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Abstract. In the present paper we show an striking relationship between the exis-

tence of solutions of a generalization of the Abel functional equation, and the Scott–

Suppes representability of semiordered structures. We analyze this relationship and, in

addition, we study other functional equations related to the numerical representability

of semiordered structures.

1. Introduction

Despite it had much earlier appeared in the works by Norbert Wiener under

a different terminology (see e.g. [13]), and its intuition dates back to Poincaré as

pointed out in [18], the concept of a semiorder is usually attributed to R. Dun-

can Luce who introduced that term in [16], in a way that is independent from

Wiener’s earlier work, in contexts related to Mathematical Economics and Psy-

chology. Basically, the main reason to (re)-introduce this concept was due to the

study of models where agents exhibit preferences with intransitive indifference.

As mentioned in [10], p. 62:

“A classical example, attributed to Armstrong [5] considers a man that

prefers a cup of coffee with a whole portion of sugar, to a cup of coffee with
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no sugar at all. If such man is forced to declare his preference between a cup

with no sugar at all and a cup with only one molecule of sugar, he will declare

them indifferent. The same will occur if he compares a cup with n molecules

and a cup with n+1 molecules of sugar. However, after a very large number

of intermediate comparisons we would finally confront him with a cup that

has a whole portion of sugar that he is able to discriminate from the cup with

no sugar at all. Here, we observe a clear intransitivity of the indifference.”

Observe that in this example there is a “just noticeable difference” or “threshold

of discrimination” (the cube of sugar) that allows us to detect a difference between

the taste of two cups of coffee. It is a positive constant.

The importance of semiorders lies just in this fact: they constitute a tool to

analyze situations in which, in order to distinguish an element from another, the

quality being compared should trespass a positive constant threshold.

2. Definition of a semiorder

Definition 2.1. Let X be a nonempty set. Let ≺ be an asymmetric binary

relation defined on X. Associated to ≺ we define the reflexive and total binary

relation - given by x - y ⇐⇒ ¬(y ≺ x) (x, y ∈ X), and the symmetric binary

relation ∼, called indifference given by x ∼ y ⇐⇒ [(¬(x ≺ y)) ∧ (¬(y ≺ x))]

(x, y ∈ X).

An interval order ≺ is an asymmetric binary relation such that [(x ≺ y) ∧
(z ≺ t)] =⇒ [(x ≺ t) ∨ (z ≺ y)] (x, y, z, t ∈ X).

An interval order ≺ is said to be a semiorder if [(x ≺ y) ∧ (y ≺ z)] =⇒
[(x ≺ w) ∨ (w ≺ z)] for every x, y, z, w ∈ X.

To put an example of a semiorder, consider the relation ≺ defined on R by

declaring that x ≺ y ⇐⇒ x ≤ y − 3 (x, y ∈ R).

3. Representability of semiorders

After introducing the definition in [16], the concepts of “just noticeable diffe-

rence” and “utility discrimination” are discussed. Those seminal ideas were also

developed in [20] trying to identify a semiorder ≺ defined on a (nonempty) set

S to a subset of the real line R endowed with the binary relation PR given by

aPRb ⇐⇒ a + 1 < b (a, b ∈ R). The identification (if any) is made through a

real-valued utility function f : S → R such that a ≺ b ⇐⇒ f(a)PRf(b) ⇐⇒
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f(a) + 1 < f(b) (a, b ∈ S). Here the constant 1 acts as a “threshold of utility

discrimination”.

In some of the classical studies on semiorders (see e.g. [4] for a modern revision

of the theory) either necessary or else sufficient conditions for the existence of a

numerical representation of a semiorder ≺ defined on a set S by means of a real-

valued funtion f : S → R such that a ≺ b ⇐⇒ f(a) + 1 < f(b) (a, b ∈ S) were

obtained.

This kind of numerical representations of semiordered structures is also en-

countered in a wide range of applications, as choice theory under risk (see [12])

or decision-making under risk (see [19]), or modellization of choice with errors

(see [3]) among many others.

Definition 3.1. If (X,-) is a preordered set then a real-valued function f :

X → R is said to be an order-isomorphism for - if, for every x, y ∈ X, it

holds that [x - y ⇐⇒ f(x) ≤ f(y)]. A total preorder - on X is said to be

representable if there exists an order-isomorphism for -.

Definition 3.2. An interval order ≺ defined on X is said to be representable

(as an interval order, see e.g. [11]) if there exist two real valued maps f, g :X −→R
such that x ≺ y ⇐⇒ g(x) < f(y) (x, y ∈ X).

Also, a semiorder ≺ defined on X is said to be representable (now, as a

semiorder!) in the sense of Scott and Suppes [20] if there exist a real-valued map

f : X → R such that x ≺ y ⇐⇒ f(x) + 1 < f(y) (x, y ∈ X). (Here the choice

of 1 is immaterial. Any positive value could be used).

There exist interval orders that fail to be representable (as interval orders).

However interval orders on countably infinite sets are always representable, as

well as interval orders on finite sets (see [6]). Also, semiorders on finite sets are

always representable in the sense of Scott and Suppes. In the infinite case, there

exist semiorders that are not representable, even if the set is countably infinite.

(See Proposition 8 on pp. 237–239 in [17]).

Another example of a non-representable semiorder is the binary relation ≺
on R given by x ≺ y ⇐⇒ 3|x| < 2|y| (x, y ∈ R). See also [10] for further details.

The representability of a semiorder is characterized by means of the existence

of solutions of a particular kind of functional equation in two variables.

Lemma 3.1 (See [10]). Let X be a nonempty set endowed with a semi-

order ≺. The following conditions are equivalent:

a) The semiordered structure (X,≺) is representable in the sense of Scott and

Suppes.
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b) There exists a bivariate map G :X ×X→R such that x≺ y ⇐⇒ G(x, y)> 0

(x, y ∈ X) and, in addition, G(x, y) + G(y, z) = G(x, z) + G(t, t) for every

x, y, z, t ∈ X.

The following lemma is an old result, obtained by the Norwegian mathemati-

cian Niels Heinrik Abel early in 1824. It gave raise to the name “Abel equation”

to call the functional equation in one real variable that is involved in its state-

ment. Suitable variations of this equation and its subsequent lemma will furnish

important information about how to cope with semiordered structures.

Lemma 3.2. Let I be an open real interval. Let h : I → I a continuous and

strictly increasing map such that1 x < h(x) for every x ∈ I. Then there exists

a continuous and strictly increasing map f : I → R that satisfies the equation

f(h(x))) = f(x) + 1 (x ∈ I).

Proof. See Theorem 2.1 in [15], or alternatively pp. 133 and ff. in [2]. ¤

4. Generalized Abel equations

In order to look for characterizations of the representability of semiorders, a

technique used by several authors (see e.g. [14]) consists in first considering the

semiorder as an interval order, then representing it as an interval order (when pos-

sible), and finally trying to modify that representation to get a new representation

(now, as a semiorder) in the sense of Scott and Suppes.

Related to this fact, the Abel equation has been used to characterize (whene-

ver possible) the existence of Scott–Suppes representations of semiorders (see [8]).

In the present paper we analyze the relationship between different kinds of func-

tional equations involved in the representability of interval orders and semiorders,

paying a special attention to generalized Abel equations.

We prove that the existence of solutions of a natural generalization of Abel

equation is closely related to the existence of representations (in the sense of Scott

and Suppes) of semiordered structures.

Let I be an interval of the real line R. Let h : I → I be a function. The

original Abel equation is defined as f(h(x)) = f(x)+1 (x ∈ I), where the function

f : I → R is (a priori) unknown. A suitable function f of this kind (if any) is

said to be a solution of the Abel equation.

1This last condition, namely x < h(x) for every x ∈ I, was missed in the statement of Lemma 3.4

in [8]. It should be added there in order for the statement to be correct.
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As mentioned before in Lemma 3.2, when h is continuous, increasing, and

such that x < h(x) for every x ∈ I, then there is a solution f that is also

continuous and strictly increasing. However, in what follows we shall be interested

in solutions that, unless otherwise stated, may or may not be continuous or strictly

increasing. To start with, we are now ready to introduce a generalization of Abel

functional equation.

Definition 4.1. Let X be a nonempty set, and h : X → X a (fixed) map. We

say that a real-valued function f : X → R satisfies the generalized Abel equation

if it holds that f(h(x)) = f(x) + 1, for every x ∈ X.

Next Proposition 4.1 is an easy result showing that solutions of generalized

Abel equations induce representable semiorders.

Proposition 4.1. Let X be a nonempty set. Let h : X → X be a map,

and f : X → R a solution of the generalized Abel equation f(h(x)) = f(x) + 1.

Then the binary relation ≺ defined on X by x ≺ y ⇐⇒ f(x) + 1 < f(y) is a

semiorder. Moreover, this semiorder is representable in the sense of Scott and

Suppes, through the real-valued function f and the positive threshold 1.

Now we point out a relationship between the generalized Abel equation and

a functional relation in two variables, known as the separability equation.

Proposition 4.2. Let X be a nonempty set. Let h : X → X be a map.

A solution of a generalized Abel equation f(h(x)) = f(x) + 1 (x ∈ X) has

associated a solution of the separability equation F (x, y) + F (y, z) = F (x, z) +

F (y, y) (x, y, z ∈ X) such that F (t, t) = −1 (t ∈ X).

Proof. Consider the map F : X×X → R given by F (x, y) = f(x)−f(h(y))

(x, y ∈ X). It follows that: F (x, y)+F (y, z) = f(x)− f(h(y))+ f(y)− f(h(z)) =

f(x)−f(h(z))+f(y)−f(h(y)) = F (x, z)+F (y, y) (x, y, z ∈ X). Thus F satisfies

the separability equation. Moreover, F (t, t) = f(t) − f(h(t)) = −1 (t ∈ X), by

hypothesis. ¤

The next result tells us what we can expect about the existence of solutions

of the generalized Abel equation.

Theorem 4.1. Let X be a (nonempty) set. Let h : X → X be a map.

Then, the generalized Abel equation f(h(x)) = f(x) + 1 (x ∈ X; f : X → R) has
a solution if and only if the following conditions hold:

a) the set X is infinite (no matter if countably or uncountably infinite),

b) for any m 6= n ∈ N and x ∈ X it holds that hm(x) 6= hn(x). (Consequently,

the map h has no cycles. In particular, h has no fixed point).
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Proof. Assume first that f is a solution of the generalized Abel equation.

Then, if X is finite, it is plain that h must have cycles, so that there exist an ele-

ment x ∈ X and a natural number k > 0 such that hk(x) = x. But, recurrently, we

should have f(hk(x)) = f(x)+k, so that f(x) = f(x)+k, which is a contradiction.

Therefore, X is infinite. In the same way, if there existm 6= n ∈ N and x ∈ X such

that hm(x) = hn(x), it follows that f(hm(x)) = f(x) +m; f(hn(x)) = f(x) + n,

so that f(x) +m = f(x) + n and m = n, which contradicts the hypothesis.

Conversely, let us assume that both conditions in the statement of The-

orem 4.1 hold on the set X. Define on X the equivalence relation R given by xRy

if there exist m,n ∈ N such that hm(x) = hn(y) (x, y ∈ X). Let X/R stand for

the corresponding quotient space. For each t ∈ X, consider the equivalence class

{x ∈ X : xRt}. Denote by t∗, a representative element of this class and define by

X∗ ⊆ X the subset of X which consists of these selected elements. To get a solu-

tion f of the generalized Abel equation we could define, for instance, f(t∗) = 0 for

every t∗ ∈ X∗, and then extend f to the whole X in the natural way, namely, gi-

ven x ∈ X we consider the element x∗ ∈ X∗ such that xRx∗ and hm(x) = hn(x∗)
for some m,n ∈ N, and we define f(x) = min{n − m;hm(x) = hn(x∗)}. It is

straightforward to see that f is well-defined and satisfies the generalized Abel

equation f(h(x)) = f(x) + 1 (x ∈ X). ¤

Remark 1. Let X be a (nonempty) set. In the light of Theorem 4.1, and

looking for some converse of Proposition 4.2, it is now evident that a solution

F : X ×X → R of the separability equation F (x, y)+F (y, z) = F (x, z)+F (y, y)

(x, y ∈ X), even if F (t, t) = −1 for every t ∈ X, may fail to have associated (in

a natural way) a solution of a generalized Abel equation. For instance, if X is

a finite set and we define F : X × X → R as the constant map F (x, y) = −1

(x, y ∈ X), it is obvious that F is a solution of the separability equation. However,

no matter which map h : X → X we consider, the generalized Abel equation

f(h(x)) = f(x)+1 (x ∈ X) has no solutions by the first condition in Theorem 4.1,

because X is finite.

But, in some special cases, it could still happen that a solution of a suitable

separability equation generates a solution of a generalized Abel equation. To see

this, suppose that F : X × X → R satisfies the separability equation and there

exists K < 0 such that F (t, t) = K (t ∈ X). Fix an element a ∈ X. We observe

that F (x, a) + F (a, x) = F (x, x) + F (a, a) = 2K (x ∈ X). Dividing by 2K we

obtain F (x.a)
2K = −F (a,x)

2K + 1 (x ∈ X).

Assume, in addition, that for every t ∈ X there exists an element h(t) ∈ X,

unique, such that F (a, h(t)) = −F (t, a) (t ∈ X).

Under this extra hypothesis, if we define f : X → R by f(t) = −F (a,t)
2K
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(t ∈ R) we immediately check that f satisfies the generalized Abel equation:

f(h(x)) = f(x) + 1 (x ∈ X).

5. Scott–Suppes representable semiorders and generalized

Abel equations

In the present section we analyze the relationship between semiorders that are

representable in the sense of Scott and Suppes and the generalized Abel equations

just introduced in Definition 4.1. To start with, we recall that a solution of a

generalized Abel equation gives raise to a Scott–Suppes representable semiorder.

Due to the first condition in Theorem 4.1, if ≺ is a semiorder defined on a

finite (nonempty) set X, no generalized Abel equation on X admits a solution,

so that, even if ≺ is representable in the sense of Scott and Suppes, it fails to

have associated (directly and in a natural way) a generalized Abel equation with

solutions.

Nevertheless, if we enlarge the set X where a Scott–Suppes representable

semiorder ≺ has been defined, we can finally arrive at solutions of suitable ge-

neralized Abel equations, related to the given semiordered structure (X,≺). Next

Theorem 5.1 explains the process.

Theorem 5.1. Let X be a nonempty set and ≺ a semiorder defined on X.

Then ≺ is representable in the sense of Scott and Suppes if and only if there exists

a superset X̄ of X and a map h : X̄ → X̄ such that the generalized functional

equation f̄(h(x̄)) = f̄(x̄) + 1 (x̄ ∈ X̄; f̄ : X̄ → R) has a solution and, in addition,

x ≺ y ⇐⇒ f̄(x) + 1 < f̄(y) ⇐⇒ f̄(h(x)) < f̄(y) for every x, y ∈ X ⊆ X̄.

Proof. Assume that ≺ admits a representation by means of a real-valued

map f : X → R such that x ≺ y ⇐⇒ f(x) + 1 < f(y) (x, y ∈ X). Four cases

may appear:

Case 1. In the particular case in which f is a bijection between X and R,
we observe that given x ∈ X the element f−1(f(x) + 1) ∈ X is well-defined. Let

h : X → X be defined by h(x) = f−1(f(x) + 1) (x ∈ X). By definition of h,

we have f(h(x)) = f(x) + 1 (x ∈ X) so that the function f satisfies a suitable

generalized Abel equation. It is now plain that x ≺ y ⇐⇒ f(x)+ 1 < f(y) ⇐⇒
f(h(x)) < f(y) (x, y ∈ X).

Case 2. If f is surjective (i.e. f(X) = R) but it is not injective, an equivalence

relation R can be immediately defined on X by declaring aRb ⇐⇒ f(a) =

f(b) (a, b ∈ X). Let XR denote the quotient set X/R. Denote by xR the
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equivalence class corresponding to a given element x ∈ X. Define on XR the

binary relation ≺R given by xR ≺R yR ⇐⇒ x ≺ y ⇐⇒ f(x) + 1 < f(y)

(x, y ∈ R) and the real-valued map fR : XR → R given by fR(xR) = f(x)

(x ∈ X). It is straightforward to see now that ≺R is a semiorder on XR such

that xR ≺R yR ⇐⇒ fR(xR) + 1 < fR(yR) (x, y ∈ R). Moreover, fR is a

bijection. Let hR : XR → XR be the map defined by hR(xR) = f−1
R (fR(xR)+1)

(xR ∈ XR). For every xR ∈ XR we fix an element x∗ ∈ X such that x∗
R =

hR(xR). Now we consider the map h : X → X given by h(x) = x∗ (x ∈ X).

We get f(h(x)) = f(x∗) = fR(x∗
R) = fR(hR(xR)) = fR(xR) + 1 = f(x) + 1

(x ∈ X), so that f also satisfies a generalized Abel equation. Again, it is clear

that x ≺ y ⇐⇒ f(x) + 1 < f(y) ⇐⇒ f(h(x)) < f(y) (x, y ∈ X).

Case 3. If f is injective but it is not surjective (i.e: f(X) ( R) then we

enlarge the set X in the following way: for every α ∈ R \ f(X) we add an extra

element xα toX. Let X̄ denote the enlarged setX∪{xα : α ∈ R\f(X)}. Consider
now the real-valued map f̄ : X̄ → R given, for every t ∈ X̄, by f̄(t) = f(t) if t ∈ X;

f̄(t) = α if t = xα for some α ∈ R \ f(X). Now it is plain that f̄ is a bijection.

Finally, define a binary relation ≺̄ on X̄ by declaring that s≺̄t ⇐⇒ f̄(s) + 1 <

f̄(t) (s, t ∈ X̄). We may easily check that ≺̄ is a semiorder whose restriction to X

is ≺. Let h̄ : X̄ → X̄ be defined by h̄(t) = f̄−1(f̄(t) + 1) (t ∈ X̄). It follows that

f̄(h̄(t)) = f̄(t) + 1 (t ∈ X̄), so that f̄ satisfies another generalized Abel equation.

Moreover x ≺ y ⇐⇒ x≺̄y ⇐⇒ f̄(x) + 1 < f̄(y) ⇐⇒ f̄(h(x)) < f̄(y) = f(y)

for every x, y ∈ X ⊆ X̄.

Case 4. When f is neither injective nor surjective, first we enlarge the set X

to a set X̄ obtained by adding an extra element xα for each α ∈ R\ f(X). Define

f̄ and ≺̄ as in the previous case, and observe that f̄ is now surjective but not yet

injective. Consequently, we consider the quotient set X̄R = X̄/R through the

equivalence R that f̄ defines on X̄. As before, in the quotient set X̄R we may

define in the natural way a real-valued function f̄R and a map hR : X̄R → X̄R
such that f̄R(hR(t)) = f̄R(t) + 1 (t ∈ X̄R). As in case 2, for every x̄R ∈ X̄R
we fix an element x̄∗ ∈ X̄ such that x̄∗

R = hR(x̄R). Now we consider the map

h : X̄ → X̄ given by h(x̄) = x̄∗ (x̄ ∈ X̄). We get f̄(h(x̄)) = f̄(x̄∗) = f̄R(x̄∗
R) =

f̄R(hR(x̄R)) = f̄R(x̄R)+1 = f̄(x)+1 (x̄ ∈ X̄), so that f̄ also satisfies a generalized

Abel equation. Once more, it is clear that x ≺ y ⇐⇒ f(x) + 1 < f(y) ⇐⇒
f̄(x) + 1 < f̄(y) ⇐⇒ f̄(h(x)) < f̄(y) = f(y) (x, y ∈ X).

To prove the converse, just observe that if there exists a superset X̄ of X and a

map h : X̄ → X̄ such that there exists a real-valued function f̄ : X̄ → R satisfying

that f̄(h(x̄)) = f̄(x̄) + 1 (x̄ ∈ X̄) as well as x ≺ y ⇐⇒ f̄(x) + 1 < f̄(y) ⇐⇒
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f̄(h(x)) < f̄(y) (x, y ∈ X) then ≺ is indeed representable in the sense of Scott

and Suppes through the real-valued function f with threshold 1, where f stands

for the restriction of the map f̄ to the given set X. ¤

Till this point we have been working with the Scott–Suppes representability

of semiorders. In this kind of representations, the codomain of the function invol-

ved is the real line. However, we can also consider repesentations of semiorders

“à la Scott–Suppes” taking values on codomains different from R. In these con-

texts, further generalizations of the Abel functional equation may also appear,

and extended versions of Theorem 5.1 arise.

To illustrate this idea, we shall consider an example, namely the “lexicogra-

phic plane”.

Definition 5.1. We define the lexicographic plane as P = R×R endowed with

the lexicographic ordering ≺P given by (a, b) ≺P (c, d) ⇐⇒ [(a < c) ∨ (a = c;

b < d)] (a, b, c, d ∈ R).

Now we may consider the following new generalization of the Abel equation.

Definition 5.2. Let X be a nonempty set. Let h : X → X be a map. A

map f : X → P is said to satisfy the generalized Abel equation with values

on the lexicographic plane P if f(h(x)) = f(x)+̄(0, 1) where +̄ stands for the

coordinatewise sum on the plane R2.

In this direction, we get the next Theorem 5.2. (The proof is omitted for the

sake of brevity, because it uses similar ideas to that of Theorem 5.1.)

Theorem 5.2. Let X be a nonempty set and ≺ a semiorder defined on X.

Then ≺ is representable “à la Scott–Suppes” on the lexicographic plane P if and

only if there exists a superset X̄ of X and a map h : X̄ → X̄ such that the

generalized functional equation f̄(h(x̄)) = f̄(x̄)+̄(0, 1) (x̄ ∈ X̄; f̄ : X̄ → P) has

a solution and, in addition, x ≺ y ⇐⇒ f̄(x)+̄(0, 1) ≺P f̄(y) ⇐⇒ f̄(h(x)) ≺P
f̄(y) for every x, y ∈ X ⊆ X̄.

Remark 2. Further results that are similar to Theorem 5.1 and Theorem 5.2

can also be obtained if we consider other codomains. Among them another clas-

sical possible codomain is the long line, defined as the lexicographically ordered

set L = [0, ω1)× [0, 1) where ω1 stands for the first uncountable ordinal.

Notice also that if α ∈ [0, ω1) the ordinal α+1 is defined, so that a generalized

Abel equation with values on the long line L can be understood as one of the

type f(h(x)) = f(x)+̄(1, 0) where X is a nonempty set, h : X → X is a map,
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f : X → L is the unknown function, and +̄ stands for the coordinatewise sum

on L.
Other remarkable possibility could be using as codomain a (non-trivial) to-

tally ordered group or semigroup (G,⊕), whose representability could also be

related to some other kind of functional equations (see e.g. [9]). If we fix an ele-

ment a ∈ G different of the null element e, we may consider a generalized Abel

equation with values on the group (G,⊕) as one of the type f(h(x)) = f(x) ⊕ a

where X is a nonempty set, h : X → X is a map, f : X → G is the unknown

function, and ⊕ stands for the algebraic group operation on G.

A third interesting alternative codomain could be some special set of fuzzy

numbers on which semiordered structures could have a natural representation.

This new approach has been recently considered in [7].

6. Final discussion

Although Theorem 5.1 furnishes a characterization of the Scott–Suppes rep-

resentability of semiorders in terms of generalized Abel equations, several difficul-

ties appear when trying to put in practice this key result. First, we observe that

if X is a nonempty set where a semiorder ≺ has been defined, to guarantee the

Scott–Suppes representability of ≺ in the terms stated in Theorem 5.1, we must

use a suitable superset X̄. However, Theorem 5.1 gives no furher information,

a priori, about which are the characteristics of this suitable superset. In other

words, we cannot guess (a priori) how the key superset X̄ looks like. Second,

even if we know all about the superset X̄, we must still have at hand a suitable

map h : X̄ → X̄ of which, again, we have no information given a priori, so that

it seems difficult to guess how h looks like.

Consequently, we should use alternative characterizations of the Scott–Suppes

representability of semiorders that lean on other approaches or criteria. At this

point, we have already quoted that in [10] some characterizations of this kind were

given. But, unfortunately, the characterizations of the Scott–Suppes representa-

bility of semiorders given in [10] also lean on properties of a suitable extension of

the given semiordered structure (X,≺), and it does not seem easy yet to guess

how such suitable extension looks like.

Incidentally, we must point out that the extensions used in the proof of the

main theorem in [10], namely the so-called Generalized Scott–Suppes Represen-

tability Theorem (GSSRT), are related to the superset X̄ that appears in the

statement of Theorem 5.1. Comparing both approaches, the reader may observe
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that the map h that appears in the statement of Theorem 5.1 acts as the definition

of a successor element S(x), a key step in the proof of GSSRT in [10].

To conclude our discussion, it is important to point out the necessity of

looking for alternative characterizations of the Scott–Suppes representability of

a semiorder ≺ defined on a (nonempty) set X that are internal, that is, they

should be expressed in terms (only) of the given structure (a semiorder, in this

case). Partial results in this direction have been recently published in [1].
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UNIVERSIDAD PÚBLICA DE NAVARRA

DEPARTAMENTO DE MATEMÁTICAS
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