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Homogeneous quaternionic Kahler structures
on rank-three Alekseevsky spaces

By WAFAA BATAT (Oran), PEDRO M. GADEA (Madrid)
and JOSE A. OUBINA (Santiago de Compostela)

Abstract. The homogeneous quaternionic Kéhler structures on the rank-three
Alekseevsky spaces with their natural quaternionic structures, when each of them is
described as a solvable Lie group, and their types in Fino’s classification, are found.

1. Introduction

As is well known, symmetric quaternion-Kéhler spaces were classified by
WorLF [21] and homogeneous quaternion-Kéahler spaces admitting a simply tran-
sitive real solvable group of isometries were classified by ALEKSEEVSKY [2] (see
also DE WIT and VAN PROEYEN [20] and CORTES [11]). No more homogeneous
quaternion-Kéhler spaces are known. ALEKSEEVSKY proved in [1] that compact
homogeneous quaternion-Kéahler manifolds are Wolf spaces, and conjectured in [2,
p. 300] that the only homogeneous quaternion-K&hler manifolds are either Wolf
spaces or Alekseevsky spaces. A quaternion-Kéahler manifold is said to be positive
(resp. negative) if it is complete and has positive (resp. negative) scalar curvature.
LEBRUN and SALAMON’s Conjecture [16] says that a positive quaternion-Kéhler
manifold must be isometric to a Wolf space. This was settled by HITCHIN [13]
and PooN and SALAMON [17] for dimensions four and eight, respectively.
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In turn, homogeneous quaternionic Kéhler structures, that is, the Sp(n)Sp(1)
case of the AMBROSE and SINGER [4] and TRICERRI and VANHECKE [19] homo-
geneous Riemannian structures, have been studied in [12], [9], [7], [8]. Fino
gave in [12] a representation-theoretical classification of homogeneous quater-
nionic Ké&hler structures, which has five basic geometric types QKq,..., QKs.
(In the sequel we shall denote simply the type OK; & OK; by OK,;, the type
OK; & QK; @ QK by QK,ji, and so on.) A classification of these structures in
terms of real tensors was then given in [9] (see Theorem 2.1 below), where it was
moreover proved that a connected, simply-connected and complete homogeneous
quaternion-Kéahler manifold of real dimension greater than or equal to eight, ad-
mitting a nonvanishing structure in QK23 with nonzero projection to QKjs, is
necessarily the quaternionic hyperbolic space HH(n). Furthermore, a structure of
type QK134 on HH(n), corresponding to its description as a solvable group, has
been given in [9]. Then, in [7], [8] it has been shown that the quaternion-K&hler
symmetric spaces of dimension either 8 or 12 (they also are Alekseevsky spaces)
furnish proper realisations of the types OKis4, QK135, OK1345 and the generic
type QK12345.

On the other hand, quaternion-K&ahler spaces appear in the formulation of
the coupling of matter fields in N = 2 supergravity. Each multiplet consists of
4n real scalars and two Majorana spinor fields. The 4n real scalars parameterise
a 4n-dimensional Riemannian manifold M. If the gravity is considered as a dy-
namical field, the holonomy group of M is a subgroup of Sp(n)Sp(1), and M is
a negative quaternion-Kéhler manifold (BAGGER and WITTEN [5], see also [10],
[20]), so these spaces are target spaces of nonlinear o-models in N = 2, d = 4,
supergravity. Later, CECOTTI [10] studied the relation of those spaces with the
c-map, and proved that Alekseevsky spaces naturally appear in this context and,
furthermore, that the nonsymmetric ones are related to Vinberg T-algebras as
the symmetric ones are related to Jordan algebras. In turn, DE WIT and VAN
PROEYEN [20] studied those spaces, completing Alekseevsky’s classification, and
specifically adding the spaces T (p), p > 1, by using supergravity considerations.
That Alekseevsky spaces actually appear in three series, 7-, W-, and V-spaces
(which include symmetric and nonsymmetric manifolds), was then proved by
CoRTES [11] by using geometric arguments. Further, the authors of [20] gave an
explanation of the presence of nonsymmetric spaces in terms of (certain extra)
dimensions of the isometry groups.

The aim of the present paper is to find the explicit homogeneous quaternio-
nic Kéhler structures carried by the rank-three Alekseevsky spaces T (p), p > 0,
when each of them is described as a solvable Lie group, and then to determine
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the type of such structures in Fino’s classification, so seeing in particular whether
the structure is or not special, in the sense of having or not nonzero components
in each basic type QK,;, ¢ = 1,...,5. To this end, we make calculations which
are crucially based on the explicit description by CORTES ([11]) of the spaces
T (p) as completely solvable Lie groups with a left-invariant quaternionic Kéhler
structure.

As for the contents, after some preliminaries in §2, we obtain in §3 Theo-
rem 3.1, giving the homogeneous quaternionic Kahler structure corresponding to
the description as a Lie group of each space T(p). In §4 we give Theorem 4.1,
with the type of such structure in Fino’s classification. We prove that it has
components in each subspace QIC;, for i =1,...,5.

2. Preliminaries

2.1. Homogeneous quaternionic Kahler structures. As is well known,
AMBROSE and SINGER [4] proved that a connected, simply-connected and comp-
lete Riemannian manifold (M, g) is Riemannian homogeneous if and only if it
admits a homogeneous Riemannian structure, i.e., a (1,2) tensor field S satis-
fying
Vg=0, VR=0, VS=0,

where V=V — § , V denotes the Levi-Civita connection and R the curvature
tensor of V. We write as usual Sxyz = ¢g(SxY, Z). Then, from Vg = 0 it follows
that the condition %g = 0 is equivalent to Sxzy = —Sxyvz.

Let (M, g,v3) be an almost quaternion-Hermitian manifold, v3 being the
structure subbundle of the bundle of (1,1) tensors on M. That is, there locally
exists a basis Ji, Jo, Js of v? satisfying the conditions

T2 =1, NWJo=—Jodi =J3, g(J.X,J,Y)=g(X,Y), (2.1)

a

for ¢ = 1,2,3. Such a basis is called a standard local basis of ©2 in its domain of
definition. Such an M has dimension 4n, with n > 1. It is known that M admits
an almost quaternion-Hermitian structure if and only if the structure group of its
tangent bundle T'M is reducible to Sp(n)Sp(1).
Let Ji, Jo, J3 be a standard local basis of v and let wa(X,Y) = g(J,X,Y),
a = 1,2,3. The differential 4-form Q = 22:1 wq Awg is known to be globally defi-
ned. The manifold is said to be quaternion-Ké&hler if one has locally (cf. ISHIHARA
[14]) that
VxJi=713(X)Jy — 7%(X)J3, etc., (2.2)



694 Wafaa Batat, Pedro M. Gadea and José A. Oubina

for certain differential 1-forms 71, 72, 73 (here and in the sequel, ‘etc.” denotes the

equations obtained by cyclically permuting the indices 1,2, 3); or, equivalently, if
VQ = 0. The holonomy group is contained in Sp(n)Sp(1).

In the present paper we shall consider quaternion-Kéahler manifolds of dim >8
and negative scalar curvature (see [6], [18]). We have (cf. ALEKSEEVSKY and
CORTES [3, p. 218], and see also [9, Rem. 2.2]) the next

Definition 2.1. A quaternion-Kihler manifold (M, g, v3) is said to be a homo-
geneous quaternion-Kdhler manifold if it admits a transitive group of isometries.

Moreover, as a Corollary to KIRICENCO’s Theorem [15] one has that a con-
nected, simply-connected and complete quaternion-Kihler manifold (M, g,v?) is
homogeneous if and only if there exists a tensor field S of type (1,2) on M satis-
fying

Vg=0, VR=0, VS§=0 VQ=0, (2.3)
where V = V — S. Such a tensor § is called a homogeneous quaternionic Kdhler
structure on M. The equation VQ =0 is equivalent, under 69 = 0, to the
existence of three differential 1-forms 7!, 72, 73 such that

Vi = 7(X)Jy — 72(X)Js, et (2.4)
Formulas (2.2) and (2.4) yield
Sx 1Y — 1SxY = 3(X). LY — 0*(X)J5Y, etc.,
for ¢ =71 — 7% a =1,2,3. We then have that
Sxnynz —Sxyz =03(X)g(JY, 1 Z) — 0*(X)g(J3Y, 1 Z), etc., (2.5)

which together with the condition Sxyz = —Sxzy, are the symmetries satisfied
by a homogeneous quaternionic Kéhler structure S.

Fino gave a representation-theoretical classification of homogeneous quater-
nionic Kéhler structures: With the usual notation E, H (and K for the module
with highest weight (2,1,0,...,0)) for quaternion-Kahler manifolds (see for ins-
tance [18]) one has

Theorem (FINO [12, Lemma 5.1]). A homogeneous quaternionic Kéhler
structure S belongs pointwise to the module

[EH] ® (sp(1) ®sp(n)) = [EH] + [ES*H] + [EH]| + [S*EH] + [KH].
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We shall write QKq, . .., QK5 for the five Fino basic types, in the above order.
Let (V,(,),q) be a quaternion-Hermitian vector space, i.e., a 4n-dimensional
real vector space endowed with an inner product (,) and a quaternionic structure
q generated by operators Ji, Jo, Js satisfying (2.1). Consider the space of tensors

T(V) = {S € ®3V* :Sxyz = —szy}
and its vector subspace

OK(V) ={S € @*V*: Sxyz = —Sxzy, 30% € V* s.t. S satisfies (2.5)}.

Any homogeneous Riemannian structure on M belongs to 7 (T, M) pointwise, but
homogeneous quaternionic Kéhler structures are pointwise in QK (T,M).
Consider the subspaces V and V of QK (V) defined by

3
V= {@ € OK(V): Oxyz = 3 0%(X)(LY, Z), 6° € V*},
a=1
V= {AeQK(V): Axs,vi,z =Axyz, a=1,2,3}.
Then one has QK (V) =V @V, and each element S € QK(V) decomposes as

Sxyz =Oxyz+Axvz,
where

3
Oxyz = % > M X) (LY, 2), (2.6)

0 being the 1-forms corresponding to S as in (2.5). Moreover, the classification
by real tensors is ([9, Th. 3.15]) as follows.

Theorem 2.1. If n > 2, the space QK (V') decomposes into the direct sum
of the following Sp(n)Sp(1)-invariant and irreducible subspaces:

3
oK, = {@ €EV:Oxyz =Y 0(JX)(JY,Z), 0 € V*},
a=1

3 3
0k, = {@ €V:Oxyz =3 0X)LY,Z), 3 0°0], =0, 0" c v*}7
ks = {A eV :Axys = (X, Y)(Z) — (X, Z)I(Y)
3
+ 3 (XTI Z) — (X, T Z)9(J.Y)), ¥ € V*},

a=1
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3
~ 1
Ki={AecV:Axys=-( 6 4 S A ,
OK4 { Xyz G(XYZ XYZ+;XJQYJGZ XJaYJaZ)
Clg(A)O},

K5 = {A ev: 6 Axyz= o},

where c¢12(A)(Z) = 2?21 Ae,e;z, for any local orthonormal basis {e;} of V.

Note that with the previous notations we have that

2.2. Alekseevsky spaces. We recall here some definitions and results by ALEK-
SEEVSKY [2] (see also [3], [11]). A solvable Lie algebra s is said to be real (or
completely) solvable, if the endomorphisms adx, X € s, have only real eigenva-
lues. A Lie group is said to be real solvable if its Lie algebra is real solvable. A
quaternion-Kéahler manifold of nonzero scalar curvature is said to be an Alekse-
evsky space if it admits a simply transitive, real solvable group of isometries.

A metric Lie algebra is a pair (s, (,)) consisting of a Lie algebra s and an
inner product (,) on s. An Alekseevsky space is simply-connected and it can be
regarded as a real solvable Lie group with a left-invariant metric. The corres-
ponding metric Lie algebra with the quaternionic structure inherited from that
of the manifold is a quaternion-Hermitian vector space (s, (,),q) which is called
a quaternionic or Alekseevskian Lie algebra. A metric Lie algebra f with an ort-
honormal basis {G, H} and complex structure J is said to be a key algebra with
root u, if

G=JH, [HG]=uG, w> 0.

A metric Lie algebra f 4 r with complex structure J is said to be an elementary
Kéhlerian Lie algebra with root p if f = Span{G, H} is a key subalgebra with
root p and

1
aduly = 5ul, adel =0, [X.Y]=p(JX.Y)G, XYer (27

A representation U +— Ty of a Lie algebra u with complex structure J on a
Euclidean space (r, (,)) with a complex structure J; is said to be symplectic if:
(1) JiTyJ1 = T}, (where T}, is the endomorphism of ¢ adjoint to Ty), i.e.,
Ty annihilates the Kahler form wy = (Ji+,-): wi1(TyX,Y) + w1 (X, TyY) = 0 for
alU eu, XY €.
(2) T57" = JIP™ for all U € u, where Tp)™ = (Ty + T;) denotes the
symmetric part of Ty .
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If Tyr = ¢, T is called nondegenerate. If T is a nondegenerate symplectic
representation of a key algebra f = Span{G, H } with root u on a space (g, (,), J1),
then r admits a weight decomposition ¢ = r4 + r— such that

1
- = Jlx-‘ra TG‘IJr = Oa TG|I7 = 7#‘]17 TH|xi = :|:§IU’I (28)

Any Alekseevskian algebra (s, (,),q), with q = Span{J, : a = 1,2, 3}, conta-
ins one (up to scaling) 1-dimensional quaternionic subalgebra s’ (i.e., a subalgebra
5" such that qs’ C §'), corresponding either to the complex hyperbolic plane CH(2)
or to the quaternionic hyperbolic line HH(1). In the former case it is of the form
s = u+ Jou (orthogonal sum), and (u,.Jy},) is the so-called principal Kahlerian
subalgebra of s. The Lie algebra u contains a key subalgebra fo = Span{Gg, Ho}
with root 1 such that fo + Jafo is the canonical 1-dimensional quaternionic subal-
gebra of s, and the adjoint representation of s induces a representation of u on
ut = Jou, which furnishes the model for the next definition.

A Kéhlerian Lie algebra (u, J), that is, a metric Lie algebra which corresponds
to a Kahlerian homogeneous space, is said to be admissible if u = fo + ug is a
direct orthogonal sum of a key algebra fo = Span{Gy, Ho} with root 1 and a
real solvable Kéhlerian Lie algebra ug. A representation U — Ty of such a Lie
algebra u on a Euclidean space u together with a vector space isometry ¢ : u — u
is said to be a Q-representation if it satisfies the following eight conditions (Q1-8),
given in ALEKSEEVSKY [2, Lemma 5.5 and Definition 5.3] (cf. also CoRrTEs [11,
Definition 1.8]), where we denote U = ¢(U) for each U € u, and .J; and J are the
complex structures on u given by

Jl = —(,OJgOil, j‘ﬂfvo = —Jl‘Ffvo, j|flo = J1|ﬁ0 : (29)

(Ql) Ty, =31, Tg, =0,

(Q2) Ty, Ho = 1Uo — 2a(U)Go, Tu,Go = $JUo + 2a(Up) Ho,
(Q3) Tu,Vo = 2 (Uo, Vo) Ho + 3(JUs, Vo)Go mod iy,

(Q4) TiE = oV, + 2a(Uo) J1,

(Q5) T30 e = N1 T35 |50

(Q6) Tizm% - T‘S/ﬁmﬁo = (JUy, Vo) Go,

(Q7) Ty, annihilates the Kahler form & = <j, 3,

for some linear form « on ug, where Uy, Vi € up, V is the covariant derivative of u,
and T3F and T;7™ denote the skew and symmetric parts of Ty, , respectively; and
0 0

(Q8) for each U € u, the endomorphism Ty has only real eigenvalues.
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Then ALEKSEEVSKY proved in [2] the following facts: Q-representations of
an admissible Kéhlerian Lie algebra (u,J) and Alekseevskian Lie algebras with
principal K&hlerian subalgebra (u, J) are related by the following natural corres-
pondence. If s is an Alekseevskian Lie algebra with principal K&hlerian subalgebra
(u, J), then the representation of u on Jou induced by the adjoint representation
of 5 is a Q-representation with ¢ = Jo|, : u — ut. Conversely, let (T, ¢) be a
Q-representation of an admissible Kéhlerian Lie algebra (u, J) on the Euclidean
vector space

= p(u) = fo + tio.
A quaternionic structure q = Span{J, : a = 1,2, 3} on the Euclidean vector space
s = u+ 1 (orthogonal sum) is defined by

Jilh=J, Jila=—eJo ™, Blu=¢, Jli=-—¢t, J3=JJs. (2.10)

Let J be the complex structure on i defined as in (2.9), and let & denote the
Kéhler form on u given by w(U,V) = <j U,V). Then the following conditions
define the structure of Lie algebra of s:

u is a subalgebra of s, adyls =Ty, [U,V]=a(U,V)Go, (2.11)

for all U,V € u.

The rank of a solvable Lie algebra s is the dimension of a Cartan subalgebra
of 5. The rank of an Alekseevsky space S is the rank of its Alekseevskian Lie
algebra s, which is proved to be at most 4. An admissible Kéhlerian Lie algebra
u = fo + up which admits a Q-representation decomposes as a semidirect sum of
elementary Kéhlerian Lie algebras, with ug = >_,~(f; +1;), that is,

[fi + x5 + 5] €+, 12>,
with symplectic representation ady,|;, for ¢ > j and commuting key algebras,
[fi,f;] = 0, for i # j (see [11, p. 134]).

The rank of u = fo+ > ,~(fi +1:) coincides with the number of key algebras
of u. There are only three types (type 1, 2 or 3) of admissible Kéhlerian Lie
algebras, corresponding to the cases where the smallest root is 1, 1/A/2 or 1/4/3,
respectively.

3. Homogeneous quaternionic Kihler structures on the spaces T (p)

Now we focus on the rank-three case and we will make calculations essentially
based on the explicit description of the spaces T (p) as completely solvable Lie
groups with a left-invariant quaternionic Kéhler structure found by CoRTEs [11].
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Kahlerian Lie algebras of type 2 which admit a Q-representation have rank 3.
Now, (see [2, Sect. 8] and [11, Sect. 2.1]) every Kéhlerian Lie algebra (u,.J) of
type 2 which admits a Q-representation is a direct (orthogonal) sum of the form
u = fo + up, where fo = Span{Go, Hp} is a key algebra with root 1 and ug is
a semidirect sum of two elementary Kéhlerian Lie algebras f; + r; and fo with
roots 1 and 1/v/2, respectively, the key algebras f; = Span{G;, H;}, i = 1,2,
commute and ady,|;, is a nondegenerate symplectic representation with weight
decomposition

n=ry -, - =Jrg

Then, by (2.7) and (2.8) respectively, we have
1
adH1|2:1 :51’ adG1|1t1 =0, [XaY] = <JX,Y>G17 X,Y €en,

and

V2 V2

adG2|I+ =0, adG2|1c7 = _7J7 adH2|1:i = :‘:TI

Thus we have the following Lie brackets on u (where we put X_ = JX € ¢_ for
each X  €ry):

V2
[Ho,Go|l = Go, [Hi,Gi] =G, [Hy,Go]= 7G2,

1
[Hl’X]:iX’ [G1,X] =0, for X €,
(X4, Yy =[X_ Y] =0, [X4,Y]=(Xy, Y})G,
V2

G0 X ] =0, (G2, X )= X,
[(Ha, Xy ] = %X% [H2, X_| = —?X_, (3.1)

for all X, Y, € ry. These, together with [fo,ug] = 0 and [f1,f2] = 0, give the
structure of Lie algebra of u.

Furthermore, the Kéhlerian Lie algebra (u, J) has a unique Q-representation
on the Euclidean vector space u = }0 + ug,

T : u — End(i),
where ~ : u — u denotes the corresponding isometry of Euclidean vector spaces.
If p = dimcry = dimgry € {0,1,2,...}, we consider the quaternion-Hermi-
tian vector space (t(p), (,),q), where t(p) = u+1 is a direct orthogonal sum, and
q = Span{J, : a = 1, 2,3} is the quaternionic structure on t(p) defined by (2.10).
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Let {X;+ : 1 < i < p} be an orthonormal basis of ¢4, and X;— = JX, .
Then

B:{GjaHj7Xi+aXi—7éjaij73(\;+73\(/i— OS.] §27 1 SZSp}

is an orthonormal basis of t(p).
The action of J,, a = 1,2,3, on t(p) = u+ 1 is given in Table 1.

Go Ho Gi Hi G» Hs Xiy Xio Go Hy Gi Hi Ga» H Xiy Xi_

Ji —Hy Go —Hi G1 —Hy Gy Xio —X;y Hy —Go Hi —Gy Hy —G2 —X;_ X;,
J» Go Hy Gi Hy G2 Hy Xiy X;_ —Go—Ho—Gi—Hy—Gy—Hs —Xiy —X;_
J3 Ho —Go Hi —Gi Ho —G» —X,_ Xvi.;_ Hy —Go H1 —Gi1 Hy —G2 —X;_ X;i

Table 1. The action of J,, a = 1,2,3, on t(p)

The vector space t(p) has a structure of Lie algebra given by (2.11), with
s = t(p), where the complex structure J on i is defined by

Go Ho Gi Hi G» Hy Xii X,
Jo -Hy Go Hy -G\ Hy -Gz —Xi Xy

Then, by the third condition in (2.11), we have the brackets of the elements of 1.
The nonnull brackets are given by

[Ho, Go] = —[Hy,G1] = —[Ha, Go] = —[Xi4, X;_] = Gh. (3.2)

If U € uand V € @i, by the second condition in (2.11), [U, f/] = TyV, and
it is exhibited in Table 2, where T' : u — End(it) is expressed in terms of the
orthonormal basis {éj,ﬁj,z+,5(vi_} of i, from the conditions (Q1-8) of a Q-
representation (cf. Cortés [11, Prop. 2.1]).

The Lie algebra t(p) is 4-step solvable, dimt(p) = 12 + 4p, and the corres-
ponding simply-connected Lie group with left-invariant metric is the Alekseevsky
space T (p).

Consider now, for any p > 0, the Alekseevsky space T (p), and the tensor
field S on T (p) given by

2<SXY7 Z> = <[Xv Y]v Z> - <[X7 Z]7Y> - <[Yv Z]7X>a (33)

for X,Y,Z € t(p). Let V be the Levi-Civita connection of (7(p),(,)). Then
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Go Hy Gh H,
Go 0 0 0 0
Ho %éo %ﬁo %61 %fll
G1 %l(ﬁoJrﬁl) %(éoJrél) %(ffo+f~11) %1(50+§1)
Hy %él %ﬁl %éo %flo
G2 F(VZHo + Ha) 1(V2Go + Ga) Z(V2H, + Hy) L(V2G - Ga2)
H> 1G, 1H, e e 1H,
Xj+ 31X, 31X, X X5,
Xj— %1};+ %)?;7 %)?;Jr Tl)?gf
G2 Hy Xiy Xi_
Go 0 0 0
Ho 1G L1H, 1Xi, i1Xi
G1 Hy 0 0 0
Hy LG, 1H, 0 0
Ga L(Ho — Hy) Z(Go + G1) 0 —?554
Hs L(Go — G1) L(Ho + Hy) ?554 7)1/53{17
X+ 7;/55(;, 0 6;‘7 (Ho + Hy + V2H>) 5;'j (Go + G1)
X, =X, 0 Z%id (Go + Gh) 24 (Ho + Hy — V2H>)

Table 2. The Q-representation 7' : u — End(u1)

V = V — S is the connection on the Lie group 7 (p) for which every left-invariant
vector field is parallel. Thus, conditions (2.3) are satisfied and S is a homogeneous
quaternionic Kéahler structure. Moreover, the holonomy algebra of the connection
V is trivial, and then S provides the description of T (p) as a Lie group (see [19,
p- 32, Egs. (1.79)]).
Since [u,u] C u, [u,u] C 4, [u,1] C u, and u and @ are orthogonal, from (3.3)
we have
Soviv =0, Sgyw =0, Sypw =0, Sgpw =0 (3.4)

We have t(p)* = u* 4+ u*. Let
Bt = {y], 0, & & 40,0, 81,87 0<j <2, 1<i<p}

be the basis of t(p)* dual to the basis B= {Gj,Hj,XH,Xi_,éj,ﬁjj(vpr,z,}
of t(p). Then, if we denote by Sy the 2-form defined by Sx(Y,Z) = Sxyz, we

have

Theorem 3.1. The homogeneous quaternionic Kahler structure S on each
rank-three Alekseevsky space T (p), p > 0, which gives its description as the
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simply-connected solvable Lie group with Lie algebra t(p), is given, in terms of
the basis B* of t(p)*, by

Swepzw =71° @ AN") + @ (v AR

n g% ® (72 /\772) _ %(71 4 ?,ﬁ) ® Z(EH /\gif)

D R =)

e e (- 2 e a6 n - o)
Shept e = %(70 — V2 @ (AT - %(vo - V2 ) @ (3 A

_ %(’YO e (B2 AT + %(70 4 g,ﬂ) ® Z(gwr A ézf)

AN o6 A )0 (0 1 20)

o e (- ) e e - ),

2
Sa, = ;( (3 A =17 AP+ D (ET AL —é”Agi—)),
Jj=0 i

2
Si, = ;(ZW’ AY P AP D (ETAET HET A fi)>,

7=0 A

1 i i N 3 i
Se :5(7°An1+n0Avl+vlAn°+n1Av°*72An2*n2A72),

L 0! n ~ = ~ ~
Sp, = (A A A AnE = A AT AR =5 A+ A,
L Y y n n by ~
Sa. = 5(@0_71) AP+ (=) AVR+F2A (00 — V) + iR A (70 — 71))
— T ET AL ALY,
L A y N 9 by ~
Siy = 5 (~G0+3) AV G+ AP =32 A (47N A (00 +1Y)

+
ol

D ETAET G AT,

7
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LV

L. i— = i ~ i— = i
S5, = 5 (A ANET NG + SE (AL AL

2
HE A )5 ().

2
L i = i— \/§~ i ~ i—
Sz =5 (AT HAAET) = SE AL+ AET)

3E (=T e (- )
PRroOOF. Let U, V,W € u. By (3.3),
Suvw = %(([U, VI,W) = (U W], V) —([V,W],U)). (3.5)

On account of (3.1), and by the equation S, = 0 in (3.4), from (3.5) one
obtains the values of Syyw for U, V and W in the orthonormal basis B, and
hence we get the expression of S|, g a2 ,-- In order to get Sj, gz 5+, We use (3.3),
(3.2), the equation S}, = 0 in (3.4) and Table 2, since [U, V] = TyV. Now,
from (3.3), by using (3.2), Table 2, and the equations Sz, = Sy = 0in (3.4),

we get Sg for each U = Gj,flj,Xi+,Xi_. O

4. Types of homogeneous quaternionic Kahler structures
on the spaces T (p)

We now determine the type of the previously obtained structure S on each
T (p). To begin with, from the expression of S in Theorem 3.1 and from Table 1
we get

Lemma 4.1. The forms 0%, a = 1,2, 3, in (2.5) corresponding to the homo-
geneous quaternionic Kahler structure S in Theorem 3.1 are given by

1
0l =—S("+7' + V297, =i, =5

We have S = © + A, where O is given by (2.6). Then, by Lemma 4.1 we

have
1 V2
Og,vz =0Oag, vz = _Z<J1Y’ Z), Og,yz = —T<J1Y, Z)

1 1
Oz = §<J3Y7 Z), Ofyz = _§<J2Yv Z),

and ®Hj = @él = 652 = @ﬁ1 = @ﬁg = (—)XH» = @XP = @Z+ = @)’Z:_ = 0, for
0<j<2and1<i<p, where Ox(Y,Z) = Oxyz. Then, by using Table 1, we
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obtain

Proposition 4.1. The tensor field © on T (p) corresponding to the homo-
geneous quaternionic Kahler structure S in Theorem 3.1 is given by

2
@GO = i(Z(r}/J /\77J _ ;?J /\ﬁj) + Z(éﬂr /\é:if 7€i+ /\gi)>7

Jj=0 i

2
(ZW‘ NP =1 AF) Y (€T AET =g A 52')),

j=0

Os =

o
N | —

2
O = 3 (ZW AY 1P AT+ D O(E AT €A £i>),

j=0 i
eGl = @G()’ eGQ = \/§®G07
Om, =05 =0g, =05 =05 =Ox,, =Ox,_ =05 =05 =0,
<

J

We then have

Theorem 4.1. The homogeneous quaternionic Kahler structure on each
rank-three Alekseevsky space T (p), p > 0, given in Theorem 3.1, has a nonzero
component in QIC;, fori=1,...,5.

PROOF. The structure is given as S = © + A, and the values of the 1-forms
0% are given in Lemma 4.1. Then we firstly have that, as for instance,

3

Zea(JaHl) = _% 7é Oa

a=1

the component © of the structure S does not belong to QKCs.
Moreover, from Proposition 4.1, one has that the nonzero values of O xy z

are those with
X = Go,G1,G2,Go, Hy.

In particular one has the next nonzero values of © x xy .

1 V2
GGoGoHo = @GlGlHl = 17 @GQGQHQ = T?
1

eéoéoHo = @ﬁoﬁoHo = 5 (4.1)
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Suppose that © € QK4, so there would be a 1-form 6 as that in Theorem 2.1,
and in particular we would have

1
5 =06,G.1, = 0(Hyp),

1
i = @GOGOHO = 0(H0)7 9

which is absurd. Whence © € QK15 \ {OK; U QK5 }.
Further, as dim 7 (p) = 12 + 4p and on account of (4.1), the form ¥ defining
the QKs-component (see Theorem 2.1), that is,

1 1

BERT TR T e T

is given by

1

9= -
8(7 + 2p)

(11 +4p)Ho + (3+ 4p)Hy + V2Hy, ). (4.2)

Hence the structure S has nonzero component in Q3 for any p > 0.
Consider now the operator ® : V — V defined by

3
P(A)xyz =Avzx + Azxy + Z(AJQYJuZX +Aszx1.Y)s

a=1

having eigenvalues 2 and —4, with corresponding eigenspaces QK34 and QKs,
respectively (see Theorem 2.1). Consider AY € QK3, given by

3
Akyz=XY)(Z) (X, 2)9(Y) + Y (X, JaY)I(JaZ) — (X, JuZ)I(JaY),
a=1
where 9 stands for the 1-form (4.2). Then A — AY € QKy5, so that
DA -A)xyz =PA)xyz — 2A%y 2
Taking then for instance the vectors X =Y = Gy, Z = Hy, we get

T N 5+p 49
(‘A A )GOGOHO - 2(7+2p)7 (I)(‘A A )

_ 16+5p
GoGoHo — 74 9p

hence A — A” € QK45 \ {QK4 U QK5} for all p > 0. That is, S has a nonzero
component in each basic type. ([
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