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Algebras with orthogonal multiplication

By ANTON CEDILNIK (Ljubljana) and BORUT ZALAR (Ljubljana)

Introduction

In this paper we study real algebras, equipped also with an orthogonal-
ity relation, with the property that xy is both left and right orthogonal to
x and y. The most known example of such an algebra is the 3-dimensional
vector space with the vector product as multiplication. There are also
other interesting examples which can be constructed from square matrices,
Hilbert–Schmidt operators, flexible quadratic algebras and real associative
algebras.

Algebras with orthogonal multiplication are always anticommutative
and they are associative only in the trivial case. In this paper we focus our
attention on algebras in which orthogonality arises from the inner product
and most of the results are about such algebras. It is interesting that the
multiplication in such a Hilbert algebra is automatically continuous and
that such an algebra can be embedded into a quadratic Banach algebra.
We also give a structure theorem for a certain subclass of Hilbert algebras
with orthogonal multiplication.

1. Definitions

Let A be a real algebra and suppose that ⊥ is an orthogonality re-
lation on A. The most well-known orthogonality is the one induced by
the Hilbert space structure. However there are many papers devoted to
the study of orthogonality relations in general Banach spaces and abstract
orthogonalities. Among others we mention Birkhoff–James, Singer,
Pythagorean and isosceles orthogonality. Some historically important pa-
pers on this topic are [1], [3], [4] and [5] while some recent papers are
[6]–[8] and [10]–[12] where further references are available for the inter-
ested reader.

Different authors use slightly different definitions on what is an ab-
stract orthogonality. In this paper we use the following concept:
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Definition 1.1. Let ⊥ be a binary relation on A. Then A is a called
an algebra with orthogonal multiplication if
(i) ⊥{x} = {y ∈ A; y⊥x} and {x}⊥ = {y ∈ A; x⊥y} are linear subspaces

of A. The first is called the left orthogonal complement and the second
the right orthogonal complement of x.

(ii) ⊥{x} = A if and only if x = 0.
(iii) {x}⊥ = A if and only if x = 0.
(iv) For all x, y ∈ A, we have xy⊥x, xy⊥y, x⊥xy and y⊥xy.

Remark 1.2. We do not assume that the orthogonality relation is sym-
metric. Also we allow x⊥x for nonzero x ∈ A. However ⊥ is both left
and right nondegenerate by (ii) and (iii). We shall use the abbreviation
OM-algebra instead of algebra with orthogonal multiplication.

2. Examples

Example 2.1. Let A be a real vector space. Define xy = 0 for all
x, y ∈ A and x⊥y if and only if x = 0 or y = 0. Then A is an OM-algebra
which will be called a trivial algebra.

Example 2.2. Let A = R3 be equipped with the usual inner product
and vector product as multiplication. This Hilbert OM-algebra will be
called a classical algebra. If we denote i = (1, 0, 0), j = (0, 1, 0) and
k = (0, 0, 1), then the multiplication table of A is the following:

· i j k
i 0 k −j
j −k 0 i
k j −i 0

Example 2.3. Let n ≥ 3 and let An be the vector space of those real
n× n matrices which are antisymmetric i.e. satisfy the identity AT = −A
where AT denotes the transpose matrix. If A ◦ B is the usual product of
matrices A and B, the Lie product is defined by AB = A ◦B −B ◦A. In
fact

(AB)T = (A ◦B −B ◦A)T = BT ◦AT −AT ◦BT =

= (−B) ◦ (−A)− (−A) ◦ (−B) = B ◦A−A ◦B = −AB.

We define the inner product in An by 〈A, B〉 = − trace(A ◦ B). Then we
have

〈AB, A〉 = − trace((A ◦B) ◦A) + trace((B ◦A) ◦A) =

= − trace((A ◦B) ◦A) + trace(A ◦ (B ◦A)) = 0.
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Example 2.4. The above example can be generalized to the infinite
dimensional case. Let Λ be some index set. Consider A : Λ×Λ → R such
that ∑

i,j

|A(i, j)|2 < ∞

with componentwise summation and multiplication by scalars. Define

AT (i, j) = A(j, i),

(A ◦B)(i, j) =
∑

k

A(i, k)B(k, j),

〈A, B〉 =
∑

i,j

A(i, j)B(i, j).

Then AΛ = {A;AT = −A} together with the product AB = A◦B−B ◦A
is a Hilbert OM-algebra.

Example 2.5. Let B be a (nonassociative) algebra with the identity e
such that for each x ∈ B there exist α, β ∈ R with x2 + αx + β = 0. Such
algebras are called quadratic (see [8] page 49). Examples of such algebras
are the algebras obtained via the Cayley–Dickson process (see [8] page 45).
Suppose that B is also flexible i.e. (xy)x = x(yx) holds for all x, y ∈ B.

Define A = {x ∈ B; x = 0 or (x /∈ Re and x2 ∈ Re)}. Then A is a
linear vector space with B = Re⊕A. If x, y ∈ A, then xy = B(x, y)e+x◦y
defines a bilinear form B : A×A → R and a product ◦ : A×A → A. If we
assume in addition that B(x, y) is nondegenerate in both factors, then we
can define an OM-algebra (A, ◦,⊥) with x⊥y if and only if B(x, y) = 0.
Orthogonality in this case is automatically symmetric.

The proof of this statement can be done by some simple calculations.
Take some x, y ∈ A. Since B is quadratic (x + y)2 + α(x + y) ∈ Re for
some real α. Thus

(1) xy + yx + αx + αy ∈ Re.

Also (x− y)2 + β(x− y) ∈ Re for some real β and thus

(2) −xy − yx + βx− βy ∈ Re.

If we add (1) and (2) we obtain (α + β)x + (α − β)y ∈ Re. Suppose first
that {x, y, e} are linearly independent. Then α + β = α− β = 0 = α = β
and so x + y ∈ A. This further implies

(3) xy + yx ∈ Re.

If y = γx + δe, the fact that y2 ∈ Re implies γ2x2 + 2δγx + δ2e ∈ Re and
since x2 ∈ Re we have 2δγx = 0. If x = 0, then y = 0 since y /∈ Re and
there is nothing to prove. If x 6= 0, then δ = 0 or γ = 0 and since the
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second equality is not possible, we have y = γx and thus x + y ∈ A and
xy + yx ∈ Re. Note that (3) also implies x ◦ y + y ◦ x = 0.

Let x be nonzero. Then we have, using the flexibility of B,
(xy)x = x(yx),

(B(x, y)e + x ◦ y)x = x(B(y, x)e + y ◦ x),

B(x, y)x+B(x ◦ y, x)e + (x ◦ y) ◦ x = B(y, x)x + B(x, y ◦ x)e+x ◦ (y ◦ x).

Since x ◦ (y ◦ x) = −(y ◦ x) ◦ x = (x ◦ y) ◦ x, we obtain

(B(x, y)−B(y, x))x = (B(x, y ◦ x)−B(x ◦ y, x))e.

Since x /∈ Re, we finally get B(x, y) = B(y, x) and

B(x ◦ y, x) = B(x, y ◦ x) = B(y ◦ x, x) = −B(x ◦ y, x) = 0.

If x = 0, the above equality obviously holds.
Example 2.6. Let A be an associative real algebra. Define Comm(A)

to be a linear subspace spanned by all commutators and Der(A) a linear
subspace spanned by the images of all linear derivations acting on A. If
Comm(A) ⊂ J ⊂ Der(A), then we can define an orthogonality relation
a⊥b if and only if ab ∈ J . Then a⊥b implies b⊥a since ba − ab ∈ J and
so ba = (ba − ab) + ab ∈ J . Define a new product a ◦ b = ab − ba on A.
Then (A, ◦,⊥) is an OM-algebra since

(a ◦ b)a = aba− ba2 = a(ba)− (ba)a ∈ J ,

(a ◦ b)b = ab2 − bab = (ab)b− b(ab) ∈ J .

Of course ⊥must also be nondegenerate to fulfil the requirements of Defini-
tion 1.1. If A is the algebra of n×n real matrices, then it is well-known that
Comm(A) = Der(A) = J and that J = {a; trace(a) = 0}. This means
that a⊥b and only if trace(ab) = 0. Since a 6= 0 implies trace(aaT ) 6= 0, in
this case ⊥ is automatically nondegenerate.

3. Two general results

There is not much that can be said about general OM-algebras. How-
ever we present two results which are perhaps of some interest.

Proposition 3.1. Let A be an OM-algebra. Then y2 = 0 holds for all
y ∈ A and so A is anticommutative.

Proof. Take some x, y ∈ A. From (x + y)2⊥(x + y) and
(x− y)2⊥(x− y) we obtain

x2 + xy + yx + y2⊥ x + y,(4)

x2 − xy − yx + y2⊥ x− y,(5)
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We also know that xy, yx⊥x, y and so

xy + yx⊥ x + y,(6)

−xy − yx⊥ x− y.(7)

From (4) and (6) we get

(8) x2 + y2⊥ x + y.

From (5) and (7) we get

(9) x2 + y2⊥ x− y.

Then (8) and (9) together imply x2 +y2⊥ 2x and also x2 +y2⊥x . Finally
x2⊥x implies x2⊥y. If we fix y and allow x to pass through all of A, we
obtain {y2}⊥ = A. The nondegeneracy of ⊥ tells us that y2 = 0 for all
y ∈ A. Thus xy + yx = (x + y)2 − x2 − y2 = 0.

Remark 3.2. Since A is anticommutative, all left or right ideals of A
are automatically two-sided ideals. Thus we shall simply use the term ideal
of A.

Lemma 3.3. Let A be an OM-algebra and xy⊥z for some x, y, z ∈ A.
Then xz⊥y holds. Also z⊥xy implies y⊥xz.

Proof. Suppose that xy⊥z. From this and xz⊥z we obtain

(10) xy + xz ⊥ z.

From x(y + z) = xy + xz ⊥ y + z and (10) it follows

(11) xy + xz ⊥ y.

Since xy⊥y, we finally obtain xz⊥y. The rest can be proved in a similar
way.

Proposition 3.4. Let A be an OM-algebra and J an ideal of A. Then
A(J⊥) ⊂ ⊥J and A(⊥J ) ⊂ J⊥ holds. In particular ⊥J ∩ J⊥ is also an
ideal of A.

Proof. Take some a ∈ A, b ∈ J and x ∈ J⊥. Since ab ∈ J , we
have ab⊥x. According to Lemma 3.3 ax⊥b holds and thus ax ∈ ⊥J (we
fix a and x and allow b to pass through all of J ). Therefore A(J⊥) ⊂ ⊥J .
The rest can be proved in a similar way.

4. Hilbert algebras

Much more than in the general case can be said about a Hilbert OM-
algebra i.e. an algebra A which is a Hilbert space with respect to the inner
product 〈 , 〉 such that 〈xy, x〉 = 〈xy, y〉 = 0 for all x, y ∈ A. The results
of the third section can be reformulated into
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Lemma 4.1. Let A be a Hilbert OM-algebra. Then 〈xy, z〉 = −〈xz, y〉
for all x, y ∈ A.

Proof. This follows from

0 = 〈x(y + z), y + z〉 = 〈xy, y〉+ 〈xy, z〉+
+〈xz, y〉+ 〈xz, z〉 = 〈xy, z〉+ 〈xz, y〉. ¤

Proposition 4.2. Let A be a Hilbert OM-algebra. If J is an ideal of
A, then J⊥ is also an ideal of A and A = J ⊕ J⊥.

Our next result concerns the question whether a Hilbert OM-algebra
is a Banach algebra. A nonassociative algebra A with a Banach space
structure is called a Banach algebra if ‖xy‖ ≤ ‖x‖ ‖y‖ holds for all x, y ∈ A.

Proposition 4.3. Let A be a Hilbert OM-algebra. Then the multi-
plication of A is automatically continuous and there exists a new inner
product, equivalent to the original one, such that A with this new inner
product is both a Hilbert OM-algebra and a Banach algebra.

Proof. Define La : A → A by La(x) = ax. We shall prove first that
La is continuous. Suppose that xn → 0 and La(xn) → y. Then we have

‖y‖2 = 〈y, y〉 = 〈 lim
n→∞

(axn), y〉 =

= lim
n→∞

〈axn, y〉 = − lim
n→∞

〈ay, xn〉 =

= −〈ay, lim
n→∞

xn〉 = 0.

We used Lemma 4.1 in the above computation. By the closed graph theo-
rem, La is continuous. Now we can apply more or less standard arguments
from the theory of Banach algebras. Let S = {a; ‖a‖ ≤ 1}. Take some
a ∈ S. For all x ∈ A we have
‖La(x)‖ = ‖ax‖ = ‖ − ax‖ = ‖xa‖ = ‖Lx(a)‖ ≤ ‖Lx‖ = M(x) < ∞

and so, by the uniform boundedness principle, it follows ‖La‖ < M < ∞
for all a ∈ S. Thus ‖ab‖ = ‖La(b)‖ ≤ M‖a‖ ‖b‖ for all a, b ∈ A. If we
define a new inner product 〈a, b〉1 = M2〈a, b〉, then A with this product
clearly satisfies the requirements.

For every nonassociative algebra A its annihilator

Ann(A) = {a ∈ A; aA = Aa = {0}}
is an ideal of A. If A is a Hilbert OM-algebra, then we shall say that A is
proper if Ann(A) = {0}. Using Proposition 4.2, we get

Proposition 4.4. Let A be a Hilbert OM-algebra. Then A is uniquely
expressible as an orthogonal sum A = A0⊕B where A0 is an algebra with
zero multiplication and B a proper Hilbert OM-algebra.
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Remark. A0 is not necessarily a trivial algebra in the sense of Exam-
ple 2.1. While xy = 0 for all x, y ∈ A0 it is not true that x ⊥ y implies
x = 0 or y = 0. Thus the orthogonality relation on A0 may not be trivial.

Proof. Let A0 = Ann(A) and B = A⊥0 . If we take into account
Proposition 4.2, it remains to prove that B is proper. Let xB = {0} for
some x ∈ B. Then xA = xB+ xA0 = {0} implies x ∈ Ann(A) (recall that
A is anticommutative and that xA = −Ax). Therefore x ∈ A0∩A⊥0 = {0}.

If J is some ideal of A, we can define its annihilator with respect to
A as

Ann(J ) = {x ∈ A; xJ = J x = {0}}.
In the sequel we shall need the following

Proposition 4.5. Let A be a proper Hilbert OM-algebra and J its
closed ideal. Then Ann(J ) = J⊥ holds.

Proof. Since J⊥ is also an ideal of A by Proposition 4.2, we have
JJ⊥ ⊂ J ∩ J⊥ = {0} and so J⊥ ⊂ Ann(J ). If a ∈ Ann(J ), we may
decompose it into a sum a = x + y with x ∈ J and y ∈ J⊥. Then we
have, using the facts that xJ⊥ ∈ J ∩J⊥ = {0} and aJ ∈ J⊥ ∩J = {0},

xA = xJ + xJ⊥ = xJ = (a− y)J = −yJ ∈ JJ⊥ = {0}
and thus x ∈ Ann(A) which is zero by the assumption. Then a = y ∈ J⊥
follows.

Proposition 4.6. LetA be a 3-dimensional Hilbert OM-algebra. Then
A is either an algebra with zero multiplication or isomorphic to the clas-
sical algebra.

Remark 4.7. The classical algebra is defined in Example 2.2.

Proof. Let {i, j, k} be some orthonormal basis of A. Since ij is
orthogonal to i and j, there exists some real α such that ij = αk. Then
we have, using Lemma 4.1,

〈ik, j〉 = −〈ij, k〉 = −α〈k, k〉 = −α

and so ik = −αj. Note that ik is orthogonal to i and k and is therefore a
scalar multiple of j. A similar computation

〈jk, i〉 = −〈ji, k〉 = 〈ij, k〉 = α〈k, k〉 = α

enables us to fill in the multiplication table

· i j k
i 0 αk −αj
j −αk 0 αi
k αj −αi 0
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If α = 0, then the multiplication of A is zero. Otherwise the elements
i′ = 1

α i, j′ = 1
αj and k′ = 1

αk have the same multiplication table as the
classical algebra.

We shall continue this section by establishing a simple criterion which
tells us whether some multiplication table generates a Hilbert OM-algebra
or not.

Proposition 4.8. Let A a Hilbert OM-algebra and B a closed sub-
space of A. Then (B, ◦) can be structured as a Hilbert OM-algebra if we
set x ◦ y = P (xy) where P : A → A denotes orthogonal projection on B.

Proof. Take x, y ∈ B. It is well-known that orthogonal projections
are self-adjoint and so 〈P (a), b〉 = 〈a, P (b)〉 for all a, b ∈ A. Now we have,
using the fact that P acts as identity on the subspace B,

〈x ◦ y, x〉 = 〈P (xy), x〉 = 〈xy, P (x)〉 = 〈xy, x〉 = 0.

In a similar way we prove that x ◦ y is orthogonal to y.
Criterion 4.9. Let A be a Hilbert algebra with jointly continuous

product. Let {eα} be some orthonormal basis of A. For S ⊂ {eα} we
define AS to be the closed linear hull of S together with the product
defined in Proposition 4.8. Then A is a Hilbert OM-algebra if and only if
AS is a Hilbert OM-algebra for all S with card(S) ≤ 3.

Proof. Take some S = {eα, eβ , eγ} not necessarily distinct. Then
we have, using the fact that AS is a Hilbert OM-algebra,

〈eαeβ , eγ〉+ 〈eγeβ , eα〉 = 〈eαeβ , PS(eγ)〉+ 〈eγeβ , PS(eα)〉 =

= (PS(eαeβ), eγ〉+ 〈PS(eγeβ), eα〉 = 〈eα ◦ eβ , eγ〉+ 〈eγ ◦ eβ , eα〉 = 0.

The last equality follows from Lemma 4.1. Take some x, y ∈ A. Since
x =

∑
λαeα and y =

∑
µβeβ we get (also by the joint continuity of the

product in A and the fact that the below series are absolutely convergent)

〈xy, x〉 =
∑

α,β,γ

λαµβλγ〈eαeβ , eγ〉 =
∑

β

µβ

(∑
α,γ

λαλγ〈eαeβ , eγ〉
)

=

=
∑

β

µβ


∑

α 6=γ

λαλγ〈eαeβ , eγ〉+
∑
α

λ2
α〈eαeβ , eα〉


 =

=
∑

β

µβ


∑

α 6=γ

λαλγ〈eαeβ , eγ〉

 .

The last sum can be decomposed into pairs

λαλγ(〈eαeβ , eγ〉+ 〈eγeβ , eα〉) = 0
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by the above paragraph and thus 〈xy, x〉 = 0. In a similar way we can
prove that 〈xy, y〉 = 0.

Next we shall prove that every Hilbert OM-algebra can be embedded
in some flexible quadratic Banach algebra in the sense of Example 2.5.
According to the Proposition 4.3 we may assume that ‖ab‖ ≤ ‖a‖ ‖b‖
holds for all a, b ∈ A.

Lemma 4.10. Let A be a Hilbert OM-algebra. Then ‖ab‖2+〈a, b〉2 ≤
‖a‖2‖b‖2 holds for all a, b ∈ A.

Proof. If a = 0, the above inequality is obvious. If a 6= 0, we define

c = −〈a, b〉
‖a‖2 a + b and then observe the inequality ‖ac‖2 ≤ ‖a‖2‖c‖2. By

Proposition 3.1, we have a2 = 0 and so ac = ab. Thus we obtain

‖ab‖2 = ‖ac‖2 ≤ ‖a‖2
∥∥∥∥−

〈a, b〉
‖a‖2 a + b

∥∥∥∥
2

=

= ‖a‖2
( 〈a, b〉2
‖a‖4 ‖a‖

2 + ‖b‖2 − 2
〈a, b〉
‖a‖2 〈a, b〉

)
=

= 〈a, b〉2 + ‖a‖2‖b‖2 − 2〈a, b〉2 = ‖a‖2|b‖2 − 〈a, b〉2
and from this the desired inequality easily follows.

Theorem 4.11. Let (C, ◦) be a Hilbert OM-algebra. Then B = Re⊕C
with the inner product 〈αe+a, βe+b〉 = αβ+〈a, b〉 and the algebra product
(αe + a)(βe + b) = (αβ − 〈a, b〉)e + αb + βa + a ◦ b is a flexible quadratic
Banach algebra.

Proof. First we have

e(αe + a) = (e + 0)(αe + a) =

= (α− 〈0, a〉)e + a + α · 0 + 0 ◦ a = αe + a

and so e is a left identity of B. In a similar way we see that e is also a right
identity of B. Take some x = αe + a and y = βe + b from B. From the
definition of the multiplication of B, using also Lemma 4.10, we see that

‖xy‖2 = (αβ−〈a, b〉)2+‖αb + βa + a ◦ b‖2 = α2β2 + 〈a, b〉2 − 2αβ〈a, b〉+
+α2‖b‖2 + β2‖a‖2 + 2αβ〈a, b〉+ ‖a ◦ b‖2 ≤

≤ α2β2 + α2‖b‖2 + β2‖a‖2 + ‖a‖2‖b‖2 = ‖x‖2‖y‖2
holds and thus B is a Banach algebra. Take any x = αe + α and compute

x2 − 2αx + ‖x‖2 =

= [(α2 − ‖a‖2)e + 2αa + a ◦ a]− [2α2e + 2αa] + [α2 + ‖a‖2]e = 0.
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In this computation we used Proposition 3.1 which says that a ◦ a = 0.
Therefore every element of B is a zero of some polynomial of degree 2
and hence B is quadratic. The verification that A (in the notation of
Example 2.5) is isomorphic to C is very easy and will be omitted. The
flexibility of B follows, using the fact that e is the identity element of B,
from

(xy)x− x(yx) =

= (αe + a)(βe + b) · (αe + a)− (αe + a) · (βe + b)(αe + a) =

= (ab)a− a(ba) = (−〈a, b〉e + a ◦ b)a− a(−〈a, b〉e + b ◦ a) =

= (a ◦ b)a− a(b ◦ a) = −〈a ◦ b, a〉+ (a ◦ b) ◦ a + 〈a, b ◦ a〉 − a ◦ (b ◦ a).

Since (C, ◦) is an OM-algebra, the first and the third term of the last
equality are zero. Using the anticommutativity of C (see Proposition 3.1)
we finally obtain

(xy)x− x(yx) = (a ◦ b) ◦ a− a ◦ (b ◦ a) =

= −a ◦ (a ◦ b)− a ◦ (b ◦ a) = a ◦ (b ◦ a)− a ◦ (b ◦ a) = 0. ¤

5. Hilbert OM-algebras and comtrans identity

In the classical vector product algebra the following comtrans identity
for the double vector product

(12) (x× y)× z = 〈z, x〉y − 〈z, y〉x
holds for all vectors x, y, z. A similar equality (xy)z = 〈z, x〉y − 〈z, y〉x
makes sense in a general Hilbert OM-algebra since the element 〈z, x〉y −
〈z, y〉x is always orthogonal to z and xy.

In this section we prove two results: first we show that the comtrans
identity characterizes the classical algebra among Hilbert OM-algebras and
next we give a structure theorem for Hilbert OM-algebras satisfying a
weaker form of this identity.

Proposition 5.1. Let A be a Hilbert OM-algebra with zero annihi-
lator and suppose that (xy)z = 〈z, x〉y − 〈z, y〉x holds for all x, y, x ∈ A.
Then A is isomorphic to the classical algebra.

Proof. We can see that Ann(A) = A if the dimension of A is 1 or 2.
This follows from the following observation: take any i, j ∈ A. If they
are linearly dependent, then ij = 0 because of Proposition 3.1. If they
are linearly independent, then they span A. Since ij ∈ {i, j}⊥ = {0}, the
statement is proved.
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Thus dim(A) ≥ 3. Let i, j ∈ A be orthonormal elements and define
k = ij. Then by the anticommutativity of A

ik = i(ij) = (ji)i = 〈i, j〉j − 〈i, i〉j = −j,

jk = j(ij) = (ji)j = 〈j, j〉i− 〈i, j〉j = i

imply that {i, j, k} generate a classical subalgebra of A. Take any x ∈
{i, j, k}⊥. Then we have first

(ix)j = 〈j, i〉x− 〈j, x〉i = 0.

Using this and Lemma 4.1, we obtain

0 = ((ix)j)j = 〈j, ix〉j − 〈j, j〉ix =

= −〈ij, x〉j − ix = −〈k, x〉j − ix = xi

and finaly
0 = (ix)i = 〈i, i〉x− 〈i, x〉i = x.

Hence {i, j, k}⊥ = {0} and so A = Lin{i, j, k}.
Our last result is about a Hilbert OM-algebra A in which there exists

some fixed element a with ‖a‖ = 1 such that (13) holds for all x, y ∈ A
and a in place of z.

Theorem 5.2. LetA be a Hilbert OM-algebra and suppose that a ∈ A
is some fixed norm one element such that (xy)a = 〈x, a〉y − 〈y, a〉x holds
for all x, y ∈ A. Then A can be decomposed into an orthogonal sum
A = Ra ⊕ B ⊕ C such that aB ⊂ C, aC ⊂ B and BB = CC = BC = {0}.
Moreover for each nonzero b ∈ B the elements {a, b, ab} generate a classical
subalgebra. Also dim(B) = dim(C) and so if A is finite dimensional then
its dimension is odd.

The proof will be divided into three steps.

Lemma 5.3. Let i ∈ A be some norm one element orthogonal to a.
Then Lin{a, i, ai} is a classical subalgebra of A.

Proof. Denote j = ai. First we have

ja = (ai)a = 〈a, a〉i− 〈a, i〉a = i.

Using the fact that A is an OM-algebra, we obtain

〈ij, a〉 = −〈ia, j〉 = 〈ai, j〉 = 〈j, j〉 = ‖j‖2

and so ij = ‖j‖2a+ z where z ∈ {a, i, j}⊥. From Proposition 3.1 it follows
that a2 = 0 and so (ij)a = za. Thus

za = (ij)a = 〈i, a〉j − 〈j, a〉i = −〈ai, a〉i = 0
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and finally
0 = (za)a = 〈a, z〉a− 〈a, a〉z = −z

implies ij = ‖j‖2a. However by Lemma 4.1

‖j‖2 = 〈ij, a〉 = −〈ji, a〉 = 〈ja, i〉 = 〈i, i〉 = 1. ¤

Lemma 5.4. Let {a, i, j} generate a classical subalgebra of A (com-
pare the above lemma) and k ∈ {a, i, j}⊥ with ‖k‖ = 1. Then {a, i, j, k, ` =
ak} is an orthonormal subbase of A. Moreover ik = i` = jk = j` = 0.

Proof. First we have to prove that ` is orthogonal to {a, i, j, k}.
Since A is a Hilbert OM-algebra, 〈a, `〉 = 〈k, `〉 = 0 is obvious. Next we
have

〈i, `〉 = 〈i, ak〉 = −〈ai, k〉 = −〈j, k〉 = 0,

〈j, `〉 = 〈j, ak〉 = −〈aj, k〉 = −〈i, k〉 = 0

which completes the proof of the first assertion (we have also taken into
account Lemma 5.3). From (ik)a = 〈a, i〉k − 〈a, k〉i = 0 it follows that

0 = ((ik)a)a = 〈a, ik〉a− 〈a, a〉ik = −ik − 〈ia, k〉a = −ik − 〈j, k〉a = −ik.

In a similar way we prove that i` = jk = j` = 0.

Proof of the Theorem 5.2. Define A1 = {a}⊥ and φ : A1 → A1

with φ(x) = ax. Then Lemma 5.3 tells us that φ2(x) = −x for all x∈A1

and also, since A is an OM-algebra, 〈φ(x), x〉 = 0. Thus φ is some sort of
real anticonjugation and by standard methods we can obtain that A1 =
B ⊕ C where B⊥C and φ(B) = C. We can for instance apply the Zorn
lemma to the collection {B ≤ A1;B⊥φ(B)].

Now it remains to prove that BB = CC = BC = {0}. Take x, y ∈B.
If they are linearly dependent, xy = 0 follows from Proposition 3.1. Oth-
erwise x = αi + βk, y = γi + δk for some i, k ∈ B with ‖i‖ = ‖k‖ = 1
and 〈i, k〉 = 0. Since j = ai = φ(i) ∈ C⊥B, we are in the situation of
Lemma 5.4 and thus ik = 0. From the anticommutativity of A, xy = 0
easily follows. In a similar way we prove that CC = BB = {0}.
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