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Weakly-peripherally multiplicative conditions and isomorphisms
between uniform algebras

By RUMI SHINDO (Niigata)

Abstract. Suppose that A and B are uniform algebras on compact Hausdorff spa-
ces X and Y, respectively. Let p,7: A — A and S,T : A — B be mappings on a non-
empty set A. Suppose that p(A), 7(A) and S(A),T(A) are closed under multiplications
and contain exp A and exp B respectively and that S(e1) € S(A)™', T(e2) € T(A)™!
with |S(e1)T(e2)] = 1 on Ch(B) for some fixed e1,e2 € A; with p(e1) = 7(e2) = 1.
If o (S(f)T(g9)) Nox (p(f)7(g)) # O for all f,g € A and there exists a first-countable
dense subset Dp in Ch(B), or a first-countable dense subset D4 in Ch(A), then there
exists an algebra isomorphism S : A — B such that S(p(f)) = S(e1)"'S(f) and
S(7(f)) = T(e2) " 'T(f) for every f € A.

1. Introduction

The search for sufficient conditions for mappings between Banach algebras
to be algebra isomorphisms has a long and interesting history. Such results de-
monstrate that linear maps between Banach algebras that preserve the norm, the
spectrum, or a subset of the spectrum must be multiplicative. For example, one
of the corollaries of the classical theorem of GLEASON-KAHANE-ZELAZKO [Ze]
states that a surjection T': A — B between uniform algebras is an algebra iso-
morphism if it is linear and preserves the spectra, i.e. o(T(f)) = o(f) for all
fyg € A. A theorem by KOWALSKI and SLODKOWSKI [K-S] considers alternative
spectral conditions for not necessarily linear surjections.
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MOLNAR [Mo] have introduced an interesting spectral multiplicativity condi-
tion that contributes to the matter. In particular, he proved that if T is a surjec-
tion from the Banach algebra C'(X) of all complex-valued continuous functions on
a first countable compact Hausdorff space X onto itself such that o(T(f)T(g)) =
o(fg) for all f,g € C(X), then T is an algebra isomorphism. In the case where
T is a surjection from a uniform algebra A onto itself, this result was proven
by Rao and Roy [RR1]. HATORI, MIURA and TAKAGI [HMTO06] showed that
if T: A — B is a surjection between uniform algebras such that the range of
T(f)T(g) equals to that of fg for all f,g € A, then T(1)~1T is an algebra isomor-
phism. Maps between uniform algebras and more general semi-simple commuta-
tive Banach algebras that satisfy o(T(f)T(g9)) = o(fg) [HMTO07], [HMT], [RR2]
or o (T(f)T(g)) = o (fg) [G-T], [LT] were analyzed further (see also [Hon]).

Maps T such that for some positive integers m and n, o (T(f)™T(g9)") C
ox (f™g™), or, such that o (T(f)T(g)) and o, (fg) meet only, without being
necessarily equal, were analyzed recently (see [HHMO], [LLT], [T.talk], [JLV]).
Most recently, TONEV [T.talk], [T10] characterized a surjection T : A — B bet-
ween function algebras, without assuming the existences of the units, such that
o (T(HT(9)) Nox(fg) # 0 and o (T(f)) = o« (f) for all f,g € A. HATORI,
Mi1uRrA, SHINDO and TAKAGI [HMST] have characterized maps p,7 : [ — A
and ST : I — B from a non-empty set into uniform algebras that satisfy
or (S(f)T(g)) C or (p(f)7(g)) for all f,g € I. In this paper, we analyze maps
p,7T: A — Aand S,T : A — B from a non-empty set into uniform algebras such
that o (S(f)T(9)) Nox (p(f)7T(g)) # 0 for all f,g € A and give conditions for
isomorphisms between uniform algebras.

2. Main result

We begin by providing definitions and notations. Let C'(X) be the space of
all complex-valued continuous functions on a compact Hausdorff space X. C(X)
is Banach algebra with pointwise multiplication and the supremum norm ||| ..
Let A be a uniform algebra on a compact Hausdorff space X. Denote by M4 the
maximal ideal space of A, by o(f) the spectrum of f € A, and by f the Gelfand
transform of f € A. Note that o(f) = f(Ma) and sup{|A| : A € o(f)} = ||f]l .-
The peripheral spectrum of an element f € A is the maximum modulus set of
the spectrum of f, that is o (f) = {X € o(f) : [\ = [[fllo} If ox (v) = {1}
for u € A, then u is called a peak function of A. In this case u=1({1}) is a peak
set of A. For a fixed x € X denote by P4(x) the set of all peak functions u of A
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with u(z) = 1. A point € X that equals the intersection of peak sets is called
a weak peak point of A. The set of all weak peak points of A is the Choquet
boundary of A, denoted by Ch(A). It is known that Ch(A) is a boundary for A,
that is || f||,, = max{|f(z)| : € Ch(A)} for every f € A. An z € X is said to
be a peak point of A if {z} is a peak set of A. Note that a weak peak point x
which has a countable neighborhood basis is a peak point of A [Br, Lemma 2.3.1
and Theorem 2.3.4]. Denote by exp A the range of the exponential map on A. In
the sequel we will need the following corollary of [HHMO, Proposition 2.2] (see
also [HMST], [LL], [MHS], [S.Ce], [S.Me]):

Lemma 2.1. If z € X is a peak point and f(x) # 0 for some f € A, then
there exists au € Pa(x)Nexp A such that o (fu) = {f(x)} and (fu) L ({f(2)}) =

u ' ({1}) = {=}.

PrOOF. By Proposition 2.2 in [HHMO], there exists a u; € Pa(z) Nexp A
such that o, (fu1) = {f(x)}. Since x is a peak set, there exists a u’ € Pa(z)
such that v'~'({1}) = {z}. Let ug = (v +1)/2. Then u = ujus € Pa(x) Nexp A
satisfies o (fu) = {f(2)} and (fu) ' ({f(2)}) = v~ ({1}) = {«}. O

Throughout this paper we assume that A and B are uniform algebras on
compact Hausdorff spaces X and Y respectively and that A is a non-empty set.
Denote by f~! an inverse element of f € A and by E~! the set of invertible
elements of F. We will also use the following proposition, which is a corollary
of [HMST, Proposition 2.3] (see also [S.Ce, Proposition 2.1]).

Proposition 2.2. Let hy,hy : A = A and Hy,Hy : A — B be mappings
on A. Suppose that hi(A), ho(A) and Hy(A), Ha(A) are closed under multiplica-
tions and contain exp A and exp B, respectively. If

(/) Ha(9) ]l oo = 71 (F)D2(9)ll o -
H1(Nlloe = 1M1 (Plloe and [[H2(F)lloe = lIP2(f)ll oo

for all f,g € A, then there exists a homeomorphism v : Ch(B) — Ch(A) such
that

[Hi(F) (@)l = [ (N (y)]  and  |[Ha(f)(y)| = [h2(f)((y))]
for every f € A and y € Ch(B).

Proposition 2.3. Let p,7: A — A and S,T : A — B be mappings on A.
Suppose that p(A),7(A) and S(A), T(A) are closed under multiplications and
contain exp A and exp B, respectively. Suppose that S(e;) € S(A)~L, T(e2) €
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T(A)~! with |S(e1)T(e2)] = 1 on Ch(B) for some ej,es € A with p(e;) =
7'(62) =1.1If

or (S(F)T(g)) Nox (p(f)7(9)) # 0
for all f,g € A, then there exists a homeomorphism v : Ch(B) — Ch(A) such
that

|(S(en) SN W) = lo(f) (@),
(T(e2) TN = Im(F)(6w))] (2.1)

for every f € A and y € Ch(B). If, in addition, S(e1)T(e2) =1 and yo € Ch(B)
is a peak point of B, or ¢(yo) is a peak point of A, then

(S(e1) ™' S(F))(wo) = p()((y0)),

(T(e2) "' T(f)(yo) = 7(f)((¥0))
for every f € A.

PROOF. Since [S(e1)T(e2)| = 1 on Ch(B), we obtain

|S(e1) 1 S(f)T(e2) ' T(9)|| . = IS(HT(9)] o »

which implies that

1S (e1) *1S<f>T<e >*1T<g>||oo = lp(N)7(9)]l -
1S(e)) S|, = o)l and ||T(e2) " T(g)|. = lIT(g

for all f,g € A. Then the mappings p,7,S(e1)™1S and T(ey) 1T satisfy the
hypotheses of Proposition 2.2. Hence there exists a homeomorphism ¢ : Ch(B) —
Ch(A) satisfying (2.1).

Suppose that S(e;)T(ez) = 1, that is S(e;) ™! = T(es). Let f € A and yo €
Ch(B). Note that (S(e1)"1S(f))(yo) = 0 if and only if p(f)(é(yo)) = 0 and that
(T(e2) YT(f))(yo) = 0 if and only if 7(f)(é(yo)) = 0. If yo is a peak point of B
and (S(e1)71S(f))(yo) # 0, then, by Lemma 2.1, there exists a p € Pp(yo)Nexp B
such that

ox (S(en) T S(f)p) = {(S(e) ' S(H)wo)},
(S(en) ' S(HP) T H{S(e) SN = p ({1} = {wo}.  (22)

Note that, by the hypotheses,

or (S(e1) M S(N)T(e2)"'T(g)) Nox (p(f)7(g)) # 0
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for every g € A. Let go € A with T'(e2) T (go) = p. Since

ox (S(e1) ™ S(fp) Nox (p(f)7(90)) # 0,
there exists a y' € Ch(B) such that

(p(£)7(90))(@(y")) = (S(er) "' S(£))(yo)-
We also have o (p) Nox (7(g0)) # 0. Thus there exists a y” € Ch(B) such that
7(g0)(¢(y")) = 1. Equation (2.1) shows that
[(S(en)™ S (NP = 1(p(£)7(90)) (@ (y))] = [(S(er) 7" S(£))(o)l, and
Ip(y")] = I7(g0)(¢(y"))] = 1.
Together with (2.2), we obtain 3’ = ¢ = yo. We conclude that

(S(e1) ™S () (o) = (p(f)7(90)(S(y0)) = p(£)((y0))-

If we consider the maps T'(e2) T and 7, the same arguments imply that

(T(e2) ™" T(f))(yo) = 7()(d(y0))-

Similar arguments complete the proof for the case where ¢(yg) is a peak point
of A. O

We will now prove the main theorem by using Proposition 2.3.

Theorem 2.4. Let p,7: A — A and S,T : A — B be mappings on A. Sup-
pose that p(A), 7(A) and S(A), T'(A) are closed under multiplications and contain
exp A and exp B respectively. Suppose that S(e1) € S(A)™1,T(es) € T(A)~! with
|S(e1)T(e2)] = 1 on Ch(B) for some ey,eq € A with p(e;) =7(ez)=1. If there
exists a first-countable dense subset Dp in Ch(B), or a first-countable dense
subset D4 in Ch(A), and

or (S(f)T(g)) Nox (p(f)7(g)) # 0

for all f,g € A, then S(e1)T(e2) = 1 and there exists a homeomorphism ¢ :
Ch(B) — Ch(A) such that

(S(e)T'SUNW) = p(N(6w),  (Tle2)'T(f))y) =7(Fle(y)  (2.3)

for every f € A and y € Ch(B). Moreover, there exist an algebra isomorphism
S : A — B and a homeomorphism ® : Mg — M4 satisfying

—

S(f)y=fod
for every f € A,
S(p(f)) = S(e1)*S(f) and S(r(f)) = T(e2) ' T(f)

for every f € A.
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PRrROOF. Applying Proposition 2.3 to p,7,S(e1)™1S and T(ex) T, there
exists a homeomorphism ¢ : Ch(B) — Ch(A) such that

for every f € A and y € Ch(B).

We will prove that S(e;)T(e2) = 1 if there exists a first-countable dense
subset Dp in Ch(B). Let y € Ch(B). If y € Dp, then y is a peak point of B. By
Lemma 2.1, there exist T(u1) € Pg(y) Nexp B such that

or (S(e)T(u1)) = {S(e1)(w)},
(S(en)T(ur)) " ({S(en)(m)}) = T(ur) " ({1}) = {y} (2.4)
and S(uz2) € Pg(y) Nexp B such that
ar (S(u2)T(e2)) = {T(e2) ()},
(S(u2)T(e2)) ™ ({T(e2)(w)}) = S(u2)~ ({1}) = {y}- (2.5)

Since

or (S(e1)T(u1)) Nox (pler)7(ur)) # 0

and

ox (S(u2)T(e2)) Nor (p(uz)7(e2)) # 0,
there exist y1,y2 € Ch(B) such that
T(u1)(¢(y1)) = S(er)(y) and p(uz)((y2)) = T(e2)(y)-

Note that

[(S(en)T'(w1))(y1)] = [7(u1)(@(y1))] = [S(e1)(y)]
and

|(S(u2)T(e2))(y2)| = [p(u2)(¢(y2))| = [T'(e2)(y)|-

By (2.4) and (2.5), we obtain y; = yo = y. Since
o (S(u2)T (u1)) Nox (p(uz)7(u1)) # 0,
there exists a y3 € Ch(B) such that (p(u2)7(u1))(¢(ys)) = 1. We also have

|(S(u2)T (u1))(ys)| = |(p(u2)7(u1))(¢(y3))] = 1.
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Equations (2.4) and (2.5) imply that y3 = y. Hence we obtain

S(er) ()T (e2)(y) = T(u1)(d(y))p(u2)(o(y)) = 1.

Consequently, S(e;)T(e2) =1 on Dp. Since Dp is dense in Ch(B) and Ch(B) is
a boundary for B, we obtain S(e;)T(e2) = 1. Similar arguments show that the
equation S(e;)T'(e2) = 1 holds for the case where there exists a first-countable
dense subset Dy in Ch(A).

If there exists a first-countable dense subset Dp in Ch(B), then by Pro-
position 2.3 we obtain (2.3) for every f € A and y € Dp, that is for every
f € A and y € Ch(B). Similar arguments imply (2.3) for the case where there
exists a first-countable dense subset D4 in Ch(A). The existence of S:A— B
and ® : Mp — M, is follows by the arguments from the proof of Theorem 3.6
in [HMTO06] (see also [MHS]). O

Below we give examples of topological spaces that have first-countable dense
subsets.

Ezample 1 (cf. [S-S]).

(1) Let [0,1] be the unit interval and p a fixed point of [0,1]. Consider the

topology on [0, 1] consisting of open set G such that:

(a) G excludes p; or

(b) G contains all but a finite number of the points of [0, 1].
We call this space Fort space [S-S, Part II, 24]. The subset [0,1] \ {p} is
first-countable and dense in the Fort space [0, 1].

(2) For the square [0,1] x [0,1], we define the topology by taking as a neigh-
borhood basis of all points (a,b) off the diagonal A = {(z,z) : = € [0,1]}
the intersection of X — A with an open vertical line segment centered at
(a,b) : No(a,b) = {(a,y) € X — A :|b—y| < e}. Neighborhoods of points
(a,a) € A are defined by the intersection with X of open horizontal strips
less a finite number of vertical lines: N (a,a) = {(z,y) € X : |y—a| <e, z #
Z0,%1,---,%n . We call this space the Alexandroff square [S-S, Part II, 101].
The subset [0,1] x [0, 1] \ A is first-countable and dense in [0, 1] x [0, 1].

(3) Let AN be the Stone-Cech compactification of the set N of natural numbers.
Then N is first-countable and dense in SN.
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3. Applications

In this section we give some corollaries of Theorem 2.4.

Corollary 3.1. Suppose that the sets Ag C A and By C B are closed under
multiplications and contain exp A and exp B, respectively. Let T be a surjection
from Ag onto By and m,n positive integers such that

ox (TU)™T(9)"™) A om (f7") # 0 (3.1)

for all f,g € Agp.
If there exists a first-countable dense subset D in Ch(B), or a first-countable
dense subset D4 in Ch(A), then T(1)™*™ =1 and there exist an algebra isomor-

phism S:A— Banda homeomorphism ® : Mg — M4 satisfying §(f) = fo liij
for every f € A and S(f)? = T(1)"4T(f)* for every f € Ao, where d is the
greatest common divisor of m and n. If, in addition, d = 1 and T (1) = 1, then T
can be extended to an algebra isomorphism.

For the case where m = n =1, Ag = A and By = B, this result is proven
in [S.Ni, Theorem 4.6]. If, moreover, A = B = C(X), then it generalizes the
result proven by Molnar [Mo].

ProOF. By (3.1), we have

1T T(9) " e = 119" [l

for all f,g € Ag. In particular, | T(f)™+"|| = || /™*"] ., that is

IT(Pllse = 1Al 1T oo = 1" oo and [T(f) "o = 15"l

for every f,g € Ag. Proposition 2.2 shows that there exists a homeomorphism
¢ : Ch(B) — Ch(A) such that |T(f)(v)] = |f(é(y))| for every f € Ay and
y € Ch(B). In particular, |[7(1)] = 1 on Ch(B). By similar arguments to the
second paragraph of the proof of Theorem 2.4, we obtain 7(1)™*" = 1, that
is T(1) € By'. According to Theorem 2.4 for S(f) = T(f)™, T(f) = T(f)",
o(f) = f™, and 7(f) = f™, we obtain the conclusion. O

Corollary 3.2. Suppose that the sets Ay C A™! and B, C B~ are closed
under multiplications and contain exp A and exp B, respectively. Let T be a
surjection from A; onto By and k,l are non-zero integers such that

o (T T(9)") Now (fFg') #0 (3.2)
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for all f,g € Ay. If T(1) € By', |T(1)] = 1 on Ch(B) and there exists a first-
countable dense subset Dp in Ch(B), or a first-countable dense subset D, in
Ch(A), then T(1)**! = 1 and there exist an algebra isomorphism S : A — B and

—

a homeomorphism ® : Mp — M4 satisfying g(f) = fo® for every f € A and
S(f)*=T)~IT(f)¢ for every f € Ay, where d is the greatest common divisor
of k and . If, in addition, d = 1 and T (1) = 1, then T can be extended to an
algebra isomorphism.

This follows from Theorem 2.4 with S(f) = T (f)*, T(f) = T(f)!, p(f) = f*,
and 7(f) = f..

Remark 3.1. Let Ay, Bi, k and [ be as in Corollary 3.2. Suppose T is a
surjection from A; onto Bj satisfying (3.2) for all f,g € A;. By (3.2), we have

1T T e = 15l
for all f,g € Ay. If kI > 0, then ||T(f)**|| = ||/, that is

HT(f)(kJrz)/\muHoo _ Hf(mz)/\mu”oo,

1T N = 14l and T = 111l
for every f € A;. Proposition 2.2 implies that there exists a homeomorphism
¢ : Ch(B) — Ch(A) with [T (f)(y)| = |f(¢(y))| for every f € Ay and y € Ch(B).
In particular, |7(1)] = 1 on Ch(B). If, in addition, there exists a first-countable
dense subset D C Ch(B) or D4 C Ch(A), then, by similar arguments to the
second paragraph of the proof of Theorem 2.4, we obtain 7 (1)*+! = 1.

This shows that Corollary 3.2 holds in the case when kIl > O or k+1 =0
without assuming that |7(1)| = 1 on Ch(B).

Corollary 3.3. Let T be a surjection from A onto B such that

ox (T(f)expT(g)) Nor (fexpg) #0 (3.3)

for all f,ge€ A. If T(1) € B™!, |T(1)expT(0)| = 1 on Ch(B) and there exists a
first-countable dense subset Dp in Ch(B), or a first-countable dense subset D 4 in
Ch(A), then T (1) exp T(0) = 1 and there exists a homeomorphism ® : Mg — M4
such that

TM) T(f)=fod

expT(0) expT(f)=expfod (3.4)

for every f € A. Moreover, T(0) = 0 and T(1) = 1, hence T is an algebra
isomorphism.
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PROOF. According to Theorem 2.4 for S(f) = T(f), T(f) = expT(f),
o(f) = f, and 7(f) = exp f, we obtain

T(1)expT(0)=1

——1

and equation (3.4). In particular, 7 (1) 7/'(3) = 0, that is 7(0) = 0. Consequ-
ently, 7(1) =T (1) exp 7 (0) = 1. O
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