Weakly-peripherally multiplicative conditions and isomorphisms between uniform algebras

By RUMI SHINDO (Niigata)

Abstract

Suppose that A and B are uniform algebras on compact Hausdorff spaces X and Y, respectively. Let $\rho, \tau: \Lambda \rightarrow A$ and $S, T: \Lambda \rightarrow B$ be mappings on a nonempty set Λ. Suppose that $\rho(\Lambda), \tau(\Lambda)$ and $S(\Lambda), T(\Lambda)$ are closed under multiplications and contain $\exp A$ and $\exp B$ respectively and that $S\left(e_{1}\right) \in S(\Lambda)^{-1}, T\left(e_{2}\right) \in T(\Lambda)^{-1}$ with $\left|S\left(e_{1}\right) T\left(e_{2}\right)\right|=1$ on $\operatorname{Ch}(B)$ for some fixed $e_{1}, e_{2} \in A_{1}$ with $\rho\left(e_{1}\right)=\tau\left(e_{2}\right)=1$. If $\sigma_{\pi}(S(f) T(g)) \cap \sigma_{\pi}(\rho(f) \tau(g)) \neq \emptyset$ for all $f, g \in \Lambda$ and there exists a first-countable dense subset D_{B} in $\operatorname{Ch}(B)$, or a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$, then there exists an algebra isomorphism $\widetilde{S}: A \rightarrow B$ such that $\widetilde{S}(\rho(f))=S\left(e_{1}\right)^{-1} S(f)$ and $\widetilde{S}(\tau(f))=T\left(e_{2}\right)^{-1} T(f)$ for every $f \in \Lambda$.

1. Introduction

The search for sufficient conditions for mappings between Banach algebras to be algebra isomorphisms has a long and interesting history. Such results demonstrate that linear maps between Banach algebras that preserve the norm, the spectrum, or a subset of the spectrum must be multiplicative. For example, one of the corollaries of the classical theorem of GlEason-Kahane-ŻELAZKo [Ze] states that a surjection $T: A \rightarrow B$ between uniform algebras is an algebra isomorphism if it is linear and preserves the spectra, i.e. $\sigma(T(f))=\sigma(f)$ for all $f, g \in A$. A theorem by Kowalski and SŁodkowski [K-S] considers alternative spectral conditions for not necessarily linear surjections.

[^0]MolnÁr [Mo] have introduced an interesting spectral multiplicativity condition that contributes to the matter. In particular, he proved that if T is a surjection from the Banach algebra $C(X)$ of all complex-valued continuous functions on a first countable compact Hausdorff space X onto itself such that $\sigma(T(f) T(g))=$ $\sigma(f g)$ for all $f, g \in C(X)$, then T is an algebra isomorphism. In the case where T is a surjection from a uniform algebra A onto itself, this result was proven by Rao and Roy [RR1]. Hatori, Miura and Takagi [HMT06] showed that if $T: A \rightarrow B$ is a surjection between uniform algebras such that the range of $T(f) T(g)$ equals to that of $f g$ for all $f, g \in A$, then $T(1)^{-1} T$ is an algebra isomorphism. Maps between uniform algebras and more general semi-simple commutative Banach algebras that satisfy $\sigma(T(f) T(g))=\sigma(f g)$ [HMT07], [HMT], [RR2] or $\sigma_{\pi}(T(f) T(g))=\sigma_{\pi}(f g)[\mathrm{G}-\mathrm{T}],[\mathrm{LT}]$ were analyzed further (see also [Hon]).

Maps T such that for some positive integers m and $n, \sigma_{\pi}\left(T(f)^{m} T(g)^{n}\right) \subset$ $\sigma_{\pi}\left(f^{m} g^{n}\right)$, or, such that $\sigma_{\pi}(T(f) T(g))$ and $\sigma_{\pi}(f g)$ meet only, without being necessarily equal, were analyzed recently (see [HHMO], [LLT], [T.talk], [JLV]). Most recently, Tonev [T.talk], [T10] characterized a surjection $T: A \rightarrow B$ between function algebras, without assuming the existences of the units, such that $\sigma_{\pi}(T(f) T(g)) \cap \sigma_{\pi}(f g) \neq \emptyset$ and $\sigma_{\pi}(T(f))=\sigma_{\pi}(f)$ for all $f, g \in A$. HATORI, Miura, Shindo and Takagi [HMST] have characterized maps $\rho, \tau: I \rightarrow A$ and $S, T: I \rightarrow B$ from a non-empty set into uniform algebras that satisfy $\sigma_{\pi}(S(f) T(g)) \subset \sigma_{\pi}(\rho(f) \tau(g))$ for all $f, g \in I$. In this paper, we analyze maps $\rho, \tau: \Lambda \rightarrow A$ and $S, T: \Lambda \rightarrow B$ from a non-empty set into uniform algebras such that $\sigma_{\pi}(S(f) T(g)) \cap \sigma_{\pi}(\rho(f) \tau(g)) \neq \emptyset$ for all $f, g \in \Lambda$ and give conditions for isomorphisms between uniform algebras

2. Main result

We begin by providing definitions and notations. Let $C(X)$ be the space of all complex-valued continuous functions on a compact Hausdorff space $X . C(X)$ is Banach algebra with pointwise multiplication and the supremum norm $\|\cdot\|_{\infty}$. Let A be a uniform algebra on a compact Hausdorff space X. Denote by M_{A} the maximal ideal space of A, by $\sigma(f)$ the spectrum of $f \in A$, and by \hat{f} the Gelfand transform of $f \in A$. Note that $\sigma(f)=\hat{f}\left(M_{A}\right)$ and $\sup \{|\lambda|: \lambda \in \sigma(f)\}=\|f\|_{\infty}$. The peripheral spectrum of an element $f \in A$ is the maximum modulus set of the spectrum of f, that is $\sigma_{\pi}(f)=\left\{\lambda \in \sigma(f):|\lambda|=\|f\|_{\infty}\right\}$. If $\sigma_{\pi}(u)=\{1\}$ for $u \in A$, then u is called a peak function of A. In this case $u^{-1}(\{1\})$ is a peak set of A. For a fixed $x \in X$ denote by $P_{A}(x)$ the set of all peak functions u of A
with $u(x)=1$. A point $x \in X$ that equals the intersection of peak sets is called a weak peak point of A. The set of all weak peak points of A is the Choquet boundary of A, denoted by $\operatorname{Ch}(A)$. It is known that $\operatorname{Ch}(A)$ is a boundary for A, that is $\|f\|_{\infty}=\max \{|f(x)|: x \in \operatorname{Ch}(A)\}$ for every $f \in A$. An $x \in X$ is said to be a peak point of A if $\{x\}$ is a peak set of A. Note that a weak peak point x which has a countable neighborhood basis is a peak point of A [Br , Lemma 2.3.1 and Theorem 2.3.4]. Denote by $\exp A$ the range of the exponential map on A. In the sequel we will need the following corollary of [HHMO, Proposition 2.2] (see also [HMST], [LL], [MHS], [S.Ce], [S.Me]):

Lemma 2.1. If $x \in X$ is a peak point and $f(x) \neq 0$ for some $f \in A$, then there exists a $u \in P_{A}(x) \cap \exp A$ such that $\sigma_{\pi}(f u)=\{f(x)\}$ and $(f u)^{-1}(\{f(x)\})=$ $u^{-1}(\{1\})=\{x\}$.

Proof. By Proposition 2.2 in [HHMO], there exists a $u_{1} \in P_{A}(x) \cap \exp A$ such that $\sigma_{\pi}\left(f u_{1}\right)=\{f(x)\}$. Since x is a peak set, there exists a $u^{\prime} \in P_{A}(x)$ such that $u^{\prime-1}(\{1\})=\{x\}$. Let $u_{2}=\left(u^{\prime}+1\right) / 2$. Then $u=u_{1} u_{2} \in P_{A}(x) \cap \exp A$ satisfies $\sigma_{\pi}(f u)=\{f(x)\}$ and $(f u)^{-1}(\{f(x)\})=u^{-1}(\{1\})=\{x\}$.

Throughout this paper we assume that A and B are uniform algebras on compact Hausdorff spaces X and Y respectively and that Λ is a non-empty set. Denote by f^{-1} an inverse element of $f \in A$ and by E^{-1} the set of invertible elements of E. We will also use the following proposition, which is a corollary of [HMST, Proposition 2.3] (see also [S.Ce, Proposition 2.1]).

Proposition 2.2. Let $h_{1}, h_{2}: \Lambda \rightarrow A$ and $H_{1}, H_{2}: \Lambda \rightarrow B$ be mappings on Λ. Suppose that $h_{1}(\Lambda), h_{2}(\Lambda)$ and $H_{1}(\Lambda), H_{2}(\Lambda)$ are closed under multiplications and contain $\exp A$ and $\exp B$, respectively. If

$$
\begin{gathered}
\left\|H_{1}(f) H_{2}(g)\right\|_{\infty}=\left\|h_{1}(f) h_{2}(g)\right\|_{\infty} \\
\left\|H_{1}(f)\right\|_{\infty}=\left\|h_{1}(f)\right\|_{\infty} \text { and }\left\|H_{2}(f)\right\|_{\infty}=\left\|h_{2}(f)\right\|_{\infty}
\end{gathered}
$$

for all $f, g \in \Lambda$, then there exists a homeomorphism $\psi: \operatorname{Ch}(B) \rightarrow \operatorname{Ch}(A)$ such that

$$
\left|H_{1}(f)(y)\right|=\left|h_{1}(f)(\psi(y))\right| \quad \text { and } \quad\left|H_{2}(f)(y)\right|=\left|h_{2}(f)(\psi(y))\right|
$$

for every $f \in \Lambda$ and $y \in \operatorname{Ch}(B)$.
Proposition 2.3. Let $\rho, \tau: \Lambda \rightarrow A$ and $S, T: \Lambda \rightarrow B$ be mappings on Λ. Suppose that $\rho(\Lambda), \tau(\Lambda)$ and $S(\Lambda), T(\Lambda)$ are closed under multiplications and contain $\exp A$ and $\exp B$, respectively. Suppose that $S\left(e_{1}\right) \in S(\Lambda)^{-1}, T\left(e_{2}\right) \in$
$T(\Lambda)^{-1}$ with $\left|S\left(e_{1}\right) T\left(e_{2}\right)\right|=1$ on $\operatorname{Ch}(B)$ for some $e_{1}, e_{2} \in \Lambda$ with $\rho\left(e_{1}\right)=$ $\tau\left(e_{2}\right)=1$. If

$$
\sigma_{\pi}(S(f) T(g)) \cap \sigma_{\pi}(\rho(f) \tau(g)) \neq \emptyset
$$

for all $f, g \in \Lambda$, then there exists a homeomorphism $\psi: \operatorname{Ch}(B) \rightarrow \operatorname{Ch}(A)$ such that

$$
\begin{align*}
\left|\left(S\left(e_{1}\right)^{-1} S(f)\right)(y)\right| & =|\rho(f)(\phi(y))| \\
\left|\left(T\left(e_{2}\right)^{-1} T(f)\right)(y)\right| & =|\tau(f)(\phi(y))| \tag{2.1}
\end{align*}
$$

for every $f \in \Lambda$ and $y \in \operatorname{Ch}(B)$. If, in addition, $S\left(e_{1}\right) T\left(e_{2}\right)=1$ and $y_{0} \in \operatorname{Ch}(B)$ is a peak point of B, or $\phi\left(y_{0}\right)$ is a peak point of A, then

$$
\begin{aligned}
& \left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)=\rho(f)\left(\phi\left(y_{0}\right)\right) \\
& \left(T\left(e_{2}\right)^{-1} T(f)\right)\left(y_{0}\right)=\tau(f)\left(\phi\left(y_{0}\right)\right)
\end{aligned}
$$

for every $f \in \Lambda$.
Proof. Since $\left|S\left(e_{1}\right) T\left(e_{2}\right)\right|=1$ on $\operatorname{Ch}(B)$, we obtain

$$
\left\|S\left(e_{1}\right)^{-1} S(f) T\left(e_{2}\right)^{-1} T(g)\right\|_{\infty}=\|S(f) T(g)\|_{\infty}
$$

which implies that

$$
\begin{gathered}
\left\|S\left(e_{1}\right)^{-1} S(f) T\left(e_{2}\right)^{-1} T(g)\right\|_{\infty}=\|\rho(f) \tau(g)\|_{\infty} \\
\left\|S\left(e_{1}\right)^{-1} S(f)\right\|_{\infty}=\|\rho(f)\|_{\infty} \text { and }\left\|T\left(e_{2}\right)^{-1} T(g)\right\|_{\infty}=\|\tau(g)\|_{\infty}
\end{gathered}
$$

for all $f, g \in \Lambda$. Then the mappings $\rho, \tau, S\left(e_{1}\right)^{-1} S$ and $T\left(e_{2}\right)^{-1} T$ satisfy the hypotheses of Proposition 2.2. Hence there exists a homeomorphism $\phi: \operatorname{Ch}(B) \rightarrow$ $\mathrm{Ch}(A)$ satisfying (2.1).

Suppose that $S\left(e_{1}\right) T\left(e_{2}\right)=1$, that is $S\left(e_{1}\right)^{-1}=T\left(e_{2}\right)$. Let $f \in \Lambda$ and $y_{0} \in$ $\operatorname{Ch}(B)$. Note that $\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)=0$ if and only if $\rho(f)\left(\phi\left(y_{0}\right)\right)=0$ and that $\left(T\left(e_{2}\right)^{-1} T(f)\right)\left(y_{0}\right)=0$ if and only if $\tau(f)\left(\phi\left(y_{0}\right)\right)=0$. If y_{0} is a peak point of B and $\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right) \neq 0$, then, by Lemma 2.1, there exists a $\mathfrak{p} \in P_{B}\left(y_{0}\right) \cap \exp B$ such that

$$
\begin{gather*}
\sigma_{\pi}\left(S\left(e_{1}\right)^{-1} S(f) \mathfrak{p}\right)=\left\{\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)\right\} \\
\left(S\left(e_{1}\right)^{-1} S(f) \mathfrak{p}\right)^{-1}\left(\left\{\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)\right\}\right)=\mathfrak{p}^{-1}(\{1\})=\left\{y_{0}\right\} \tag{2.2}
\end{gather*}
$$

Note that, by the hypotheses,

$$
\sigma_{\pi}\left(S\left(e_{1}\right)^{-1} S(f) T\left(e_{2}\right)^{-1} T(g)\right) \cap \sigma_{\pi}(\rho(f) \tau(g)) \neq \emptyset
$$

for every $g \in \Lambda$. Let $g_{0} \in \Lambda$ with $T\left(e_{2}\right)^{-1} T\left(g_{0}\right)=\mathfrak{p}$. Since

$$
\sigma_{\pi}\left(S\left(e_{1}\right)^{-1} S(f) \mathfrak{p}\right) \cap \sigma_{\pi}\left(\rho(f) \tau\left(g_{0}\right)\right) \neq \emptyset
$$

there exists a $y^{\prime} \in \operatorname{Ch}(B)$ such that

$$
\left(\rho(f) \tau\left(g_{0}\right)\right)\left(\phi\left(y^{\prime}\right)\right)=\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)
$$

We also have $\sigma_{\pi}(\mathfrak{p}) \cap \sigma_{\pi}\left(\tau\left(g_{0}\right)\right) \neq \emptyset$. Thus there exists a $y^{\prime \prime} \in \operatorname{Ch}(B)$ such that $\tau\left(g_{0}\right)\left(\phi\left(y^{\prime \prime}\right)\right)=1$. Equation (2.1) shows that

$$
\begin{gathered}
\left|\left(S\left(e_{1}\right)^{-1} S(f) \mathfrak{p}\right)\left(y^{\prime}\right)\right|=\left|\left(\rho(f) \tau\left(g_{0}\right)\right)\left(\phi\left(y^{\prime}\right)\right)\right|=\left|\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)\right|, \quad \text { and } \\
\left|\mathfrak{p}\left(y^{\prime \prime}\right)\right|=\left|\tau\left(g_{0}\right)\left(\phi\left(y^{\prime \prime}\right)\right)\right|=1 .
\end{gathered}
$$

Together with (2.2), we obtain $y^{\prime}=y^{\prime \prime}=y_{0}$. We conclude that

$$
\left(S\left(e_{1}\right)^{-1} S(f)\right)\left(y_{0}\right)=\left(\rho(f) \tau\left(g_{0}\right)\right)\left(\phi\left(y_{0}\right)\right)=\rho(f)\left(\phi\left(y_{0}\right)\right)
$$

If we consider the maps $T\left(e_{2}\right)^{-1} T$ and τ, the same arguments imply that

$$
\left(T\left(e_{2}\right)^{-1} T(f)\right)\left(y_{0}\right)=\tau(f)\left(\phi\left(y_{0}\right)\right)
$$

Similar arguments complete the proof for the case where $\phi\left(y_{0}\right)$ is a peak point of A.

We will now prove the main theorem by using Proposition 2.3.
Theorem 2.4. Let $\rho, \tau: \Lambda \rightarrow A$ and $S, T: \Lambda \rightarrow B$ be mappings on Λ. Suppose that $\rho(\Lambda), \tau(\Lambda)$ and $S(\Lambda), T(\Lambda)$ are closed under multiplications and contain $\exp A$ and $\exp B$ respectively. Suppose that $S\left(e_{1}\right) \in S(\Lambda)^{-1}, T\left(e_{2}\right) \in T(\Lambda)^{-1}$ with $\left|S\left(e_{1}\right) T\left(e_{2}\right)\right|=1$ on $\operatorname{Ch}(B)$ for some $e_{1}, e_{2} \in \Lambda$ with $\rho\left(e_{1}\right)=\tau\left(e_{2}\right)=1$. If there exists a first-countable dense subset D_{B} in $\operatorname{Ch}(B)$, or a first-countable dense subset D_{A} in $\mathrm{Ch}(A)$, and

$$
\sigma_{\pi}(S(f) T(g)) \cap \sigma_{\pi}(\rho(f) \tau(g)) \neq \emptyset
$$

for all $f, g \in \Lambda$, then $S\left(e_{1}\right) T\left(e_{2}\right)=1$ and there exists a homeomorphism ϕ : $\mathrm{Ch}(B) \rightarrow \mathrm{Ch}(A)$ such that

$$
\begin{equation*}
\left(S\left(e_{1}\right)^{-1} S(f)\right)(y)=\rho(f)(\phi(y)), \quad\left(T\left(e_{2}\right)^{-1} T(f)\right)(y)=\tau(f)(\phi(y)) \tag{2.3}
\end{equation*}
$$

for every $f \in \Lambda$ and $y \in \operatorname{Ch}(B)$. Moreover, there exist an algebra isomorphism $\widetilde{S}: A \rightarrow B$ and a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ satisfying

$$
\widehat{\widetilde{S}(f)}=\hat{f} \circ \Phi
$$

for every $f \in A$,

$$
\widetilde{S}(\rho(f))=S\left(e_{1}\right)^{-1} S(f) \quad \text { and } \quad \widetilde{S}(\tau(f))=T\left(e_{2}\right)^{-1} T(f)
$$

for every $f \in \Lambda$.

Proof. Applying Proposition 2.3 to $\rho, \tau, S\left(e_{1}\right)^{-1} S$ and $T\left(e_{2}\right)^{-1} T$, there exists a homeomorphism $\phi: \operatorname{Ch}(B) \rightarrow \operatorname{Ch}(A)$ such that

$$
\begin{aligned}
& \left|\left(S\left(e_{1}\right)^{-1} S(f)\right)(y)\right|=|\rho(f)(\phi(y))|, \\
& \left|\left(T\left(e_{2}\right)^{-1} T(f)\right)(y)\right|=|\tau(f)(\phi(y))|
\end{aligned}
$$

for every $f \in \Lambda$ and $y \in \operatorname{Ch}(B)$.
We will prove that $S\left(e_{1}\right) T\left(e_{2}\right)=1$ if there exists a first-countable dense subset D_{B} in $\operatorname{Ch}(B)$. Let $y \in \operatorname{Ch}(B)$. If $y \in D_{B}$, then y is a peak point of B. By Lemma 2.1, there exist $T\left(u_{1}\right) \in P_{B}(y) \cap \exp B$ such that

$$
\begin{gather*}
\sigma_{\pi}\left(S\left(e_{1}\right) T\left(u_{1}\right)\right)=\left\{S\left(e_{1}\right)(y)\right\}, \\
\left(S\left(e_{1}\right) T\left(u_{1}\right)\right)^{-1}\left(\left\{S\left(e_{1}\right)(y)\right\}\right)=T\left(u_{1}\right)^{-1}(\{1\})=\{y\} \tag{2.4}
\end{gather*}
$$

and $S\left(u_{2}\right) \in P_{B}(y) \cap \exp B$ such that

$$
\begin{gather*}
\sigma_{\pi}\left(S\left(u_{2}\right) T\left(e_{2}\right)\right)=\left\{T\left(e_{2}\right)(y)\right\} \\
\left(S\left(u_{2}\right) T\left(e_{2}\right)\right)^{-1}\left(\left\{T\left(e_{2}\right)(y)\right\}\right)=S\left(u_{2}\right)^{-1}(\{1\})=\{y\} . \tag{2.5}
\end{gather*}
$$

Since

$$
\sigma_{\pi}\left(S\left(e_{1}\right) T\left(u_{1}\right)\right) \cap \sigma_{\pi}\left(\rho\left(e_{1}\right) \tau\left(u_{1}\right)\right) \neq \emptyset
$$

and

$$
\sigma_{\pi}\left(S\left(u_{2}\right) T\left(e_{2}\right)\right) \cap \sigma_{\pi}\left(\rho\left(u_{2}\right) \tau\left(e_{2}\right)\right) \neq \emptyset,
$$

there exist $y_{1}, y_{2} \in \operatorname{Ch}(B)$ such that

$$
\tau\left(u_{1}\right)\left(\phi\left(y_{1}\right)\right)=S\left(e_{1}\right)(y) \text { and } \rho\left(u_{2}\right)\left(\phi\left(y_{2}\right)\right)=T\left(e_{2}\right)(y) .
$$

Note that

$$
\left|\left(S\left(e_{1}\right) T\left(u_{1}\right)\right)\left(y_{1}\right)\right|=\left|\tau\left(u_{1}\right)\left(\phi\left(y_{1}\right)\right)\right|=\left|S\left(e_{1}\right)(y)\right|
$$

and

$$
\left|\left(S\left(u_{2}\right) T\left(e_{2}\right)\right)\left(y_{2}\right)\right|=\left|\rho\left(u_{2}\right)\left(\phi\left(y_{2}\right)\right)\right|=\left|T\left(e_{2}\right)(y)\right| .
$$

By (2.4) and (2.5), we obtain $y_{1}=y_{2}=y$. Since

$$
\sigma_{\pi}\left(S\left(u_{2}\right) T\left(u_{1}\right)\right) \cap \sigma_{\pi}\left(\rho\left(u_{2}\right) \tau\left(u_{1}\right)\right) \neq \emptyset,
$$

there exists a $y_{3} \in \operatorname{Ch}(B)$ such that $\left(\rho\left(u_{2}\right) \tau\left(u_{1}\right)\right)\left(\phi\left(y_{3}\right)\right)=1$. We also have

$$
\left|\left(S\left(u_{2}\right) T\left(u_{1}\right)\right)\left(y_{3}\right)\right|=\left|\left(\rho\left(u_{2}\right) \tau\left(u_{1}\right)\right)\left(\phi\left(y_{3}\right)\right)\right|=1 .
$$

Equations (2.4) and (2.5) imply that $y_{3}=y$. Hence we obtain

$$
S\left(e_{1}\right)(y) T\left(e_{2}\right)(y)=\tau\left(u_{1}\right)(\phi(y)) \rho\left(u_{2}\right)(\phi(y))=1
$$

Consequently, $S\left(e_{1}\right) T\left(e_{2}\right)=1$ on D_{B}. Since D_{B} is dense in $\operatorname{Ch}(B)$ and $\operatorname{Ch}(B)$ is a boundary for B, we obtain $S\left(e_{1}\right) T\left(e_{2}\right)=1$. Similar arguments show that the equation $S\left(e_{1}\right) T\left(e_{2}\right)=1$ holds for the case where there exists a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$.

If there exists a first-countable dense subset D_{B} in $\operatorname{Ch}(B)$, then by Proposition 2.3 we obtain (2.3) for every $f \in \Lambda$ and $y \in D_{B}$, that is for every $f \in \Lambda$ and $y \in \operatorname{Ch}(B)$. Similar arguments imply (2.3) for the case where there exists a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$. The existence of $\widetilde{S}: A \rightarrow B$ and $\Phi: M_{B} \rightarrow M_{A}$ is follows by the arguments from the proof of Theorem 3.6 in [HMT06] (see also [MHS]).

Below we give examples of topological spaces that have first-countable dense subsets.

Example 1 (cf. [S-S]).
(1) Let $[0,1]$ be the unit interval and p a fixed point of $[0,1]$. Consider the topology on $[0,1]$ consisting of open set G such that:
(a) G excludes p; or
(b) G contains all but a finite number of the points of $[0,1]$.

We call this space Fort space $[\mathrm{S}-\mathrm{S}$, Part II, 24]. The subset $[0,1] \backslash\{p\}$ is first-countable and dense in the Fort space $[0,1]$.
(2) For the square $[0,1] \times[0,1]$, we define the topology by taking as a neighborhood basis of all points (a, b) off the diagonal $\Delta=\{(x, x): x \in[0,1]\}$ the intersection of $X-\Delta$ with an open vertical line segment centered at $(a, b): N_{\varepsilon}(a, b)=\{(a, y) \in X-\Delta:|b-y|<\varepsilon\}$. Neighborhoods of points $(a, a) \in \Delta$ are defined by the intersection with X of open horizontal strips less a finite number of vertical lines: $N_{\varepsilon}(a, a)=\{(x, y) \in X:|y-a|<\varepsilon, x \neq$ $\left.x_{0}, x_{1}, \ldots, x_{n}\right\}$. We call this space the Alexandroff square [S-S, Part II, 101]. The subset $[0,1] \times[0,1] \backslash \Delta$ is first-countable and dense in $[0,1] \times[0,1]$.
(3) Let $\beta \mathbb{N}$ be the Stone-Čech compactification of the set \mathbb{N} of natural numbers. Then \mathbb{N} is first-countable and dense in $\beta \mathbb{N}$.

3. Applications

In this section we give some corollaries of Theorem 2.4.
Corollary 3.1. Suppose that the sets $A_{0} \subset A$ and $B_{0} \subset B$ are closed under multiplications and contain $\exp A$ and $\exp B$, respectively. Let \mathcal{T} be a surjection from A_{0} onto B_{0} and m, n positive integers such that

$$
\begin{equation*}
\sigma_{\pi}\left(\mathcal{T}(f)^{m} \mathcal{T}(g)^{n}\right) \cap \sigma_{\pi}\left(f^{m} g^{n}\right) \neq \emptyset \tag{3.1}
\end{equation*}
$$

for all $f, g \in A_{0}$.
If there exists a first-countable dense subset D_{B} in $\mathrm{Ch}(B)$, or a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$, then $\mathcal{T}(1)^{m+n}=1$ and there exist an algebra isomorphism $\widetilde{S}: A \rightarrow B$ and a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ satisfying $\widehat{\widetilde{S}(f)}=\hat{f} \circ \Phi$ for every $f \in A$ and $\widetilde{S}(f)^{d}=\mathcal{T}(1)^{-d} \mathcal{T}(f)^{d}$ for every $f \in A_{0}$, where d is the greatest common divisor of m and n. If, in addition, $d=1$ and $\mathcal{T}(1)=1$, then \mathcal{T} can be extended to an algebra isomorphism.

For the case where $m=n=1, A_{0}=A$ and $B_{0}=B$, this result is proven in [S.Ni, Theorem 4.6]. If, moreover, $A=B=C(X)$, then it generalizes the result proven by Molnár [Mo].

Proof. By (3.1), we have

$$
\left\|\mathcal{T}(f)^{m} \mathcal{T}(g)^{n}\right\|_{\infty}=\left\|f^{m} g^{n}\right\|_{\infty}
$$

for all $f, g \in A_{0}$. In particular, $\left\|\mathcal{T}(f)^{m+n}\right\|_{\infty}=\left\|f^{m+n}\right\|_{\infty}$, that is

$$
\|\mathcal{T}(f)\|_{\infty}=\|f\|_{\infty},\left\|\mathcal{T}(f)^{m}\right\|_{\infty}=\left\|f^{m}\right\|_{\infty} \quad \text { and } \quad\left\|\mathcal{T}(f)^{n}\right\|_{\infty}=\left\|f^{n}\right\|_{\infty}
$$

for every $f, g \in A_{0}$. Proposition 2.2 shows that there exists a homeomorphism $\phi: \operatorname{Ch}(B) \rightarrow \operatorname{Ch}(A)$ such that $|\mathcal{T}(f)(y)|=|f(\phi(y))|$ for every $f \in A_{0}$ and $y \in \operatorname{Ch}(B)$. In particular, $|\mathcal{T}(1)|=1$ on $\operatorname{Ch}(B)$. By similar arguments to the second paragraph of the proof of Theorem 2.4, we obtain $\mathcal{T}(1)^{m+n}=1$, that is $\mathcal{T}(1) \in B_{0}^{-1}$. According to Theorem 2.4 for $S(f)=\mathcal{T}(f)^{m}, T(f)=\mathcal{T}(f)^{n}$, $\rho(f)=f^{m}$, and $\tau(f)=f^{n}$, we obtain the conclusion.

Corollary 3.2. Suppose that the sets $A_{1} \subset A^{-1}$ and $B_{1} \subset B^{-1}$ are closed under multiplications and contain $\exp A$ and $\exp B$, respectively. Let \mathcal{T} be a surjection from A_{1} onto B_{1} and k, l are non-zero integers such that

$$
\begin{equation*}
\sigma_{\pi}\left(\mathcal{T}(f)^{k} \mathcal{T}(g)^{l}\right) \cap \sigma_{\pi}\left(f^{k} g^{l}\right) \neq \emptyset \tag{3.2}
\end{equation*}
$$

for all $f, g \in A_{1}$. If $\mathcal{T}(1) \in B_{0}^{-1},|\mathcal{T}(1)|=1$ on $\operatorname{Ch}(B)$ and there exists a firstcountable dense subset D_{B} in $\operatorname{Ch}(B)$, or a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$, then $\mathcal{T}(1)^{k+l}=1$ and there exist an algebra isomorphism $\widetilde{S}: A \rightarrow B$ and a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ satisfying $\widetilde{\widetilde{S}(f)}=\hat{f} \circ \Phi$ for every $f \in A$ and $\widetilde{S}(f)^{d}=\mathcal{T}(1)^{-d} \mathcal{T}(f)^{d}$ for every $f \in A_{1}$, where d is the greatest common divisor of k and l. If, in addition, $d=1$ and $\mathcal{T}(1)=1$, then \mathcal{T} can be extended to an algebra isomorphism.

This follows from Theorem 2.4 with $S(f)=\mathcal{T}(f)^{k}, T(f)=\mathcal{T}(f)^{l}, \rho(f)=f^{k}$, and $\tau(f)=f^{l}$.

Remark 3.1. Let A_{1}, B_{1}, k and l be as in Corollary 3.2. Suppose \mathcal{T} is a surjection from A_{1} onto B_{1} satisfying (3.2) for all $f, g \in A_{1}$. By (3.2), we have

$$
\left\|\mathcal{T}(f)^{k} \mathcal{T}(g)^{l}\right\|_{\infty}=\left\|f^{k} g^{l}\right\|_{\infty}
$$

for all $f, g \in A_{1}$. If $k l>0$, then $\left\|\mathcal{T}(f)^{k+l}\right\|_{\infty}=\left\|f^{k+l}\right\|_{\infty}$, that is

$$
\begin{gathered}
\left\|\mathcal{T}(f)^{(k+l) /|k+l|}\right\|_{\infty}=\left\|f^{(k+l) /|k+l|}\right\|_{\infty} \\
\left\|\mathcal{T}(f)^{k}\right\|_{\infty}=\left\|f^{k}\right\|_{\infty} \quad \text { and } \quad\left\|\mathcal{T}(f)^{l}\right\|_{\infty}=\left\|f^{l}\right\|_{\infty}
\end{gathered}
$$

for every $f \in A_{1}$. Proposition 2.2 implies that there exists a homeomorphism $\phi: \operatorname{Ch}(B) \rightarrow \operatorname{Ch}(A)$ with $|\mathcal{T}(f)(y)|=|f(\phi(y))|$ for every $f \in A_{1}$ and $y \in \operatorname{Ch}(B)$. In particular, $|\mathcal{T}(1)|=1$ on $\operatorname{Ch}(B)$. If, in addition, there exists a first-countable dense subset $D_{B} \subset \mathrm{Ch}(B)$ or $D_{A} \subset \mathrm{Ch}(A)$, then, by similar arguments to the second paragraph of the proof of Theorem 2.4, we obtain $\mathcal{T}(1)^{k+l}=1$.

This shows that Corollary 3.2 holds in the case when $k l>0$ or $k+l=0$ without assuming that $|\mathcal{T}(1)|=1$ on $\operatorname{Ch}(B)$.

Corollary 3.3. Let \mathcal{T} be a surjection from A onto B such that

$$
\begin{equation*}
\sigma_{\pi}(\mathcal{T}(f) \exp \mathcal{T}(g)) \cap \sigma_{\pi}(f \exp g) \neq \emptyset \tag{3.3}
\end{equation*}
$$

for all $f, g \in A$. If $\mathcal{T}(1) \in B^{-1},|\mathcal{T}(1) \exp \mathcal{T}(0)|=1$ on $\operatorname{Ch}(B)$ and there exists a first-countable dense subset D_{B} in $\operatorname{Ch}(B)$, or a first-countable dense subset D_{A} in $\operatorname{Ch}(A)$, then $\mathcal{T}(1) \exp \mathcal{T}(0)=1$ and there exists a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ such that

$$
\begin{gather*}
\widehat{\mathcal{T}}(1)^{-1} \widehat{\mathcal{T}(f)}=\hat{f} \circ \Phi \\
\widehat{\exp \mathcal{T}(0)}^{-1} \widehat{\exp \mathcal{T}(f)}=\widehat{\exp f} \circ \Phi \tag{3.4}
\end{gather*}
$$

for every $f \in A$. Moreover, $\mathcal{T}(0)=0$ and $\mathcal{T}(1)=1$, hence \mathcal{T} is an algebra isomorphism.

Proof. According to Theorem 2.4 for $S(f)=\mathcal{T}(f), T(f)=\exp \mathcal{T}(f)$, $\rho(f)=f$, and $\tau(f)=\exp f$, we obtain

$$
\mathcal{T}(1) \exp \mathcal{T}(0)=1
$$

and equation (3.4). In particular, $\widehat{\mathcal{T}(1)}^{-1} \widehat{\mathcal{T}(0)}=0$, that is $\mathcal{T}(0)=0$. Consequently, $\mathcal{T}(1)=\mathcal{T}(1) \exp \mathcal{T}(0)=1$.

Acknowledgements. The author would like to thank the referee for their suggestions to improve the manuscript.

References

[Br] A. Browder, Introduction to function algebras, W. A. Benjamin, New York, Amsterdam, 1969.
[G-T] S. A. Grigoryan and T. Tonev, Shift-invariant Uniform Algebras on Groups, Vol. 68, New Series, Monografie Matematyczne, Birkhäuser Verlag, Basel - Boston Berlin, 2006.
[HMT06] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property, Proc. Amer. Math. Soc. 134 (2006), 2923-2930.
[HMT07] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281-296.
[HMT] O. Hatori, T. Miura and H. Takagi, Multiplicatively spectrum-preserving and norm-preserving maps between invertible groups of commutative Banach algebras, 2006, preprint.
[HHMO] O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009), 47-59.
[HMSt] O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo. 59 (2010), 161-183.
[Hon] D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, Contemp. Math. 435 (2006), 199-205.
[K-S] S. Kowalski and Z. SŁOdKowski, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 67 (1980), 215-223.
[LLT] S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math. 435 (2007), 265-281.
[LT] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135, no. 11 (2007), 3589-3598.
[LL] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Eur. J. Math. 6(2) (2008), 272-280.
[MHS] T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math. (to appear).
[Mo] L. MolnÁr, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2001), 111-120.
[RR1] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135-1142.
[RR2] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras II, Proc. Edinburgh Math. Soc. 48 (2005), 219-229.
[S.Ni] R. Shindo, Aspects of algebraic structures of certain maps between commutative Banach algebras, PhD thesis, Niigata University, 2010.
[S.Ce] R. Shindo, Norm conditions for real-algebra isomorphisms between uniform algebras, Cent. Eur. J. Math. 8(1) (2010), 135-147.
[S.Me] R. Shindo, Maps between uniform algebras preserving norms of rational functions, Mediterr. J. Math. 8, no. 1 (2010), 81-95, http://www.springerlink.com/content/gj04731v35456525/.
[S-S] L. A. Steen and J. A. Seebach, Jr, Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York, 1970.
[T.talk] T. Tonev, Weak multiplicative operators, Talks at Satellite Seminar in Niigata of Takahashi International, 2010.
[T10] T. Tonev, Weak multiplicative operators on function algebras without units, Vol. 91, Banach Center Publications, 2010, 411-421.
[JLV] A. Jiménez-Vargas, A. Luttman and M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math. 40, no. 6 (2010), 1903-1922.
[Ze] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, London, New York, 1973.

RUMI SHINDO

NSG ACADEMY CO. LTD., 11-32
HIGASHIODORI 1-CHO-ME
CHUO-KU, NIIGATA, 950-0087
JAPAN
E-mail: rumi_shindo@email.plala.or.jp

[^0]: Mathematics Subject Classification: Primary: 46J10, 46J20; Secondary: 46H40.
 Key words and phrases: uniform algebra, spectrum-preserving, peripheral spectrum.

