The number of maximal subgroups of a solvable group

By PÁL HEGEDÜS (Budapest)

Abstract

A new proof is given for Wall's theorem, that the number of maximal subgroups of a finite solvable group G is at most $|G|-1$.

The following theorem was proved by G. E. Wall [W] with the help of the Eulerian function of a finite group.

Theorem. If G is a solvable group then the number of maximal subgroups of G is at most $|G|-1$. Equality holds (only) for elementary Abelian 2-groups.

It has been widely conjectured that the result is valid even without assuming solvability.

In this note I present a proof that is much shorter than the one in [W] and that uses a different tool: character theory. The argument depends on an observation (equation (1) below) that was probably first made by Aschbacher and Guralnick [AG]. They used it to prove that the number of conjugacy classes of maximal subgroups of a solvable group is smaller than the number of conjugacy classes of the group, see Corollary 2 to Theorem B in [AG].

It also extends easily to cover the case when the smallest prime divisor of the group order is bounded from below, a theorem of Cook, Wiegold and Williamson [CWW]:

Theorem. Let G be a solvable group and p the smallest prime divisor of its order $|G|$. Then the number of maximal subgroups of G is at most $\frac{|G|-1}{p-1}$. Equality holds (only) for elementary Abelian p-groups.

[^0]The proof of this theorem is presented below.
Let \mathcal{N} denote the maximal subgroups of G that are normal and let \mathcal{M} denote a full set of representatives from the conjugacy classes of non-normal maximal subgroups of G. The number of maximal subgroups in the class of $M \in \mathcal{M}$ is $|G: M|$. So the number of maximal subgroups of G is $|\mathcal{N}|+\sum_{M \in \mathcal{M}}|G: M|$. We prove that $|G|-1 \geq(p-1)\left(|\mathcal{N}|+\sum_{M \in \mathcal{M}}|G: M|\right)$ to finish the proof.

The following key observation was made first by Ore [O, Theorem 14].
Theorem. If G is solvable and $M, N<G$ are maximal subgroups then either $M N=G$ or M and N are conjugate

Let M, N be non-conjugate maximal subgroups of G. Then the following holds by Frobenius reciprocity, by Ore's Theorem and by Mackey's Theorem,

$$
\begin{equation*}
\left(1_{M}^{G}, 1_{N}^{G}\right)=\left(1_{M},\left.1_{N}^{G}\right|_{M}\right)=\left(1_{M}, 1_{M \cap N}^{M}\right)=\left(1_{M \cap N}, 1_{M \cap N}\right)=1 \tag{1}
\end{equation*}
$$

(Equation $\left(1_{M}^{G}, 1_{N}^{G}\right)=1$ first appeared as Corollary 1 to Theorem B in [AG].)
Let $\tau(M) \subseteq \operatorname{Irr}(G)$ be the set of nonprincipal constituents of the permutation character 1_{M}^{G}. By equation (1), $\tau\left(M_{1}\right)$ and $\tau\left(M_{2}\right)$ are disjoint for non-conjugate maximal subgroups M_{1} and M_{2}.

As is well known, all characters of primitive permutation representations are multiplicity-free; if a point stabilizer is normal, all irreducible constituents of the character have degree 1, while if a point stabilizer is not normal, then all nontrivial irreducible constituents have degree greater than 1 and therefore greater than or equal to p.

Based on this and the fact that $|G: M| \geq p$ for maximal subgroups $M<G$ we obtain the following two bounds. If $M \nrightarrow G$ then

$$
\sum_{\xi \in \tau(M)} \xi^{2}(1) \geq p \sum_{\xi \in \tau(M)} \xi(1)=p(|G: M|-1) \geq(p-1)|G: M| .
$$

However, if $M \triangleleft G$ then

$$
\sum_{\xi \in \tau(M)} \xi^{2}(1)=|G: M|-1 \geq p-1 .
$$

By the above equation (1), every nonprincipal irreducible character occurs in at most one $\tau(M)$. So

$$
|G|-1=\sum_{1_{G} \neq \xi \in \operatorname{Irr}(G)} \xi^{2}(1) \geq \sum_{M \in \mathcal{N}} \sum_{\xi \in \tau(M)} \xi^{2}(1)+\sum_{M \in \mathcal{M}} \sum_{\xi \in \tau(M)} \xi^{2}(1) .
$$

For these last sums we use the bounds established above to get

$$
|G|-1 \geq \sum_{M \in \mathcal{N}}(p-1)+\sum_{M \in \mathcal{M}}(p-1)|G: M|=(p-1)\left(|\mathcal{N}|+\sum_{M \in \mathcal{M}}|G: M|\right),
$$

as claimed.
Two concluding remarks are due. First, it seems difficult to provide a good description for those $\xi \in \operatorname{Irr}(G)$ such that $\xi \in \cup_{M \in \mathcal{M}} \tau(M)$. For example, in S_{4} one of the 3-dimensional irreducibles does, the other does not correspond to a class of maximal subgroups. But these characters are indistinguishable from each other based only on the matrix of the character table.

Second, changing slightly the course of the above proof provides the strict bound $\sum_{\xi \in \operatorname{Irr}(G)} \xi(1)$ for the number of maximal subgroups of a solvable group G. Based on computational evidence this seems to be the proper formulation for a bound for nonsolvable groups, too. Of course, this would imply Wall's theorem for arbitrary finite groups.

References

[AG] Michael Aschbacher and Robert M. Guralnick, Solvable generation of groups and Sylow subgroups of the lower central series, J. Algebra 77, no. 1 (1982), 189-201.
[CWW] Roger J. Cook, James Wiegold and Alan G. Williamson, Enumerating subgroups, J. Austral. Math. Soc. Ser. A 43, no. 2 (1987), 220-223.
[O] Oystein Ore, Contributions to the theory of groups of finite order, Duke Math. J. (1939), 431-460.
[W] G. E. Wall, Some applications of the Eulerian functions of a finite group, J. Austral Math. Soc. 2 (1961/1962), 35-59.

PÁL HEGEDŰS
DEPARTMENT OF MATHEMATICS
CENTRAL EUROPEAN UNIVERSITY
NÁDOR UTCA 9
H-1051, BUDAPEST
HUNGARY
E-mail: HegedusP@ceu.hu

[^0]: Mathematics Subject Classification: 20C15, 20D10.
 Key words and phrases: maximal subgroups, solvable groups.
 The research was partly supported by OTKA (NK 72523).

