

section, points p, q need not be periodic unless explicitly stated. Let J0 = [a1, a0],

and let g0 : J0 → [p, q] be continuous. Then g0 satisfies the initial condition

(with respect to ψ) on J0 if a1 = τg0(a0) (= a0g0(a0)) and g0(a1) = ψ(g0(a0)). A

function g0 : J0 → [p, q] is forward ψ-extendable if it satisfies the initial conditions

on J0, and if there is a continuous function g : (0, a0] → [p, q] such that g|J0 = g0
and

g(xg(x)) = ψ(g(x)), x ∈ (0, a0]. (12)

Note that g0 cannot be forward ψ-extendable if there are points u 6= v in J0
such that τg0(u) = τg0(v) and ψ(g0(u)) 6= ψ(g0(v)). The following lemma gives a

sufficient condition for ψ-extendability.

Lemma 3.1. Assume ψ : [p, q] → [p, q], 0 ≤ p < q < 1, and g0 satisfies the

initial condition with respect to ψ on J0 = [a1, a0].

(i) Function g0 is forward ψ-extendable if there is a decreasing sequence {an}n≥0

in (0, a0] with limn→∞ an = 0, and a sequence {gn}n≥0 of functions
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gn : Jn → [p, q] where Jn = [an+1, an] such that, for every n ∈ N,

angn(an) = an+1, τgn(Jn) = Jn+1, and gn+1(τgn(x)) = ψ(gn(x)), for x ∈ Jn.

(ii) If g0 is forward ψ-extendable and {gn}n≥0 are functions given in (i) then

g :=
⋃

n≥0 gn is a solution of (12).

(iii) Function g0 is forward ψ-extendable if

τng0(x) := xg0(x)ψ(g0(x))ψ
2(g0(x)) . . . ψ

n−1(g0(x)) is increasing on J0,

for every n ∈ N. (13)

Proof. Parts (i) and (ii) are obvious. To prove (iii) note that formula (13)

is a particular case of (2). If τg0 is increasing on [x1, x0] then, by (1), τg0(J0) = J1
and g1(x) = ϕ(τg0(x)) is a continuous function on J1. By induction we get that

if τng0 is increasing on J0 for every n, then the intervals Jn are non-overlapping,

τng0 = τn−k
gk

, whenever 0 ≤ k < n, and gn is a continuous map Jn → [p, q]. ¤

Proposition 3.2. Let ψ : [p, q] → [p, q], 0 ≤ p < q < 1, be continuous, g0 on

J0 = [a1, a0] forward ψ-extendable, with g0(a0) = q, and let g =
⋃

n≥0 gn. Then,

for every b0 > a0, there are a continuous ϕ : [p, 1] → [p, 1] and an f ∈ S(ϕ) such
that

ϕ|[p,q] = ψ, f |(0,a0] = g, f linearly increases on [a0, b0], and f |[b0,∞) ≡ 1. (14)

Proof. Let f be as in (14). Thus, for x ∈ [a0, b0] we have f(x) = (x −
a0)(1 − g(a0))(b0 − a0)

−1 + g(a0), and since τf is increasing on [a0, b0] there is

exactly one x0 ∈ (a0, b0) such that τf (x0) = a0. Denote by f−1 the inverse

function to f |[a0,b0], and define ϕ as follows:

ϕ(y) = f(yf−1(y)) for f(x0) ≤ y ≤ 1, and

ϕ(y) = g(yf−1(y)) for g(a0) ≤ y ≤ f(x0).

Then f ∈ S(ϕ). ¤

Remark 3.3. A special case of the construction described in Proposition 3.2

is the function given in the last part of the proof of Theorem 2.8. Keeping the

notation from Proposition 3.2, we have q = 1
2 , a0 = 3

4 , b0 = 1, x0 = 1
2 (
√
7 − 1),

and g(x) = 1
2 for x ∈ [a0, x0].
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Example 3.4. We provide another example of a forward extendable function

f0 : [1, 2] → [
1√
6
, 1
2

]
. Let

f0(x) =
1

2
√
x
, x ∈

[
1,

3

2

]
, f0(x) =

1

2
√
3− x

, x ∈
[
3

2
, 2

]
,

and ϕ(y) =

√
y

2
, y ∈ [0, 1].

Then, by (2),

ϕk(f0(x)) =
1

2
x−1/2k+1

and τn+1
f0

(x) =

(
1

2

)n+1

x1/2n+1

, x ∈
[
1,

3

2

]
, k, n ∈ N,

whence, τfn+1
0

(x) is increasing on [1, 3
2 ]. Similarly,

ϕk(f0(x)) =
1

2
(3− x)−1/2k+1

and τn+1
f0

(x) =

(
1

2

)n+1

(3− x)1/2
n+1

,

x ∈
[
3

2
, 2

]
, k, n ∈ N,

and τn+1
f0

(x) is increasing on
[
3
2 , 2

]
. So, the intervals Jn, n ≥ 0, are non-over-

lapping and consequently,
⋃

n≥0 fn is a solution of (1) on the interval (0, 2].

The following result is similar to Proposition 3.2, but with ϕ possessing only

a single fixed point of ϕ in its domain.

Proposition 3.5. Let ψ : [p, q] → [p, q], 0 ≤ p < q < 1, be continuous, g0
on J0 = [a1, a0] forward ψ-extendable, with g0(a0) = q. Let g =

⋃
n≥0 gn, and

r ∈ (q, 1). Then there are a continuous ϕ : [p, r] → [p, r], and an f ∈ S(ϕ) such

that

ϕ|[p,q] = ψ, f |(0,a0] = g, ϕ(y) < y for y > q, f strictly increases on [a0,∞),

and lim
x→∞

f(x) = r. (15)

Proof. By [6], there is an increasing homeomorphism ϑ of [q, r] such that,

there is a strictly increasing function h with Rh = (p, q), satisfying h(xh(x)) =

ϑ(h(x)) for x > 0. Let b0 > a0 be such that τh(b0) = a0; such a b0 exists by the

continuity since h < 1. The remainder of the proof is similar as for Proposition 3.2.

We take f such that f |(0,a0] = g, f |[b0,∞) = h, and f is linear on [a0, b0]. Then

ϕ[p,q] = ψ, ϕ|[h(b0),r] = ϑ, and ϕ(y) = g(yf−1(y)) for g(a0) = q ≤ y ≤ h(b0). ¤
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Example 3.6. Applying Proposition 3.5 with p = 1√
6
, q = 1

2 , and r = 3
4 , to

f0 from Example 3.4, we obtain a solution f of (1) with Rf =
[

1√
6
, 3
4

)
such that

ϕ has on Rf a single periodic point – the fixed point 1
2 .

The following is the “dual”version of Proposition 3.5; its proof is omitted.

Note that there is no “dual”version of Proposition 3.2.

Proposition 3.7. Let ψ : [p, q] → [p, q], 0 ≤ p < q < 1, be continuous, and

g0 on J0 = [a1, a0] forward ψ-extendable, with g0(a0) = p. Let g =
⋃

n≥0 gn, and

s ∈ (0, p). Then there are a continuous ϕ : [s, q] → [s, q], and an f ∈ S(ϕ) such

that

ϕ|[p,q] = ψ, f |(0,a0] = g, ϕ(y) > y for y < p, f strictly decreases on [a0,∞),

and lim
x→∞

f(x) = s.

The following theorem summarizes previous results.

Theorem 3.8. Let Per(ϕ) = Fix(ϕ), and f ∈ S(ϕ) be a non-constant

solution with Rf ⊆ (0, 1]. Then Rf contains at most two fixed points of ϕ,

and there are four types of Rf .

(T∅) Fix(ϕ)∩Rf = ∅. Then Rf is an open interval, with endpoints in Fix(ϕ).

(T1) Fix(ϕ) ∩Rf = {1}. Then Rf is an interval of the form (u, 1].

(Tp,1) Fix(ϕ)∩Rf = {p, 1}, p < 1. Then Rf = (u, 1] or Rf = [u, 1], and p is a

boundary (i.e., p = u) or interior point of Rf .

(Tp) Fix(ϕ) ∩ Rf = {p}, p < 1. Then Rf is a non-closed interval, p can be

interior or boundary point of Rf , and Rf \Rf ⊆ Fix(ϕ).

Every type of behavior described above can be realized by suitable ϕ and f ∈
S(ϕ).

Proof. By Theorem 2.2, there are no more than four possible types of Rf ,

T∅ – Tp, follow by Theorem 2.2. The case T∅ is described in [5] or [6]. The cases T1

and Tp,1 follow by Theorem 2.8, Proposition 3.2, Example 3.4 and Remark 3.3.

Finally, the case Tp follows by Theorems 2.5, 2.7, Propositions 3.5, 3.7, and

Example 3.6. ¤

4. Concluding remarks

Remark 4.1. When constructing complicated solutions of (1) it suffices to

look for a function ψ : [p, q] → [p, q] possessing a single periodic orbit of period 2,



672 Ludwig Reich, Jaroslav Smı́tal and Marta Štefánková

which allows an interval J , and a forward ψ-extendable function f0 : J → [p, q].

Propositions 3.2, 3.5 and 3.7 give an advantage that we need not look for maps f0
which are also “backward”ψ-extendable; such functions, very likely, do not exist

even when ψ has a single periodic orbit of period 2.

Remark 4.2. In [10] there is an example of a solution with Rf = J ⊂ (0, 1)

such that Per(ϕ) = J , and all periodic points, except for one (fixed point), have

period 2. This is the only known example of a solution possessing in its range a

periodic point of period > 1. In [8] we posed the problem whether there exists a

solution with a single ϕ-periodic orbit of period 2 in its range. Using results from

Section 3, the authors spent considerable time to find such solution, but did not

succeed. This and other arguments give credibility to the conjecture that no such

solution is possible.

Remark 4.3. Based on the preceding remarks we conjecture that there are no

solutions of (1) possessing in Rf ϕ-periodic points of other periods than 1 and 2,

so that the answer to the Problem 3 from [8] is negative.
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