
Publ. Math. Debrecen

78/3-4 (2011), 535–541

DOI: 10.5486/PMD.2011.4716

A novel test for unique decipherability of codes

By JÁNOS FALUCSKAI (Nýıregyháza)

Abstract. Having a set C of codewords wi we have to decide whether there are

two or more sequences of codewords which form the same chain of characters of code-

words. A code C is UD (uniquely decipherable) code, if every message has at most one

factorization with respect to code C, that is, if x1x2 . . . xn = y1y2 . . . ym holds, where

x1, x2, . . . , xn, y1, y2, . . . , ym ∈ C, then n = m and x1 = y1, . . . , xn = yn. We have

developed an algorithm that solves this problem by using finite automata in [1]. In this

paper we suppose that there is no empty string in the set of coded messages. Thus, we

investigate the language C+. In these cases the automata have more states, but we get

more applicable results.

1. Introduction

The decipherability of codes has been investigated by Sardinas and Pat-

terson [2] foremost. It is known as Sardinas–Patterson algorithm. The result

involved a number of papers by Markov [3], Bandyopadhyay [4], Levensh-

tein [5], Riley [6], de Luca [7]. The design of an efficient algorithm is descri-

bed by Spehner [8], Rodeh [9], Apostolico and Giancarlo [10], McClos-

key [11]. The complexity of the algorithm which decides the decipherability of a

code is not known, but Hoffmann [12], Galil [13], McCloskey [11] andKönig

[14] have reached useful results. The concept of decipherability was extended to

infinite words and their languages in [15], [16], [17] and [18].

In this paper we give a novel algorithm based on automata theory. The

unique decipherability of the codes is a special problem in the automata the-

ory, namely we have to test whether a given rational expression is unambiguous.

Mathematics Subject Classification: 94B35, 94A45, 68Q45.
Key words and phrases: decipherability, automaton.

536 János Falucskai

Standard decision procedures exist concerning this question, see Eilenberg [19],

or Aho et al. The connection between codes and regular expressions has been

pointed out by Brzozowsky [20].

In general we can say that a code is a set of sequences of letters. In the course

of coding we assign various codewords to the letters of the source messages, this

process is called verbatim coding. We can code by non verbatim methods, but the

decipherability of a code does not depend on the alphabet of the source message

and the methods. So the decipherability only depends on the set of codewords.

A verbatim coding is given by f : Σ → ∆+, where Σ is the alphabet of the source

message and the set ∆ is the alphabet of the code. The coding defined by f will

be decipherable, if the following criterion is fulfilled:

f(x1) . . . f(xn) = f(y1) . . . f(ym) ⇒ n = m and f(xi) = f(yi), xi = yi,

where xi, yi ∈ Σ, f(xi), f(yi) ∈ ∆+.

The mapping f is homomorphic by the definition of verbatim coding and the

properties of the concatenation. Thus, we can formulate with the following way:

g : Σ+ → ∆+. In this case the decipherability means the following:

g(x1 . . . xn) = g(y1 . . . ym) implies n = m and xi = yi ∀i ≤ n,

where xi, yi ∈ Σ, g(x1 . . . xn), g(y1 . . . ym) ∈ ∆+

That is, the mapping g is isomorphic.

2. A finite automaton of code

Our algorithm is based on theory of finite automata. Using automata of

codewords we can construct an automaton for the code C over alphabet ∆. If

the codeword wi ∈ C is x1x2 . . . xn, xj ∈ ∆, then the automaton A({wi}) will be

A({wi}) = (Q(i), qλ, Q
(i)
F , A, δ(i)). The set Q(i) is the set of states where the state

qλ is the initial state of the automaton A({wi}) and the singleton Q
(i)
F is the set

of final state. Q
(i)
F = {i} and |Q(i)| = length(wi) + 1. Since, the transition rules

of automaton A({wi}) are the following:

δ(qλ, x1) = qx1

δ(qx1 , x2) = qx1x2

...

A novel test for unique decipherability of codes 537

δ(qx1x2...xn−2 , xn−1) = qx1x2...xn−2xn−1

δ(qx1x2...xn−1 , xn) = i

Thus, the automaton A({wi}) accepts the codeword wi.

Let us consider the nondecipherable sequences of codewords. It is obvious,

that the different factorizations contain at least two codewords where one of

them is prefix part of the other. That is, if u1 . . . un = w1 . . . wm, then there is a

number k such that ui = wi, but uk 6= wk for any i < k, where 1 ≤ k ≤ min{n,m}.

If we join the automata of codewords by the method above, then we will obtain

the automaton A({w1, . . . , wn}) for the code C = {w1, . . . , wn}. We can use a

shorter notation A(C), too. Denote x
(l)
1 the first symbol of the l-th codeword.

Thus,

A(C) = (q,QF = {1, . . . , n}, Q = Q(1) ∪ · · · ∪Q(n), A, δ),

where

δ = δ(1) ∪ · · · ∪ δ(n) ∪ {δ(1, x
(1)
1) = q

x
(1)
1
, . . . , δ(1, x

(n)
1) = q

x
(n)
1

, . . . ,

δ(n, x
(1)
1) = q

x
(1)
1
, . . . , δ(n, x

(n)
1) = q

x
(n)
1

}.

Obviously, the automaton A(C) accepts exactly the language C+.

Theorem 2.1. If the automaton A(C) is deterministic, then the code C will

be decipherable.

Proof. Recall that each prefix code is decipherable. Therefore, it is enough

to show, that the code C is prefix whenever A(C) is deterministic.

Suppose that, contrary of our statement, A(C) is deterministic and C is

not prefix. Then there are two codewords wi and wj such that wi = wjα,

where α ∈ ∆+. In more details, there are x1, . . . , x|wj |, . . . , x|wi| ∈ ∆ such that

wj = x1 . . . x|wj | and wi = x1 . . . x|wj | . . . x|wi|. By our constructions, this imp-

lies that δ(qx1...x|wj|−1
, x|wj |) = qx1...x|wj |

6∈ QF and there exists j ∈ QF with

δ(qx1...x|wj|−1
, x|wj |) = j for which j 6= qx1...x|wj |

. But then A(C) is nondetermi-

nistic. Therefore, if A(C) is deterministic then C is prefix as we stated. �

There are codes which are nonprefix, but decipherable. For example the

code C = {01, 0100}. That is, the automaton of decipherable codes can be

nondeterministic one. Thus, the Theorem 2.1 is not reversible. We demonstrate

the graphical presentation of the automaton A({01, 0100}) in Figure 1.

The automaton A({01, 0100}) is nondeterministic because of the rule

δ(q0, 1) = {1, q01}

538 János Falucskai

qλ q0 q01 q010 2

1

0 1 0 0

1

0

0

Figure 1. The automaton A({01, 0100})

But, the code {01, 0100} is decipherable. If we use our construction, then the

automata of the nondecipherable codes will be nondeterministic.

The condition of the Theorem 2.1 is sufficient. Next, we give a necessary

and sufficient condition of the decipherability using a well-known algorithm for

constructing an appropriate deterministic finite automaton of a nondeterministic

finite automaton. (See, for example, [21]).

Let A = (Q, qλ, QF , A, δ) be a nondeterministic finite automaton with set

of states Q, initial state qλ, set of final states QF , input alphabet A, transition

function δ : Q × A → 2Q.1 It is said that A accepts the word x1x2 . . . xn ∈

Σ∗, x1, . . . , xn ∈ Σ if there are q1, . . . , qn−1 ∈ Q, qn ∈ QF with q1 ∈ δ(qλ, x1), q2 ∈

δ(q1, x2), . . . , qn−1 ∈ δ(qn−2, xn−1), qn ∈ δ(qn−1, xn). In particular, we say that A

accepts the empty word if qλ ∈ QF . The set of all words accepted by A is called

the language accepted by A. Two nondeterministic automata is called equivalent

if they accept the same language.2

Theorem 2.2. [21] Let L be a set accepted by a nondeterministic finite au-

tomaton A. Then there exists a deterministic finite automaton A′ that accepts L.

Consider the automaton A and define a deterministic finite automaton, A′ =

(Q′, q′λ, Q
′
F , A, δ

′) as follows. The states ofA′ are all the subsets of the set of states

of A. That is, Q′ = 2Q. Q′
F is the set of all states in Q′ containing a state of QF .

An element of Q′ will be denoted by [q1, q2, . . . , qi] where q1, q2, . . . , qi are in Q.

1If for every pair q ∈ Q,x ∈ A, δ(q, x) has at most one element then A can be considered as a

deterministic finite automaton.
2We can also consider a deterministic finite automaton as a special nondeterministic one. Thus

the concept of equivalence can be extended for deterministic finite automata in natural way.

A novel test for unique decipherability of codes 539

Note that q′λ = [qλ]. We define

δ′([q1, q2, . . . , qi], a) = [p1, p2, . . . , pj]

if and only if

δ({q1, q2, . . . , qi}, a) = {p1, p2, . . . , pj}.

That is, δ′ applied to an element R of Q′ is computed by applying δ to each state

of Q represented by R = [q1, q2, . . . , qi]. On applying δ to each of q1, q2, . . . , qi
and taking the union, we get some new set of states, p1, p2, . . . , pj. This new set

of states has a representative, [p1, p2, . . . , pj] in Q′, and that element is the value

of δ′([q1, q2, . . . , qi], a). We say that the A’ is the deterministic finite automaton

of the nondeterministic finite automaton A. By this concept, we can derive the

following result from Theorem 2.2.

Theorem 2.3. [22] Every finite automaton equivalent to its deterministic

finite automaton.

If we have the string v ∈ C+, then the automaton A(C) will accept v. That

is, the automaton A(C) will read v and get to a final state. If the code C is not

uniquely decipherable, then we can follow different paths during reading v. We

join these different paths by the equivalent deterministic automaton.

Let us fix an arrangement w1, . . . , wn of the elements of C and for every

w ∈ C, put N (w) = k if and only if w = wk (k ∈ {1, . . . , n}).

N (w) is a final state of the automaton A(C) by our construction. Let

u1 . . . un = v1 . . . vm, where ui, vj ∈ C. Assume that the index k is the smal-

lest number for which uk 6= vk. Then uk+1 . . . un 6= vk+1 . . . vm holds. Let d1 and

d2 be such that if ∀ 1 ≤ i < d1 and ∀ 1 ≤ j < d2, then uk . . . uk+i 6= vk . . . vk+j

holds, but uk . . . uk+d1 = vk . . . vk+d2 . Thus, uk+d1 6= vk+d2 because of the de-

finitions of d1 and d2. Since, if uk+d1 = vk+d2 holds, then uk . . . uk+d1−1 =

vk . . . vk+d2−1. But, this is a contradiction. Denote qλ the initial state. Thus,

the path qλ
u1...uk+d1−−−−−−−→ N (uk+d1) and the path qλ

v1...vk+d2−−−−−−→ N (vk+d2) are diffe-

rent paths of the automaton A(C). Let us construct the deterministic automaton

AD(C) for the automaton A(C). The two paths are joined in the automaton

AD(C). They lead to a state which contains the state N (uk+d1) and the state

N (vk+d2).

Therefore, if we have two (or more) factorization of a string, then there is a

state of deterministic automaton which contains at least two final states of non-

deterministic automaton. Denote Q
A(C)
F the set of final states of the automaton

A(C).

540 János Falucskai

Theorem 2.4. A code is decipherable if, and only if in the automaton

AD(C) at most one element of Q
A(C)
F appears on the right side of any transaction

rule. That is, for any transaction rule the following holds: if the transaction rule

δ({qi1 , . . . , qin}, x) = {qj1 , . . . , qjm} is in the automaton AD(C), then there is no

l 6= k such that, qjl ∈ Q
A(C)
F and qjk ∈ Q

A(C)
F hold.

Proof. The proof is carried out indirectly. Assume that a code is decip-

herable and there is a state of deterministic automaton that contains at least two

final states of nondeterministic automaton. That is, there is a rule

δ({qi1 , . . . , qin}, x) = {qj1 , . . . , qjm} in the automaton AD(C) and l 6= k exists

such that, qjl ∈ Q
A(C)
F and qjk ∈ Q

A(C)
F hold. Denote v the sequence of symbols

which is touched along the path from the initial state qλ to the state {qj1 , . . . , qjm}.

That is, qλ
v
−→ {qj1 , . . . , qjm}. Thus, the paths qλ

v
−→ qjl and qλ

v
−→ qjk are different

successful paths in the nondeterministic automaton. That is, the sequence v has

two different factorization. Therefore, the code is nondecipherable. We have a

contradiction and the ‘if’ part is proved.

To prove the ‘only if’ part we assume the following: There is no state of

the deterministic automaton which contains at least two final states of nonde-

terministic automaton and the code is nondecipherable. Thus, if the code is

nondecipherable, then there is at least two sequences of the codewords such that

wi1 . . . win = wj1 . . . wjm and win 6= wjm . If we read the sequences, then we get to

the same state because of the automaton is deterministic. Therefore, this state

contains the final states in and jm of the nondeterministic automaton because

of the codewords win and wjm . We have a contradiction and the theorem is

proved. �

References

[1] J. Falucskai, On a test for codes, Acta Math. Acad. Paedagog. Nýıregyháziensis 22 (2006),
121–125.

[2] A. A. Sardinas and C. W. Patterson, A necessary and sufficient condition for the unique
decomposition of coded messages, IRE Internat. Conv. Rec. 8 (1953), 104–108.

[3] Al. A. Markov, On alphabet coding, Soviet. Phys. Dokl. 6 (1962), 553–554.

[4] G. Bandyopadhyay, A simple proof of the decipherability criterion of Sardinas and Pat-
terson, Infor. and Control 6 (1963), 331–336.

[5] V. I. Levenštëın, Some properties of coding and self-adjusting automata for decoding
messages, Problemy Kibernet. 11 (1964), 63–121.

[6] J. A. Riley, The Sardinas-Patterson and Levenshtein theorems, Inform. and Control 10

(1967), 120–136.

[7] A. de Luca, A note on variable length codes, Inform. and Control 32 (1976), 263–271.

A novel test for unique decipherability of codes 541

[8] J. C. Spehner, Quelques problémes d’extension, de conjugaison et de présentation des
sous-monöındes d’un monöıde libre, PhD thesis, Université Paris, Paris, 1976.

[9] M. Rodeh, A fast test for unique decipherability based on suffix trees, IEEE Trans. Inform.

Theory IT-28 (1982), 648–651.

[10] A. Apostolico and R. Giancarlo, Pattern matching machine implementation of a fast
test for unique decipherability, Inform. Process. Lett. 18 (1984), 155–158.

[11] R. McCloskey, AnO(n2) time algorithm for deciding whether a regular language is a code,
Vol. 2, Proceedings of the 8th International Conference of Computing and Information,
ICCI’96 (Waterloo, ON), J. Comput. Inf., 1996, 79–89.

[12] C. M. Hoffmann, A note on unique decipherability, Vol. 176, Mathematical foundations
of computer science, 1984 (Prague, 1984), Lecture Notes in Comput. Sci., Springer, Berlin,
1984, 50–63.

[13] Z. Galil, Open problems in stringology, Vol. 12, Combinatorial algorithms on words (Ma-
ratea, 1984), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., Springer, Berlin, 1985,
1–8.

[14] R. König, Lectures on codes, Internal Reports of the IMMD I, Friedrich Alexander Uni-

versity of Erlangen-Nürnberg, 1994.

[15] H. Jürgensen and S. Konstantinidis, Codes, Handbook of Formal Languages, Vol. I,
NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., (G. Rozenberg and A. Salomaa, eds.),
Springer, Berlin, 1997, 511–607.

[16] J. Devolder and E. Timmerman, Finitary codes for bi-infinite words, RAIRO Inform.

Théor Appl. 26 (1992), 363–386.

[17] J. Devolder, Precircular codes and periodic biinfinite words, Inform and Comput. 107

(1993), 185–201.

[18] J. Devolder, M. Latteux, I. Litovski and L. Staiger, Codes and infinite words, Acta
Cybernet. 11 (1994), 241–256.

[19] S. Eilenberg, Automata, languages, and machines, Vol. A, Vol. 58, Pure and Applied
Mathematics, Academic Press, Berlin, 1974.

[20] J. A. Brzozowski, Roots of star events, J. Assoc. Comput. Mach. 14 (1967), 466–477.

[21] J. E. Hopcroft and J. D. Ullman, Formal languages and their relation to automata,
Addison-Wesley, London, 1969.

[22] A. Salomaa, Formal languages, Academic Press Inc., New York, 1973.

JÁNOS FALUCSKAI

INSTITUTE OF MATHEMATICS AND INFORMATICS

COLLEGE OF NYÍREGYHÁZA

SÓSTÓI U. 31/B

H-4400 NYÍREGYHÁZA

HUNGARY

E-mail: falu@nyf.hu

(Received September 9, 2009; revised January 18, 2011)

