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Global signed total domination in graphs

By MARYAM ATAPOUR (Tabriz), SEYED MAHMOUD SHEIKHOLESLAMI (Tabriz)
and ABDOLLAH KHODKAR (Carrollton)

Abstract. A function f : V (G) → {−1, 1} defined on the vertices of a graph G is a

signed total dominating function (STDF) if the sum of its function values over any open

neighborhood is at least one. A STDF f of G is called a global signed total dominating

function (GSTDF) if f is also a STDF of the complement G of G. The global signed

total domination number γgst(G) of G is defined as γgst(G) = min{∑v∈V (G) f(v) | f
is a GSTDF of G}. In this paper first we find lower and upper bounds for the global

signed total domination number of a graph. Then we prove that if T is a tree of order

n ≥ 4 with ∆(T ) ≤ n−2, then γgst(T ) ≤ γst(T )+4. We characterize all the trees which

satisfy the equality. We also characterize all trees T of order n ≥ 4, ∆(T ) ≤ n− 2 and

γgst(T ) = γst(T ) + 2.

1. Introduction

In the whole paper, G is a simple graph without isolated vertices and with

vertex set V (G) and edge set E(G) (briefly V and E). For every vertex v ∈ V ,

the open neighborhood NG(v) = N(v) is the set {u ∈ V | uv ∈ E} and its closed

neighborhood is the set NG[v] = N [v] = N(v) ∪ {v}. The open neighborhood of a

set S ⊆ V is the set N(S) = ∪v∈SN(v). The minimum and maximum degrees

of G are respectively denoted by δ and ∆. For a vertex v in a rooted tree T , we let

C(v) denote the set of children of v and let D(v) denote the set of descendants of

v and D[v] = D(v)∪{v}. The maximal subtree at v is the subtree of T induced by

D[v], and is denoted by Tv. A leaf of T is a vertex of degree 1 and a support vertex
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is a vertex adjacent to a leaf. The set of leaves and the set of support vertices

in T are denoted by L(T ) and S(T ), respectively. We use [7] for terminology and

notation which are not defined here.

For a real-valued function f : V → R the weight of f is ω(f) =
∑

v∈V f(v),

and for S ⊆ V we define f(S) =
∑

v∈S f(v), so ω(f) = f(V ). For a vertex v in V ,

we denote f(N(v)) by f [v]. Let f : V → {−1, 1} be a function which assigns to

each vertex of G an element of the set {−1, 1}. The function f is said to be a

signed total dominating function (STDF) of G (see [8]) if f [v] ≥ 1 for every v ∈ V .

Note that G admits a STDF if and only if G has no isolated vertices. The signed

total domination number of G, denoted by γst(G), is the minimum weight of a

signed total dominating function of G. The signed total domination number has

been studied by several authors (see for example [1], [2], [4], [6]).

A signed total dominating function f of G is called a global signed total

dominating function (GSTDF) if f is also a STDF of its complement G. Note

that G admits a GSTDF if and only if G and G have no isolated vertices. The

global signed total domination number of G, denoted by γgst(G), is the minimum

weight of a GSTDF of G. A γst(G)-function is a STDF of G with ω(f) = γst(G).

A γgst(G)-function is defined similarly. For a (global) signed total dominating

function f of G we define P = Pf = {v ∈ V | f(v) = 1} and M = Mf = {v ∈ V |
f(v) = −1}. Since every GSTDF of G is a STDF on both G and G, we have

γgst(G) ≥ max{γst(G), γst(G)}. (1)

Our purpose in this paper is to initiate the study of the global signed total

domination numbers in graphs. First we find lower and upper bounds for the

global signed total domination number of a graph. Then we prove that if T is a

tree of order n ≥ 4 with ∆ ≤ n − 2, then γgst(T ) ≤ γst(T ) + 4. We characterize

all trees which satisfy the equality. Note that the condition ∆ ≤ n− 2 guaranties

that T , the complement of T , has no isolated vertices. We also characterize all

trees T of order n ≥ 4, ∆(T ) ≤ n − 2 and γgst(T ) = γst(T ) + 2. Finally, we

calculate γgst(G) for complete bipartite graphs G.
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2. Preliminary and bounds

We make use of the following results.

Theorem A ([4]). If G is a graph of order n with minimum degree δ ≥ 2

and maximum degree ∆, then

γst(G) ≥
(
d δ−1

2 e − b∆−1
2 c+ 1

d δ−1
2 e+ b∆−1

2 c+ 1

)
n.

An immediate consequence of Theorem A now follows.

Corollary 1. For every graph G of order n ≥ 13 with 2 ≤ δ ≤ ∆ ≤ 3,

γgst(G) = γst(G).

Proof. Let f be a γst(G)-function and v ∈ V . We show that f is also a

STDF of G. By Theorem A, we have γst(G) ≥ n/3 and so γst(G) ≥ 5. Since

∆ ≤ 3, f(NG[v]) ≤ 4. It follows that

f(NG(v)) ≥ γst(G)− 4 ≥ 1.

Now the result follows by (1). ¤

Theorem B ([4]). If T is a tree of order n ≥ 2, then γst(T ) ≥ 2 with equality

if and only if every vertex v ∈ V (T ) \ L(T ) has odd degree and is adjacent to

at least deg(v)−1
2 leaves. Moreover, if γst(T ) = 2 and f is a γst(T )-function, then∑

x∈N(v) f(x) = 1 for each v ∈ V (T ) and also Mf ⊆ L(T ).

Theorem C ([8]). For every graphG of order n≥ 2 and δ(G) ≥ 1, γst(G)≡n

(mod 2).

Theorem D ([8]). For n ≥ 3, γst(Cn) = n.

We conclude this section with some propositions on γgst(G).

Proposition 2. Let G be a graph of order n such that G and G have no

isolated vertices. Then γgst(G) ≡ n (mod 2).

Proof. Let f be a γgst(G)-function . Obviously, n = |Pf | + |Mf | and

γgst(G) = |Pf |− |Mf |. Therefore, n−γgst(G) = 2|Mf | and the result follows. ¤

By Theorem C and Proposition 2 we have:

Proposition 3. Let G be a graph such that G and G have no isolated

vertices. Then γgst(G) ≡ γst(G) (mod 2).
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The next proposition shows that the global signed total domination number

of a graph is a positive integer.

Proposition 4. Let G be a graph such that G and G have no isolated

vertices. Then

γgst(G) ≥ max{3, γst(G), γst(G)}.
Furthermore, this bound is sharp.

Proof. By assumption n ≥ 4 and by (1), γgst(G) ≥ max{γst(G), γst(G)}.
Thus, it suffices to prove γgst(G) ≥ 3. Let f be a γgst(G)-function. Obviously,

P 6= ∅. Assume x ∈ P . Then

|NG(x) ∩ P | ≥ |NG(x) ∩M |+ 1 (2)

and

|NG(x) ∩ P | ≥ |NG(x) ∩M |+ 1. (3)

By (2) and (3),

|NG(x) ∩ P |+ |NG(x) ∩ P | ≥ |NG(x) ∩M |+ |NG(x) ∩M |+ 2.

Since x ∈ P , it follows that |P | ≥ |M |+ 3 and so γgst(G) = |P | − |M | ≥ 3.

In order to prove the sharpness, assume k ≥ 1 and let G be a graph with

vertex set

V (G) = {ui, vi, xj , yj , zj | 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2k + 1}
and edge set

E(G) = {uiui+1, uivi, ui+1vi | 1 ≤ i ≤ 3} ∪ {u1xj , u2yj , u3zj | 1 ≤ j ≤ 2k + 1},
where u4 = u1. Define f : V (G) → {−1, 1} by f(vi) = f(xj) = f(yj) = f(zj) =

−1 for 1 ≤ i ≤ 3, 1 ≤ j ≤ k and f(x) = 1 otherwise. It is easy to see that f is a

GSTDF of G with ω(f) = 3. Thus γgst(G) = 3 and the proof is complete. ¤

The next theorem shows that the difference γgst(G) − max{γst(G), γst(G)}
can be arbitrarily large.

Theorem 5. For every positive integer k, there exists a connected graph G

such that G is connected and

γgst(G)−max{γst(G), γst(G)} ≥ 2k + 1.

Proof. Let G be the graph with vertex set V (G) = {ui, vi | 0 ≤ i ≤ 4k− 1}
and edge set E(G) = {vivj | 0 ≤ i 6= j ≤ 4k − 1} ∪ {uivi, uivi+1, . . . , uivi+2k−1 |
0 ≤ i ≤ 4k − 1}, where the indices are taken modulo 4k. Obviously, G ' G and
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so γst(G) = γst(G). Define f : V (G) → {−1, 1} by f(vi) = 1 if i ∈ {0, 1, . . . , 3k}
and f(x) = −1 otherwise. It is easy to see that f is a STDF of G which implies

that γst(G) ≤ ω(f) = 2 − 2k. Therefore max{γst(G), γst(G)} ≤ 2 − 2k. By

Proposition 4, γgst(G)−max{γst(G), γst(G)} ≥ 2k+1 and the proof is complete.

¤

Theorem 6. For every graph G of order n,

γgst(G) ≤ n− 2min

{⌊
δ(G)− 1

2

⌋
,

⌊
δ(G)− 1

2

⌋}
.

Proof. Let, without loss of generality,

θ =

⌊
δ(G)− 1

2

⌋
= min

{⌊
δ(G)− 1

2

⌋
,

⌊
δ(G)− 1

2

⌋}
.

Suppose that v1, . . . , vθ are distinct vertices of G. Define f : V (G) → {−1, 1} by

f(vi) = −1 for i = 1, . . . , θ and f(x) = 1 if x 6∈ {v1, . . . , vθ}. It is easy to see that

f is a GSTDF of G and ω(f) = n− 2θ. Now the result follows. ¤

3. Trees

In this section we study the global signed total domination numbers in trees.

We note that a tree T of order n ≥ 4 admits a GSTDF if and only if ∆(T ) ≤ n−2.

The condition ∆(T ) ≤ n−2 guaranties that T has no isolated vertices. Recall that,

for every pair u, v of distinct vertices in V , the distance d(u, v) is the minimum

length of a (u-v)-path. We begin with the following lemma.

Lemma 7. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n−2. If f is a signed

total dominating function of T , then
∑

u∈NT (v) f(u) ≥ 0 for every v ∈ V (T ).

Proof. Let T be rooted at a vertex v. If v is a leaf with support vertex w,

then f(w) = 1 and by Theorem B,

∑

u∈NT (v)

f(u) =
∑

x∈V (T )

f(x)− f(v)− f(w) ≥ 1− f(v) ≥ 0.

Now assume that v is not a leaf and N(v) = {v1, v2, . . . , vt}. We consider two

cases.
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Case 1. f(v) = −1. Then v is not a support vertex and f , restricted to Tvi ,

is a signed total dominating function of Tvi for each 1 ≤ i ≤ t. By Theorem B,

f(NT (v) ∩ V (Tvi)) = f(V (Tvi))− f(vi) ≥ 2− f(vi) ≥ 1. Hence,

∑

u∈NT (v)

f(u) =

t∑

i=1

f(NT (v) ∩ V (Tvi
)) ≥ 2.

Case 2. f(v) = 1. Since ∆(T ) ≤ n− 2, v has some neighbors which are not

leaves. Without loss of generality, we may assume v1, . . . , vs are the neighbors of

v with deg(vi) ≥ 2 for 1 ≤ i ≤ s ≤ t. Let Ti = T [V (Tvi) ∪ {v}] be the subgraph

induced by V (Tvi
) ∪ {v} for each 1 ≤ i ≤ s. We consider two subcases.

Subcase 2.1. f(vi) = 1 for each 1 ≤ i ≤ s. Then f , restricted to Ti, is a

signed total dominating function of Ti for each i. By theorem B,

f(NT (v) ∩ V (Ti)) = f(V (Ti))− f(vi)− f(v) ≥ 0. (4)

Hence,
∑

u∈NT (v)

f(u) =

s∑

i=1

f(NT (v) ∩ V (Ti)) ≥ 0. (5)

Subcase 2.2. f(vi) = −1 for some 1 ≤ i ≤ s. Let, without loss of generality,

f(v1) = −1. Set S = V (T ) \ (L(T ) ∪ {v}) and Si = V (Ti) \ L(Ti). Then

∑

u∈NT (v)

f(u) =

s∑

i=1

f(NT (v) ∩ V (Ti)) =

s∑

i=1

∑

u∈Si

f(C(u)). (6)

Since f [u] ≥ 1 for each u ∈ S and N(u) consists of the parent and children

of u, it follows that f(C(u)) ≥ 0. On the other hand, since f(v1) = −1, v1
is not a support vertex and for each u ∈ C(v1) we have 1 ≤ f [u] = f(v1) +

f(C(u)) = −1 + f(C(u)). Therefore for each u ∈ C(v1), f(C(u)) ≥ 2 and so

f(NT (v) ∩ V (T1)) =
∑

u∈S1
f(C(u)) ≥ 2. By (6),

∑

u∈NT (v)

f(u) =

s∑

i=1

∑

u∈Si

f(C(u)) ≥ 2.

This completes the proof. ¤

A closer look at the proof of Lemma 7 shows that:

Corollary 8. Let T be a tree of order n with ∆(T ) ≤ n− 2, v ∈ V (T ) and

f a signed total dominating function of T . If
∑

u∈NT (v) f(u) = 0, then either v is
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a leaf or f(v) = 1 and f assigns the value 1 to every neighbor of v whose degree

is at least two.

Theorem 9. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n− 2. Then

γgst(T ) ≤ γst(T ) + 4.

Proof. Let f be a γst(T )-function. If |Mf | ≤ 2, then define g : V (T ) →
{−1, 1} by g(x) = 1 for each x ∈ V (T ). Obviously, g is a GSTDF of T and so

γgst(T ) ≤ ω(g) ≤ ω(f) + 4 = γst(T ) + 4.

Now let |Mf | ≥ 3. First let there exist vertices u and v inMf such that d(u, v) ≥ 3.

Define g : V (T ) → {−1, 1} by

g(x) = 1 if x ∈ Pf ∪ {u, v} and g(x) = −1 otherwise.

We claim that g is a GSTDF of T . Obviously, g is a STDF of T . Let x ∈ V (T ).

Since d(u, v) ≥ 3, u ∈ NT (x) or v ∈ NT (x). By Lemma 7,

∑

z∈NT (x)

g(z) =
∑

z∈NT (x)−{u,v}
f(z)−

∑

z∈NT (x)∩{u,v}
f(z) ≥ 1 + 1 = 2

and so g is a GSTDF of T . Therefore

γgst(T ) ≤ ω(g) ≤ ω(f) + 4 = γst(T ) + 4.

Now let for each pair u, v in Mf , d(u, v) ≤ 2. Then T has a subgraph isomor-

phic to a star K1,t, (t ≥ 2) with center, say x, and leaves {x1, . . . , xt} such that

x1, . . . , xt ∈ Mf and Mf ⊆ {x, x1, . . . , xt}. Define g : V (T ) → {−1, 1} by

g(z) = 1 if z ∈ Pf ∪ {x1, x2} and g(z) = −1 otherwise.

We claim that g is a GSTDF of T . Obviously, g is a STDF of T . It suffices to

prove that g is a STDF of T . Let y ∈ V (T ). First let y = x. Since g(z) = 1 for

each z ∈ V (T ) \NT (x), it follows that
∑

z∈NT (x) g(z) ≥ 1.

Now let y 6= x. Then either yx1 6∈ E(T ) or yx2 6∈ E(T ). Therefore yx1 ∈
E(T ) or yx2 ∈ E(T ). Then

∑

u∈NT (y)

g(u) =
∑

u∈(NT (y)−{x1,x2})
f(u)−

∑

u∈(NT (y)∩{x1,x2})
f(u)
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=
∑

u∈NT (y)

f(u)

︸ ︷︷ ︸
≥0 by Lemma 7

−2
∑

u∈(NT (y)∩{x1,x2})
f(u) ≥ 2.

Therefore g is a GSTDF of T and

γgst(T ) ≤ ω(g) ≤ ω(f) + 4 = γst(T ) + 4,

as desired. ¤

In what follows, we characterize all trees T which achieve the bound in The-

orem 9.

Lemma 10. Let T be a tree of order n ≥ 4 with∆(T ) ≤ n−2. If γst(T ) = 2,

then γgst(T ) = γst(T ) + 4.

Proof. Let γst(T ) = 2 and let f be a γst(T )-function. By Theorem B,

Mf ⊆ L(T ), (7)

and each vertex v ∈ V (T ) \L(T ) is a support vertex. Assume that g is a GSTDF

of T such that |Mg ∩Mf | is maximum. Since g is a STDF of T and each vertex

v ∈ V (T ) \ L(T ) is a support vertex, g(v) = 1. Hence,

Mg ⊆ L(T ). (8)

We claim that Mg ⊆ Mf . Suppose to the contrary that Mg 6⊆ Mf and u ∈
Mg −Mf . Let v be the support vertex of u. Since ω(f) = γst(G) = 2 and g is a

STDF of T , we have g[v] ≥ 1 = f [v] and hence |Mf ∩L(v)| ≥ |Mg ∩L(v)|, where
L(v) is the set of leaves adjacent to v. Let w ∈ (Mf ∩L(v)) \ (Mg ∩L(v)− {u}).
Then the function h : V (G) → {−1, 1} defined by

h(u) = 1, h(w) = −1 and h(x) = g(x) if x ∈ V (G)− {u,w}

is obviously a GSTDF of T such that |Mg ∩Mf | < |Mh ∩Mf | which is a contra-

diction. Thus Mg ⊆ Mf . Since γst(T ) = 2 and by Proposition 4, γgst(T ) ≥ 3, we

have |Mf | ≥ |Mg| + 1. Assume |Mf | = |Mg| + 1. Let Mf \Mg = {u} and let v

be the support vertex of u. Then by Theorem B,

2 = γst(T ) =
∑

x∈NT (v)

f(x) +
∑

x∈NT (v)

g(x) + g(v) = 2 +
∑

x∈NT (v)

g(x),

which implies that
∑

x∈NT (v) g(x) = 0, a contradiction. Therefore |Mf | ≥ |Mg|+2

and so γgst(T ) ≥ γst(T ) + 4. Now the result follows by Theorem 9. ¤
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Lemma 11. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n−2. If γgst(T ) =

γst(T ) + 4, then γst(T ) = 2.

Proof. Let γgst(T ) = γst(T ) + 4 and let f be a γst(T )-function. By as-

sumption, f is not a GSTDF of T . By Lemma 7, there exists a vertex v ∈ V (T )

such that
∑

u∈NT (v)
f(u) = 0. By Corollary 8, either v is a leaf or f(v) = 1 and

f assigns the value 1 to every neighbor of v whose degree is at least two. First

assume v is a leaf and w is its support vertex. Since γst(T ) ≥ 2, by Theorem B,

and
∑

u∈NT (v)
f(u) = 0, we have f(v) = f(w) = 1. This implies that

γst(T ) =
∑

u∈NT (v)

f(u) + f(v) + f(w) = 2.

Now suppose that v is not a leaf. Let NT (v)={v1, v2, . . . , vt} and deg(vi)≥2

for 1 ≤ i ≤ s ≤ t. By Corollary 8, f(v) = f(vi) = 1 for 1 ≤ i ≤ s. Let

Ti = T [V (Tvi) ∪ {v}] be the subgraph induced by V (Tvi) ∪ {v} for each 1 ≤
i ≤ s. Clearly, f restricted to Ti is a STDF of Ti for each 1 ≤ i ≤ s. Since∑

u∈NT (v)
f(u) = 0, by (4) and (5),

f(NT (v) ∩ V (Tvi)) = 0 (9)

for 1 ≤ i ≤ s. Hence, γst(Ti) = 2 for 1 ≤ i ≤ s. We claim that f [v] = 1, which

implies that

γst(T ) = f(v) + f [v] +

s∑

i=1

f(NT (v) ∩ V (Tvi)) = 2.

Let, to the contrary, f [v] ≥ 2. Since γst(T1) = 2 and the order of T1 is at least 3,

by Theorem B, f must assign the value −1 to a leaf in T1. Let z ∈ V (T1) be a

leaf in T such that f(z) = −1. Define g : V (T ) → {−1, 1} by

g(z) = 1 and g(x) = f(x) otherwise.

We claim that g is a GSTDF of T . Obviously, g is a STDF of T . It suffices to

prove that g is a STDF of T . Let y ∈ V (T ). If y = v, then by (9)

∑

x∈NT (v)

g(x) = g(NT (v) ∩ V (Tv1))︸ ︷︷ ︸
≥2

+

s∑

i=2

f(NT (v) ∩ V (Tvi)) ≥ 2.
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Let y 6= v. First assume y ∈ {vs+1, . . . , vt} if t > s. Then

∑

x∈NT (y)

g(x) =
∑

x∈N(v)−{y}
g(x)

︸ ︷︷ ︸
≥1 since f [v]≥2

+

s∑

i=1

g(NT (y) ∩ V (Tvi
)) ≥ 1.

Now let y ∈ {v1, . . . , vs}. By the definition of g, g(V (T1)) = 4 and g(V (Ti)) = 2

for 2 ≤ i ≤ s and we also have g[vi] = 1 for i = 2, . . . , s and g[v1] = 3 when

v1 is adjacent to z and g[v1] = 1 otherwise. Since g(y) = 1, g(V (T1)) = 4 and

g(V (Ti)) = 2 for 2 ≤ i ≤ s, it follows that

g(NT (y) ∩ (V (Tv1)− {v1})) = 2 if y = v1 and yz 6∈ E(T ),

g(NT (y) ∩ (V (Tv1)− {v1})) = 0 if y = v1 and yz ∈ E(T ),

g(NT (y) ∩ (V (Tv1)− {v1})) = 2 if y ∈ {v2, v3, . . . , vs}, and

g(NT (y) ∩ (V (Tvi)− {vi})) = 0 if 2 ≤ i ≤ s.

Therefore

∑

x∈NT (y)

g(x) =
∑

x∈N(v)−{y}
g(x)

︸ ︷︷ ︸
≥1 since f [v]≥2

+

s∑

i=1

g(NT (y) ∩ (V (Tvi) \ {vi})) ≥ 1.

Finally, if y 6∈ NT [v], then as above we can see that
∑

x∈NT (y) g(x) ≥ 1. There-

fore g is a STDF of T . This implies that γgst(T ) ≤ γst(T ) + 2, a contradiction.

This completes the proof. ¤

By Lemmas 10 and 11, for a tree T of order n ≥ 4 and ∆(T ) ≤ n − 2,

γgst(T ) = γst(T )+4 if and only if γst(T ) = 2. Hence, by Theorem B we can state

the following characterization.

Theorem 12. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n − 2. Then

γgst(T ) = γst(T ) + 4 if and only if every vertex v ∈ V (T ) \ L(T ) has odd degree

and is adjacent to at least deg(v)−1
2 leaves.

4. Trees T with γgst(T ) = γst(T ) + 2

In this section first we characterize the trees T with γst(T ) = 3. Then we

characterize the trees T for which γgst(T ) = γst(T ) + 2. Note that by Proposit-

ion 3, there is no tree T with γgst(T ) = γst(T ) + 3. Throughout this section `(v)
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denotes the number of pendant edges at vertex v. We begin with the following

observation.

Observation 13. Let f be a STDF of G and let v ∈ V (G). If deg(v) is

even, then f [v] ≥ 2.

Let T1 be the collection of all trees of order n ≥ 2 with exactly one vertex of

even degree and `(v) ≥ b(deg(v)− 1)/2c for every vertex v.

Theorem 14. For any tree T , γst(T ) = 3 if and only if T ∈ T1 . Also, if

T ∈ T1 and f is a γst(T )-function, then f [v] = 1 if v is an odd vertex and f [v] = 2

when v is an even vertex, for every vertex v ∈ V (T ).

Proof. Let f be a γst(T )-function. We claim that the only vertices v for

which f(v) = −1 are leaves. Let, to the contrary, v be a non leaf vertex of T and

f(v) = −1. Then v is not a support vertex. Suppose that N(v) = {v1, . . . , vt}.
Root T at v. It is clear that f , restricted to Tvi , is a STDF of Tvi for each

1 ≤ i ≤ t. By Theorem B, we have f(V (Tvi)) ≥ 2 for each 1 ≤ i ≤ t. Since

3 = γst(T ) = ω(f) =

t∑

i=1

f(V (Tvi))− 1,

we must have t = 2 and γst(Tv1) = γst(Tv2) = 2. By Theorem B, f(NTv1
(v1)) = 1

which implies that f(NT (v1)) = 0, a contradiction. Therefore, the only vertices v

for which f(v) = −1 are leaves.

Since γst(T ) = 3, by Theorem B, T has an even vertex or every vertex

v ∈ V (T ) \ L(T ) has an odd degree and at least one of them, say v, is adjacent

to at most deg(v)−1
2 − 1 leaves. First let v ∈ V (T ) \L(T ) have odd degree and be

adjacent to at most deg(v)−1
2 − 1 leaves. Root the tree T at v. Then f [v] ≥ 3 and

v has at least three children which are not leaves. Let S = V (G) − L(T ) − {v}.
Since f [u] ≥ 1 for each u ∈ S, and since N(u) consists of the parent of u and the

set of children of u, it follows that f(C(u)) ≥ 0 where the set C(u) denotes the

set of children of u. Now the sets C(u), u ∈ S, together with the two sets C(v)

and {v}, partition V (T ). Thus

3 = γst(T ) = ω(f) = f(v) + f [v] +
∑

u∈S

f(C(u)) ≥ 1 + 3 +
∑

u∈S

0 ≥ 4,

which is a contradiction.

Thus T has an even vertex, say v, and f(v) = 1 because v is not a leaf. Root

the tree T at v. Then f [v] = f(C(v)), where C(v) consists of children of v. If
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every child of v is a leaf, then 3 = ω(f) = f(v) + f [v] which implies that f [v] = 2

and so T ∈ T1. Hence we may assume that at least one child of v is not a leaf. Let

S = V (T ) \ (L(T ) ∪ {v}). Since f [u] ≥ 1 for each u ∈ S, and since N(u) consists

of the parent and children of u, it follows that f(C(u)) ≥ 0. Now the sets C(u),

u ∈ S, together with the two sets {v} and C(v) partition V (T ). Thus

3 = γst(T ) = f(v) + f [v] +
∑

u∈S

f(C(u)). (10)

By (10) and Observation 13, f [v] = 2 and f(C(u)) = 0 for every u ∈ S. It follows

that every vertex in S, and therefore every vertex of V (T ) \ {v} has odd degree.

Furthermore, f [v] = 2 and f [w] = 1 for every vertex w ∈ V (T ) \ {v}.
Let y ∈ V (T ) \ L(T ). Then y ∈ S ∪ {v}. If y = v, then f [v] = f(C(v)) = 2,

and so (deg(v)− 1)/2 children of v are assigned the value −1 under f . Hence, v

is adjacent to at least (deg(v) − 1)/2 leaves. Suppose, then, that y 6= v. Since

f(C(y)) = 0, |C(y)|/2 = (deg(y) − 1)/2 children of y are assigned the value −1

under f . Hence, y is adjacent to at least (deg(y)−1)/2 leaves. Thus every vertex

y ∈ V (T ) \ (L(T )∪ {v}) has odd degree and also every vertex y ∈ V (T ) \L(T ) is
adjacent to at least (deg(y)− 1)/2 leaves. Thus T ∈ T1.

On the other hand, let T ∈ T1 and let u be the even vertex of T . Let g be

the function defined as follows: for each v ∈ V (T ) \ L(T ), assign the value −1

to b(deg(v)− 1)/2c leaves adjacent to v. Assign to all other vertices the value 1.

Then, g[u] = 2 and g[v] = 1 for each vertex v ∈ V (T ) \ {u}, and every vertex

that is assigned −1 under g is a leaf. It follows that g is a STDF of T . We now

root T at u. Then, g(C(u)) = g[u] = 2 and for each v ∈ V (T ) \ (L(T ) ∪ {u}),
g(C(v)) = 0. It follows that

γst(T ) ≤ ω(g) = g(u) + g[u] +
∑

v∈V (T )\(L(T )∪{u})
g(C(v)) = 3.

By Theorem B, γst(T ) = 3 and the proof is complete. ¤

Lemma 15. Let T be a tree of order n ≥ 4 with∆(T ) ≤ n−2. If γst(T ) = 3,

then γgst(T ) = γst(T ) + 2.

Proof. By Proposition 3, Theorem 9 and Lemma 11, γgst(T ) ≤ γst(T ) + 2.

Let, to the contrary, γgst(T ) < γst(T ) + 2. Then by Proposition 3, γgst(T ) ≤
γst(T ). It follows that γgst(T ) = γst(T ) by Proposition 4.

Assume that g is a γgst(T )-function. Then g is a γst(T )-function. Since

γst(T ) = 3, T has an even vertex, say u. By Theorem 14, g(u) = 1 and g[u] = 2.



Global signed total domination in graphs 19

Then

3 = γgst(T ) = ω(g) = g(u) + g[u] +
∑

x∈NT (u)

g(x) = 3 +
∑

x∈NT (u)

g(x).

It follows that
∑

x∈NT (u) g(x) = 0, a contradiction. This completes the proof. ¤

Let T2 be the collection of all trees T of order n ≥ 2 with |V (T ) \ (L(T ) ∪
S(T ))| = 1, and every vertex u ∈ S(T ) has odd degree and is adjacent to at least
deg(u)−1

2 leaves.

Lemma 16. If T ∈ T2, then γgst(T ) = γst(T ) + 2.

Proof. Let T ∈ T2 and let v ∈ V (T ) \ (L(T ) ∪ S(T )). If deg(v) = 2, then

obviously T ∈ T1 and by Theorem 14 and Lemma 15, γgst(T ) = γst(T ) + 2. Now

let deg(v) ≥ 3. By Theorem 12, γgst(T ) ≤ γst(T ) + 2. Let, to the contrary,

γgst(T ) < γst(T ) + 2. Then by Proposition 3, γgst(T ) ≤ γst(T ). It follows that

γgst(T ) = γst(T ) by Proposition 4. Assume that g is a γgst(T )-function. Then

g is also a γst(T )-function. Suppose that N(v) = {v1, . . . , vt}. Since V (T ) =

L(T )∪S(T )∪{v} and v 6∈ S(T ), we have vi ∈ S(T ) for each 1 ≤ i ≤ t. It follows

that g(v1) = · · · = g(vt) = 1.

Claim 1. g(v) = 1.

Proof of Claim 1. Let, to the contrary, g(v) = −1. By assumption, vi has

odd degree and is adjacent to at least deg(vi)−1
2 leaves in T for each 1 ≤ i ≤ t.

Since g[vi] ≥ 1 for each 1 ≤ i ≤ t, g must assign the value 1 to a leaf, say wi,

adjacent to vi for each i. Define f : V (T ) → {−1, 1} by

f(v) = 1, f(w1) = · · · = f(wt) = −1 and f(x) = g(x) otherwise.

It is clear that f is a STDF of T with weight less than g, a contradiction. Thus

g(v) = 1.

Let T be rooted at v and let Ti = T [V (Tvi) ∪ {v}] for each 1 ≤ i ≤ t.

Obviously, g restricted to Ti is a STDF of Ti.

Claim 2. ω(g|Ti) = 2 for each 1 ≤ i ≤ t.

Proof of Claim 2. Let, to the contrary, ω(g|Ti) > 2 for some i, say i = 1. By

assumption and Theorem B, γst(T1) = 2. Let h be a γst(T1)-function. Then

h[v1] = 1 by Theorem B. Since v1 is adjacent to at least deg(vi)−1
2 +1 leaves in T1,

without loss of generality, we may assume h(v) = 1. Define f : V (T ) → {−1, 1}
by

f(x) = h(x) if x ∈ V (T1) and f(x) = g(x) otherwise.



20 M. Atapour, S. M. Sheikholeslami and A. Khodkar

Clearly, f is a STDF of T with weight less than g, a contradiction. Thus

ω(g|Ti) = 2 for each 1 ≤ i ≤ t.

Hence, g(NT (v) ∩ V (Ti)) = 0 for each 1 ≤ i ≤ t and so

g(NT (v)) =

t∑

i=1

g(NT (v) ∩ V (Ti)) = 0,

which contradicts the fact that g is a γgst(T )-function. This completes the proof.

¤

Lemma 17. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n−2. If γgst(T ) =

γst(T ) + 2, then T ∈ T1 ∪ T2.
Proof. Let γgst(T ) = γst(T ) + 2 and let f be a γst(T )-function. By The-

orem B and Lemma 10, γst(T ) ≥ 3. If γst(T ) = 3, then by Lemma 15, T ∈ T1, as
desired. Now let γst(T ) > 3. Then by Theorems B and 14, either T has at least

two vertices of even degree or there is a vertex u which is adjacent to at most

b(deg(u)− 1)/2c − 1 leaves.

Since γgst(T ) = γst(T ) + 2, f is not a GSTDF of T . By Lemma 7, there

exists a vertex v ∈ V (T ) such that

∑

u∈NT (v)

f(u) = 0.

Let NT (v) = {v1, . . . , vt} and assume deg(vi) ≥ 2 for 1 ≤ i ≤ s ≤ t.

Claim. f(v) = 1 and v ∈ V (T ) \ (L(T ) ∪ S(T )).

Proof of Claim. By Corollary 8, either v is a leaf or f(v) = f(vi) = 1 for

1 ≤ i ≤ s. If v is a leaf and w is its support vertex, since γst(T ) ≥ 4, it follows

that
∑

u∈NT (v)
f(u) ≥ 2, a contradiction. Hence, we may assume v is not a leaf.

It remains to show that v 6∈ S(T ). Let, to the contrary, v be a support vertex and

let vt be a leaf. Since
∑

u∈NT (v)
f(u) = 0,

∑t
i=1 f(vi) = γst(T ) − 1 ≥ 3. Define

g : V (G) → {−1, 1} by g(vt) = −1 and g(x) = f(x) for each x ∈ V (T ) \ {vt}. It

is clear that g is a STDF of T of weight less than f , a contradiction. Therefore, v

is not a support vertex and hence f(vi) = 1 for 1 ≤ i ≤ t. This proves our claim.

Assume T is rooted at v. Let Ti = T [V (Tvi)∪ {v}] be the subgraph induced

by V (Tvi) ∪ {v} for each 1 ≤ i ≤ t. Since
∑

u∈NT (v)
f(u) = 0, by (4) and (5) we

have

f(NT (v) ∩ V (Tvi)) = 0 (11)
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for each 1 ≤ i ≤ t. Hence, γst(Ti) = 2 for each 1 ≤ i ≤ t by (11). It follows that

each vertex u ∈ V (Ti)\{v} has odd degree in Ti. Now since v is a leaf adjacent to

vi in Ti with f(v) = 1 and MfTi
⊆ L(Ti), vi is adjacent to at least bdeg(vi)−1

2 c+1

leaves in Ti for each i. Hence vi is adjacent to at least bdeg(vi)−1
2 c leaves in T .

Now let u ∈ V (Ti) \ {v, vi}. Again since γst(Ti) = 2, u is adjacent to at least

bdeg(u)−1
2 c leaves in Ti and hence in T . This implies that T ∈ T2 and the proof is

complete. ¤

By Lemmas 15, 16 and 17, we can state the following characterization.

Theorem 18. Let T be a tree of order n ≥ 4 with ∆(T ) ≤ n − 2. Then

γgst(T ) = γst(T ) + 2 if and only if T ∈ T1 ∪ T2.

5. The global signed total domination number

of complete bipartite graphs

As the parameter γgst(G) is new, it is important to determine its values for

some familiar graphs. In this section we find the exact value of the global signed

total domination number for complete bipartite graphs.

Theorem 19. Let Ka,b be a complete bipartite graph with the bipartition

classes A, B such that |A| = a, |B| = b, 2 ≤ b ≤ a. Then

γgst(Ka,b) =





4 if a, b are both even

6 if a, b are both odd

5 if a and b have different parity.

Proof. Let A = {x1, x2, . . . , xa} and B = {y1, y2, . . . , yb} be the partite

sets of Ka,b. We consider three cases.

Case 1. a and b are both even.

Define f : V (Ka,b) → {−1, 1} by f(xi) = 1 for 1 ≤ i ≤ a
2 + 1, f(yj) = 1 if

1 ≤ j ≤ b
2 + 1 and f(x) = −1 otherwise. Obviously, f is a GSTDF of G and so

γgst(Ka,b) ≤ ω(f) = 4. On the other hand, since a + b is even, γgst(Ka,b) ≡ 0

(mod 2) by Proposition 2. Therefore γgst(Ka,b) ≥ 4 by Proposition 4. Thus

γgst(Ka,b) = 4.

Case 2. a and b are both odd.

By (1) , we have γgst(Ka,b) ≥ γst(Ka,b) = γst(Ka) + γst(Kb) ≥ 6. Define f :

V (Ka,b) → {−1, 1} by f(xi) = f(yj) = 1 for 1 ≤ i ≤ da
2 e + 1, 1 ≤ j ≤ d b

2e + 1
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and f(x) = −1, otherwise. It is easy to verify that f is a GSTDF with ω(f) = 6.

This implies that γgst(Ka,b) = 6.

Case 3. a and b have different parity.

Assume a is even and b is odd (the case “a is odd and b is even” is similar). By (1),

we have γgst(Ka,b) ≥ γst(Ka,b) = γst(Ka) + γst(Kb) ≥ 5. Define f : V (Ka,b) →
{−1, 1} by f(xi) = 1 for 1 ≤ i ≤ a

2 + 1, f(yj) = 1 for 1 ≤ j ≤ d b
2e + 1 and

f(x) = −1 otherwise. It is easy to see that f is a GSTDF of G with ω(f) = 5.

This completes the proof. ¤
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