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On certain arithmetic properties of Stern polynomials

By MACIEJ ULAS (Kraków)

Abstract. We prove several theorems concerning arithmetic properties of Stern

polynomials defined in the following way: B0(t) = 0, B1(t) = 1, B2n(t) = tBn(t), and

B2n+1(t) = Bn(t)+Bn+1(t). We study also the sequence e(n) = degt Bn(t) n = 1, 2, . . . ,

which is of independent interests.

1. Introduction

The Stern sequence (or Stern’s diatomic sequence) s(n) was introduced in [11]

and is defined recursively in the following way

s(0) = 0, s(1) = 1, s(n) =





s
(n
2

)
for n even,

s

(
n− 1

2

)
+ s

(
n+ 1

2

)
for n odd.

This sequence appears in different mathematical contexts. For example in [5] a

pure graph theoretical problem is considered related to the metric properties of

the so-called Tower of Hanoi graph. In the cited paper it is shown that the Stern

sequence appears in the counting function of certain paths in this graph.

In the paper [10] s(n) appears as the number of partitions of a natural num-

ber n − 1 in the form n − 1 =
∑∞

i=0 εi2
i, where εi ∈ {0, 1, 2}. These are called

hiperbinary representations. The connections of the Stern sequence with con-

tinued fractions and the Euclidean algorithm are considered in [6] and [7]. An

interesting application of the Stern sequence to the problem of construction a
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bijection between N+ and Q+ is given in [1]. In this paper it is shown that the

sequence s(n)/s(n + 1), for n ≥ 1, encounters every positive rational number

exactly once.

A comprehensive survey of properties of the Stern sequence can be found

in [12]. An interesting survey of known results and applications of the Stern

sequence can also be found in [8].

Recently two distinct polynomial analogues of the Stern sequence appeared.

The sequence of polynomials a(n;x) for n ≥ 0, defined by a(0;x) = 0, a(1;x) = 1,

and for n ≥ 2:

a(2n;x) = a(n;x2), a(2n+ 1;x) = xa(n;x2) + a(n+ 1;x2),

was considered in [2]. It is easy to see that a(n; 1) = s(n). Remarkably, as was

proved in the cited paper, xa(2n − 1;x) ≡ An+1(x) (mod 2), where An(x) =∑n
j=0 S(n, j)x

j and S(n, j) are the Stirling numbers of the second kind. Further

properties of this sequence and its connection with continued fractions can be

found in [3].

Let us consider the sequence of Stern polynomials Bn(t), n ≥ 0, defined

recursively in the following way:

B0(t) = 0, B1(t) = 1, Bn(t) =

{
tBn

2
(t) for n even,

Bn−1
2

(t) +Bn+1
2
(t) for n odd.

This sequence of polynomials was introduced in [4] and is the sequence which we

investigate in this paper. In [4] it is shown that the sequence of Stern polynomials

has an interesting connections with some combinatorial objects.

The aim of this paper is to give some arithmetic properties which can be

deduced from the definition of the sequence of Stern polynomials.

In Section 2 we gather basic properties of the sequence of Stern polynomials.

In particular in the Theorem 2.3 we prove a symmetric property of Bn(t) (i. e.,

generalization of the property s(i) = s(2n − i) for 1 ≤ i ≤ 2n − 1). Among other

things we also prove that for each n ∈ N+ the polynomials Bn(t), Bn+1(t) are

coprime (Corollary 2.6).

In Section 3 we consider the generating function of the sequence of Stern

polynomials (Theorem 3.1). With its use we give various identities between Stern

polynomials and show that the sequence of the degrees of Stern polynomials are

connected with the sequence ν(n) which counts the occurrence of 1’s in the binary

representation of the number n (Corollary 3.8).

In Section 4 we investigate the properties of the sequence {e(n)}∞n=1, where

e(n) = degt Bn(t), which is interesting in its own. In particular we compute the
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exact number of Stern polynomials with degree equal to n. In order to prove

desired result we use the generating function of the sequence {e(n)}∞n=1 (The-

orem 4.1). We also investigate the extremal properties of the sequence {e(n)}∞n=1

(Theorem 4.3).

In Section 5 we investigate special values of the polynomial Bn(t) and give

some applications to the diophantine equations of the form Bn+a(t)−Bn(t) = c,

where a ∈ N is fixed. Section 6 is devoted to open problems and conjectures

which appear during our investigations and which we were unable to prove.

2. Basic properties

Lemma 2.1. For all a, n ∈ N0 we have the identities

B2an−1(t) =
ta − 1

t− 1
Bn(t) +Bn−1(t), B2an+1(t) =

ta − 1

t− 1
Bn(t) +Bn+1(t).

Proof. We will proceed by induction on a in order to prove the first equality.

The result is true for a = 0 and a = 1. Suppose that the statement is true for a

and all n ≥ 1. We have

B2a+1n−1(t) = B2an(t) +B2an−1(t) = taBn(t) +
ta − 1

t− 1
Bn(t) +Bn−1(t)

=
ta+1 − 1

t− 1
Bn(t) +Bn−1(t),

and the first equality is proved.

Because the proof of the second equality goes in exactly the same manner

we leave it to the reader. ¤

Corollary 2.2. For each n ∈ N we have

B2n−1(t) =
tn − 1

t− 1
, B2n(t) = tn, B2n+1(t) =

tn − 1

t− 1
+ t.

One of the main properties of the Stern sequence is the symmetry property:

s(2k + i) = s(2k+1 − i) for i = 0, 1, . . . , 2k. It is easy to see that the sequence of

Stern polynomials do not satisfy any identity of the form B2k+i(t)−B2k+1−i(t) =

f(t) where f is a polynomial which is independent of k and i. Indeed, we have

B22+1(t)−B23−1(t) = −t(t−1) and B22+22−1(t)−B23−22+1(t) = t(t−1). However,

these identities and the others examined with the use of computer lead us to

conjecture the following theorem.
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Theorem 2.3. The sequence of Stern polynomials satisfy the following sym-

metry property:

B2n+1−i(t)−B2n+i(t) =

{
t(t− 1)B2n−1−i(t) for i = 0, 1, . . . , 2n−1,

−t(t− 1)Bi−2n−1(t) for i = 2n−1 + 1, . . . , 2n.

Proof. We start with the first equality. We proceed by induction on n and

0 ≤ i ≤ 2n−1. The equality is true for n = 1 and i = 0, 1. Let us assume that it

holds for n and 0 ≤ i ≤ 2n−1. We prove it for n+ 1 and 0 ≤ i ≤ 2n.

If i = 2m then 0 ≤ m ≤ 2n−1 and we have the sequence of equalities

B2n+2−i(t)−B2n+1+i(t) = B2n+2−2m(t)−B2n+1+2m(t)

= t(B2n+1−m(t)−B2n+m(t))

= t2(t− 1)B2n−1−m(t) = t(t− 1)B2n−2m

= t(t− 1)B2n−i(t).

If i = 2m− 1 then 1 ≤ m ≤ 2n−1 and we have the sequence of equalities

B2n+2−i(t)−B2n+1+i(t) = B2n+2−2m+1(t)−B2n+1+2m−1(t)

= B2(2n+1−m)+1(t)−B2(2n+m−1)+1(t)

= B2n+1−m(t) +B2n+1−m+1(t)−B2n+m−1(t)−B2n+m(t)

= t(t− 1)B2n−1−m(t)− t(t− 1)B2n−1−(m−1)(t)

= t(t− 1)B2(2n−1−m)+1(t) = t(t− 1)B2n−(2m−1)(t).

The second equality can be proved in an analogous manner, so we left this

computation to the reader. ¤

Theorem 2.4. Let µ(n) be the highest power of 2 dividing n. Then the

following identity holds

tµ(n)(Bn+1(t) +Bn−1(t)) = (B2µ(n)+1(t) +B2µ(n)−1(t))Bn(t).

In particular, if n is odd, we have that

Bn+1(t) +Bn−1(t) = tBn(t).

Proof. First we consider the case n-odd. Then n = 2m+1 for some m ∈ N
and we have that µ(n) = 0. Now we find that

Bn+1(t) +Bn−1(t) = B2m+2(t) +B2m(t)

= tBm+1(t) + tBm(t) = tB2m+1(t) = tBn(t).
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and our theorem follows in case of odd n.

If n is even then n = 2µ(n)(2m + 1) for some m ∈ N, and to shorten the

notation let us put µ = µ(n). We compute

tµ(Bn+1(t) +Bn−1(t)) = tµ(B2µ(2m+1)+1(t) +B2µ(2m+1)−1(t))

= tµ
(
tµ − 1

t− 1
B2m+1(t) +B2m+2(t) +

tµ − 1

t− 1
B2m+1(t) +B2m(t)

)

= tµ
(
2
tµ − 1

t− 1
B2m+1(t) + t(Bm+1(t) +Bm(t))

)

= tµ
(
2
tµ − 1

t− 1
B2m+1(t) + tB2m+1(t)

)
=

(
2
tµ − 1

t− 1
+ t

)
tµB2m+1(t)

=

(
2
tµ − 1

t− 1
+ t

)
B2µ(2m+1) = (B2µ(n)+1(t) +B2µ(n)−1(t))Bn(t),

and the theorem follows. ¤

The next interesting property of the Stern polynomials is contained in the

following.

Theorem 2.5. For 0 ≤ k ≤ 2n − 2 we have

Bk+1(t)B2n−k(t)−Bk(t)B2n−k−1(t) = tn.

Proof. We proceed by induction on n and 0 ≤ k ≤ 2n − 2. The identity

is true for n = 1, k = 0 and n = 2, k = 0, 1, 2. Let us suppose that our identity

holds for given n and 0 ≤ k ≤ 2n − 2. We will prove that the identity holds for

n+ 1.

If 0 ≤ k ≤ 2n+1 − 2 and k is even then we have k = 2i and 0 ≤ i ≤ 2n − 1. If

i = 2n − 1 then it is easy to show that our identity holds, so we can assume that

i ≤ 2n − 2. Then we have

Bk+1(t)B2n+1−k(t)−Bk(t)B2n+1−k−1(t)

= B2i+1(t)B2n+1−2i(t)−B2i(t)B2n+1−2i−1(t)

= tBi(t)B2n−i(t) + tBi+1(t)B2n−i(t)− tBi(t)B2n−i−1(t)− tBi(t)B2n−i(t)

= t(Bi+1(t)B2n−i(t)−Bi(t)B2n−i−1(t)) = tn+1,

where the last equality follows from the induction hypothesis.

If 0 ≤ k ≤ 2n+1− 2 and k is odd then we have k = 2i+1 and 0 ≤ i ≤ 2n− 2.

We have

Bk+1(t)B2n+1−k(t)−Bk(t)B2n+1−k−1(t)



60 Maciej Ulas

= B2i+2(t)B2n+1−2i−1(t)−B2i+1(t)B2n+1−2i−2(t)

= tBi+1(t)(B2n−i−1(t) +B2n−i(t))− tB2n−i−1(t)(Bi(t) +Bi+1(t))

= t(Bi+1(t)B2n−i(t)−Bi(t)B2n−i−1(t)) = tn+1,

and the theorem follows. ¤

As an immediate consequence of Theorem 2.5 we get the following result.

Corollary 2.6. (1) For each n ∈ N we have gcd(Bn(t), Bn+1(t)) = 1.

(2) If a, b ∈ N are odd and a+ b = 2n for some n then gcd(Ba(t), Bb(t)) = 1.

Proof. (1) From Theorem 2.5 we deduce that if a polynomial h ∈ Z[t]
divides gcd(Bn(t), Bn+1(t)) for some n then h(t) = tm for some 0 ≤ m ≤ n. If

m ≥ 1 we get that Bn(0) = Bn+1(0) = 0, but from the Theorem 5.1 (which will

be proved later) we know that for odd k we have Bk(0) = 1. This implies that

m = 0 and the result follows.

(2) If a+b = 2n then b = 2n−a and using similar reasoning as in the previous

case we deduce that if h(t)| gcd(Ba(t), B2n−a(t)) then h(t) = tm for some m. But

a is odd, thus Ba(0) = 1 and we get that m = 0 and h(t) = 1. ¤

Now we give some extremal properties of the sequence of Stern polynomials.

More precisely, for given positive real number a we ask what is the maximum

(minimum) of Bi(a) for i ∈ [2n−1, 2n]. We prove the following theorem.

Theorem 2.7. (1) Let a be a real number satisfying a > 2. Then we have

Mn(a) = max{Bi(a) : i ∈ [2n−1, 2n]} = an = B2n(a).

(2) Let a ∈ (0, 2). Then we have

mn(a) = min{Bi(a) : i ∈ [2n−1, 2n]} =

{
an for a ∈ (0, 1],

an−1 for a ∈ (1, 2].

Proof. (1) In order to prove the identity for Mn(a) we proceed by induction

on n. For n = 1 we have M1(a) = max{1, a} = a. Similarly for n = 2 we have

M2(a) = max{a, a + 1, a2} = a2. Thus our theorem is true for n = 1, 2. Let us

suppose that Mn(a) = an. We will show that Mn+1(a) = aMn(a). We have:

Mn+1(a) = max{Bi(a) : i ∈ [2n, 2n+1]}
= max{max{B2i(a) : i ∈ [2n−1, 2n]},max{B2i+1(a) : i ∈ [2n−1, 2n − 1]}}
= max{amax{Bi(a) : i ∈ [2n−1, 2n]},max{B2i+1(a) : i ∈ [2n−1, 2n − 1]}}.
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Now from the induction hypothesis we have

max{B2i+1(a) : i ∈ [2n−1, 2n − 1]}
= max{Bi+1(a) +Bi(a) : i ∈ [2n−1, 2n − 1]} < 2Mn(a).

Because a > 2 we get that Mn+1(a) = aMn(a) and our theorem follows.

(2) In order to prove the second identity we consider only the case of a ∈ (1, 2]

because the case of a ∈ (0, 1] is completely analogous. We proceed by induction

on n. We take a ∈ (1, 2] and note that for n = 1 we have m1(a) = min{1, a} = 1.

Similarly, for n = 2 we have m2(a) = min{a, a+ 1, a2} = a. Thus our theorem is

true for n = 1, 2. Let us suppose that mn(a) = an−1 for a given n. We will show

that mn+1(a) = amn(a). We have:

mn+1(a) = min{Bi(a) : i ∈ [2n, 2n+1]}
= min{min{B2i(a) : i ∈ [2n−1, 2n]},min{B2i+1(a) : i ∈ [2n−1, 2n − 1]}}
= max{amin{Bi(a) : i ∈ [2n−1, 2n]},min{B2i+1(a) : i ∈ [2n−1, 2n − 1]}}.

Now from the induction hypothesis we have

min{B2i+1(a) : i ∈ [2n−1, 2n − 1]}
= min{Bi+1(a) +Bi(a) : i ∈ [2n−1, 2n − 1]} > 2mn(a).

Because a ∈ (1, 2] we get that mn+1(a) = amn(a) and our theorem follows. ¤

In corollary below and in the sequel by lg x we mean log2 x.

Corollary 2.8. For a ∈ (0, 1] we have that Bn(a) ≥ alg n = nlg a. For

a ∈ (1, 2] we have Bn(a) ≥ 1
an

lg a. Finally, for a > 2 we have an inequality

Bn(a) ≤ nlg a.

3. Generating function and its consequences

In this section we give a closed formula for the ordinary generating function

of the sequence of Stern polynomials and then use its properties in order to obtain

several interesting identities satisfied by Stern polynomials. So let us define

B(t, x) =

∞∑
n=0

Bn(t)x
n.
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Now using the recurrence relations satisfied by the polynomials Bn(t) we can

write

B(t, x) =

∞∑
n=0

B2n(t)x
2n +

∞∑
n=0

B2n+1(t)x
2n+1 = t

∞∑
n=0

Bn(t)x
2n

+ x

∞∑
n=0

Bn(t)x
2n +

∞∑
n=0

Bn+1(t)x
2n+1 =

(
t+ x+

1

x

)
B(t, x2).

From the above computation we get that the function B(t, x) satisfies the functi-

onal equation

(1 + tx+ x2)B(t, x2) = xB(t, x). (1)

We prove the following theorem.

Theorem 3.1. The sequence of Stern polynomials has the generating func-

tion

B(t, x) = x

∞∏
n=0

(1 + tx2n + x2n+1

). (2)

One can easily check that the function defined by the right hand side of (2)

satisfies the equation (1). However it is not clear that this is the only solution of

(1). In order to prove this we will need some result concerning the polynomials

defined by product

Fn(t, x) = x

n∏

i=0

(1 + tx2i + x2i+1

).

Our approach is similar to the one used in the paper [2] where another ge-

neralization of the Stern diatomic sequence is considered. We prove the following

expansion.

Theorem 3.2. For any n ∈ N we have

Fn(t, x) =

2n+1∑

i=1

(Bi(t) +B2n+1−i(t)x
2n+1

)xi. (3)

Proof. We proceed by induction on n. For n = 0 we have by definition,

F0(t, x) = x+ tx2 + x3 = (B1(t) +B1(t)x
2)x+ tx2.

Now suppose that (3) holds for n, i.e., we have

Fn(t, x) =

2n+1∑

i=1

(Bi(t) +B2n+1−i(t)x
2n+1

)xi =: fn(t, x). (4)
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Multiplying both sides of this identity by 1 + tx2n+1

+ x2n+2

we see that in order

to get the statement it is enough to show that fn+1(t, x) = Fn+1(t, x). We find

that:

fn+1(t, x) =

2n+2∑

i=1

Bi(t)x
i +

2n+2∑

i=1

B2n+2−i(t)x
2n+2+i +

2n+1∑

i=1

B2i(t)x
2i

+

2n+1∑

i=1

B2i−1(t)x
2i−1 +

2n+1∑

i=1

B2n+2−2i(t)x
2n+2+2i +

2n+1∑

i=1

B2n+2−2i+1(t)x
2n+2+2i−1

= t

2n+1∑

i=1

(Bi(t) +B2n+1−i(t)x
2n+2

)x2i +

2n+1∑

i=1

(Bi(t) +B2n+1−i(t)x
2n+2

)x2i−1

+

2n+1∑

i=1

(Bi−1(t) +B2n+1−i+1(t)x
2n+2

)x2i−1.

Now let us note that the first term on the left hand side of the last equality is

equal to tFn(t, x
2), the second is equal to Fn(t, x

2). Finally, substituting i = j+1

in the third term we get

2n+1∑

i=1

(Bi−1(t) +B2n+1−i+1(t)x
2n+2

)x2i−1 = B0(t) +B2n+1(t)x2n+2+1+

− (B2n+1(t) +B0(t)x
2n+2

)x2n+2+1 + x

2n+1∑

j=1

(Bj(t) +B2n+1−j(t)x
2n+2

)x2j

= x

2n+1∑

j=1

(Bj(t) +B2n+1−j(t)x
2n+2

)x2j = xFn(t, x
2).

Our reasoning shows that

fn+1(t, x) =
1

x
(1 + tx+ x2)Fn(t, x

2) = Fn+1(t, x),

and the theorem follows. ¤

Our first application of the above theorem will be a proof of Theorem 3.1.

Proof of Theorem 3.1. First of all let us note that the generating series

for the sequence of Stern polynomials is convergent for any fixed |x| < 1. This is

an easy consequence of the inequality |Bn(t)| ≤ n for |t| ≤ 2 which follows from

the inequality |Bn(t)| ≤ Bn(2) = n and |Bn(t)| ≤ nlg |t| which holds for |t| > 2
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and follows from the Corollary 2.8. On the other hand we know from the theory

of infinite products that the product
∏∞

n=0(1 + tx2n + x2n+1

) is convergent for a

given t ∈ R and any x satisfying inequality |x| < 1. Now in order to prove the

identity (2), in view of (3), it is enough to show that the sum

RN (t, x) :=

2N+1∑

i=1

B2N+1−i(t)x
2N+1+i,

converges to 0 as N → ∞, for |x| < 1 and t ∈ R. Using now the estimate

|B2N+1−i(t)| ≤ (2N+1)lg |t|, we get

|RN (t, x)| < |x|2N+1

2(N+1) lg |t|
2N+1∑

i=1

|x|i < |x|2N+1

2(N+1) lg |t| |x|
1− |x| .

It is clear that under our assumption concerning x the left hand side of the above

inequality tends to 0 with N → ∞. ¤

One of the many interesting properties of the Stern diatomic sequence s(n) =

Bn(1) is the existence of a closed formula for the sum of all elements from the

first k rows of the diatomic array. More precisely we have:
∑2k

i=1 s(n) =
3k+1

2 . It

is a natural question if a similar result can be obtained for the sequence of Stern

polynomials. As we will see such a generalization can be obtained with the help

of the expansion (3). More precisely we have the following.

Corollary 3.3. For any k ≥ 0 we have

2k∑

i=1

Bi(t) =
1

2
((t+ 2)k + tk).

Proof. In order to prove this we set x = 1 and n = k − 1 in the expansion

(3) and get

(t+ 2)k =

2k∑

i=0

(Bi(t) +B2k−i(t))−B2k(t) = 2

2k∑

i=1

Bi(t)(t)− tk,

and the result follows. ¤

A simple application of Corollary 3.3 leads to the following.

Corollary 3.4. For any k ≥ 1 we have

2k∑

i=1

(−1)iBi(t) =
t− 2

2
((t+ 2)k−1 + tk−1)) + tk−1.
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The following theorem summarizes some elementary manipulations of the

generating function for the sequence of Stern polynomials.

Theorem 3.5. Let B(t, x) be a generating function for the sequence for

Stern polynomials. Then we have:

(1 + tx+ x2)B(t, x2) = xB(t, x), (5)

B(−t, x)B(t, x) = B(2− t2, x2), (6)

B

(
−t2 − 1

t2
, x2

)
=

1(
1− 1

t2x
)
(1− t2x)

B

(
−t2 − 1

t2
, x

)
. (7)

Proof. The first three displayed identities are easy consequences of the ma-

nipulation of the generating function for Stern polynomials. The fourth identity

follows from the first identity and the fact that

B

(
t+

1

t
, x

)
B

(
−t− 1

t
, x

)
= B

(
−t2 − 1

t2
, x2

)
. ¤

We use Theorem 3.5 to get several interesting identities related to the sequ-

ence of Stern polynomials. However, before we do that we recall an useful power

series expansion. We have

1

1− 2tx+ x2
=

∞∑
n=0

Un(t)x
n,

where Un(t) is the Chebyshev polynomial of the second kind.

Now, we are ready to prove the following theorem.

Theorem 3.6. The following identities holds:

n∑

i=0

Bi(t)Un−i(− t

2
) =

{
0, if 2 | n
Bn+1

2
(t), otherwise

(8)

n∑

i=0

Bi(t)Bn−i(−t) =

{
Bn

2
(2− t2), if 2|n

0, otherwise
(9)

t2

t4 − 1

n∑

i=0

(
t2i − 1

t2i

)
Bn−i

(
−t2 − 1

t2

)
=




Bn

2

(
−t2 − 1

t2

)
, if 2 | n

0, otherwise

(10)
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Proof. Before we prove our theorem let us recall that if A(x) =
∑∞

n=0 anx
n

and B(x) =
∑∞

n=0 bnx
n then A(x)B(x) =

∑∞
n=0 cnx

n where cn =
∑n

i=0 aibn−i.

Now it is easy to see that the identity (8) follows from the identity (5) given

in Theorem 3.5. Similarly from the identity (6) we get (9). Finally, in order to

get the last identity we note that

1

(1− t2x)(1− 1
t2x)

=
t4

t4 − 1

(
t4

1− t2x
− 1

1− 1
t2x

)
=

t2

t4 − 1

∞∑
n=0

(
t2n − 1

t2n

)
xn

and use the identity (7). ¤

Another interesting property of the sequence of Stern polynomials is conta-

ined in the following.

Theorem 3.7. Let ν(n) denote the number of 1’s in the unique binary

representation of n. Then we have the identity

Bn+1

(
t+

1

t

)
=

n∑

i=0

tν(n−i)−ν(i).

Proof. In order to prove the identity let us recall that if ν(n) denotes num-

ber of 1’s in the unique binary representation of n then we have an identity [10]

∞∏
n=0

(1 + tx2n) =

∞∑
n=0

tν(n)xn.

Now let us note that

B

(
t+

1

t
, x

)
=

∞∑
n=0

Bn+1

(
t+

1

t

)
xn+1 = x

∞∏
n=0

(1 + tx2n)

∞∏
n=0

(
1 +

1

t
x2n

)

=

∞∑
n=0

(
n∑

i=0

tν(n−i)−ν(i)

)
xn+1,

and we get the desired identity. ¤

Corollary 3.8. Let ν(n) denote the number of 1’s in the unique binary

representation of n and let e(n) = degBn(t). Then we have:

e(n+ 1) =max{ν(n− i)− ν(i) : i = 0, . . . , n},
−e(n+ 1) =min{ν(n− i)− ν(i) : i = 0, . . . , n}.
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4. Properties of the sequence e(n) = degt Bn(t)

Let e(n) = degt Bn(t). From the definition of the Bn(t) it is easy to see that

the sequence e(n) satisfies the following relations:

e(1) = 0, e(2n) = e(n) + 1, e(2n+ 1) = max{e(n), e(n+ 1)}.

The sequence thus starts as 0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 3, 3, 2, 3, 2, . . . . In

[4, Corollary 13] it was shown that the sequence e(n) can be defined alternatively

as follows:

e(1) = 0, e(2n) = e(n) + 1, e(4n+ 1) = e(n) + 1, e(4n+ 3) = e(n+ 1) + 1.

This is a useful definition and we will use it many times in the following sections.

We start with the problem of counting the number of Stern polynomials with

degree equal to n.

Theorem 4.1. We have an identity

E(x) =

∞∑
n=1

xe(n) =
1

1− 3x
.

Proof. It is clear that E(x) =
∑∞

n=1 x
e(n) =

∑∞
n=1 Cnx

n, where Cn = |{i ∈
N+ : e(i) = n}|. In order to prove our theorem we note that

E(x) =

∞∑
n=1

xe(n) =

∞∑
n=1

xe(2n) +

∞∑
n=1

xe(4n−1) +

∞∑
n=1

xe(4n−3)

=

∞∑
n=1

xe(n)+1 +

∞∑
n=1

xe(n)+1 + 1 +

∞∑
n=2

xe(n−1)+1

= xE(x) + xE(x) + 1 + xE(x) = 3xE(x) + 1.

Solving the above (linear) equation for E we get the expression displayed in the

statement of theorem. ¤

From the above theorem we deduce the following.

Corollary 4.2. Let Cn = |{i ∈ N+ : e(i) = n}|. Then Cn = 3n.

Further properties of the sequence {e(n)}n∈N+ are contained in the following.
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Theorem 4.3. We have the following equalities:

m(n) := min{e(i) : i ∈ [2n−1, 2n]} =
⌊n
2

⌋
, n ≥ 2, (11)

M(n) := max{e(i) : i ∈ [2n−1, 2n]} = n, (12)

mdeg(n) := min{i : e(i) = n} = 2n, (13)

Mdeg(n) := max{i : e(i) = n} =
4n+1 − 1

3
. (14)

Proof. In order to prove (11) first we show that m(n) ≥ ⌊
n
2

⌋
. It is clear

that it is enough to show that e(2n−1 + i) ≥ ⌊
n
2

⌋
for i ∈ [0, 2n−1]. We proceed by

induction on n and i ∈ [0, 2n−1]. This inequality is true for n = 2 and i = 0, 1, 2.

Let us suppose that it is true for n and i ∈ [0, 2n−1]. We show that it is true for

for n + 1 and i ∈ [0, 2n]. If i is even then i = 2j for some j ∈ [0, 2n−1] and we

have

e(2n + i) = e(2n + 2j) = e(2n−1 + j) + 1 ≥
⌊n
2

⌋
+ 1 ≥

⌊
n+ 1

2

⌋
.

If i is odd then i = 4j + 1 or i = 4j + 3. In the case of i = 4j + 1 we have

j ∈ [0, 2n−2 − 1] and

e(2n + i) = e(2n + 4j + 1) = e(2n−2 + j) + 1 ≥
⌊
n− 1

2

⌋
+ 1 =

⌊
n+ 1

2

⌋
,

In the case of i = 4j + 3 we have j ∈ [0, 2n−2 − 3] and

e(2n + i) = e(2n + 4j + 3) = e(2n−2 + j + 1) + 1 ≥
⌊
n− 1

2

⌋
+ 1 =

⌊
n+ 1

2

⌋
.

This finishes proof of the inequality m(n) ≥ ⌊
n
2

⌋
. In order to show that for

each n ≥ 2 this inequality is strict it is enough to give an integer an such that

an ∈ [2n−1, 2n] and e(an) =
⌊
n
2

⌋
. Let us define

a2k =
1

3
(22k+1 + 1), a2k+1 = 22k−1 +

1

3
(22k+1 + 1).

First of all let us note that

22k−1 < a2k < 22k, 22k < a2k+1 < 22k+1
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for each k ≥ 1. It is easy to check that

a2(k+1) = 4a2k − 1, a2(k+1)+1 = 4a2k+1 − 1. (15)

In order to finish the proof we check that e(a2k) = e(a2k+1) = k. We proceed by

induction on k. For k = 1 we have a2 = 3, a3 = 5 and clearly e(3) = e(5) = 1. Let

us suppose that for k we have e(a2k) = e(a2k+1) = k. We will prove the equality

e(a2(k+1)) = e(a2(k+1)+1) = k + 1. Using now the first relation from (15) we get

e(a2(k+1)) = e(4(a2k − 1) + 3) = e(2(a2k − 1) + 2) = e(a2k) + 1 = k + 1.

Using now the second relation from (15) we get

e(a2(k+1)+1) = e(4(a2k+1 − 1) + 3) = e(2(a2k+1 − 1) + 2) = e(a2k+1) + 1 = k + 1

and the result follows.

Similarly as in the case of computation of m(n) we see that in order to

prove the formula for M(n) it is enough to show that there exists an integer

k ∈ [2n−1, 2n] such that e(k) = n and that e(2n−1 + i) ≤ n for i ∈ [0, 2n−1]. We

have that e(2n) = n, so we are left with showing the inequality e(2n−1 + i) ≤ n

for i ∈ [0, 2n−1]. We proceed by induction on n and i ∈ [0, 2n−1]. This inequality

is true for n = 1 and i = 0, 1. Let us suppose that it is true for n and i ∈ [0, 2n−1].

We show that it is true for n+1 and i ∈ [0, 2n]. If i is even then i = 2m for some

m ∈ [0, 2n−1] and we have

e(2n+1 + i) = e(2n+1 + 2m) = e(2n +m) + 1 ≤ n+ 1.

If i is odd then i = 2m+1 for some m ∈ [0, 2n−1] (note that e(2n +1) = n which

is a consequence of Corollary 2.2). Now we have

e(2n+1 + i) = e(2n+1 + 2m+ 1) = max{e(2n +m), e(2n +m+ 1)} ≤ n+ 1,

and the equality M(n) = n follows.

In order to prove (13) we show that e(2n) = n and e(2n − i) < n for i =

1, 2, . . . , 2n. The equality follows form the identity B2n(t) = tn. In order to

prove the inequality e(2n − i) < n for i = 1, 2, . . . , 2n we will proceed by double

induction with respect to n and 1 ≤ i < 2n. The inequality holds for n = 1, 2

and let us assume that our theorem holds for n and 1 ≤ i < 2n. We consider two

cases: i is even and i is odd. If i is even then i = 2k and we get

e(2n+1 − i) = e(2n+1 − 2k) = e(2n − k) + 1 ≤ n+ 1.
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The last inequality follows from the induction hypothesis. For i odd we have

i = 2k − 1 and then

e(2n+1 − i) = e(2n+1 − 2k + 1) = max{e(2n − k), e(2n − k + 1)} ≤ n < n+ 1.

Thus we have that e(2n+1 − i) ≤ n+ 1 and the result follows.

Finally, in order to prove (14) we define un = 4n+1−1
3 . In order to show that

Mdeg(n) = un it is enough to show that e(un) = n and e(un + i) > n for i ∈ N+.

First of all we note that u0 = 1 and un+1 = 4un + 1 for n ≥ 1. We prove

that e(un) = n and e(un + 1) = n + 1. In order to do this we use induction on

n. These equalities are true for n = 0, 1, and let us assume that are true for n.

Then we have

e(un+1) = e(4un + 1) = e(un) + 1 = n+ 1

and

e(un+1 + 1) = e(4un + 2) = e(2un + 1) + 1 = max{e(un), e(un + 1)}+ 1

= max{n, n+ 1}+ 1 = n+ 2

and the result follows.

Now we prove that e(un + i) > n for given n and i ∈ N+. This inequality is

true for n = 0 and i ∈ N+. If i = 4k then we have

e(un+1 + i) = e(4un + 4k + 1) = e(un + k) + 1 > n+ 1.

If i = 4k + 1 then we have

e(un+1 + i) = e(4un + 4k + 2) = e(2un + 2k + 1) + 1 =

= max{e(un + k), e(un + k + 1)}+ 1 > max{n, n}+ 1 = n+ 1.

For i = 4k + 2 we get

e(un+1 + i) = e(4un + 4k + 3) = e(un + k + 1) + 1 > n+ 1,

and finally for i = 4k + 3 we get

e(un+1 + i) = e(4un + 4k + 4) = e(2un + 2k + 2) + 1 = e(un + k + 1) + 2 > n+ 2

and our theorem follows. ¤

Corollary 4.4. We have b lgn
2 c ≤ e(n) ≤ lg n.
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Proof. This is a simple consequence of the identities obtained in The-

orem 4.3. ¤

Another interesting property of the sequence {e(n)}∞n=1 is contained in the

following.

Corollary 4.5. Let k ∈ N be given. Then

lim
n→+∞

e(n)

e(n+ k)
= 1.

Proof. In order to prove the demanded equality let us note that from the

definition of the sequence e(n) we easily deduce that for each n ∈ N we have

|e(n+ 1)− e(n)| ≤ 1. Thus, for given positive k we have by triangle inequality

|e(n)− e(n+ k)| ≤
k∑

i=1

|e(n+ i− 1)− e(n+ i)| ≤ k.

Form this inequality we get that
∣∣∣∣

e(n)

e(n+ k)
− 1

∣∣∣∣ ≤
k

e(n+ k)
.

Because the fraction k/e(n+ k) tends to zero with n → ∞ the result follows. ¤

Theorem 4.6. (1) The set E := {n ∈ N : e(n) = e(n+1)} is infinite and has

the following property: Ifm ∈ E then n = 4m+1 satisfy e(n) = e(n+1) = e(n+2).

On the other hand side: if e(n) = e(n+1) = e(n+2) for some n then there exists

an integer m such that n = 4m+ 1 and m ∈ E .
(2) There doesn’t exist an integer n such that

e(n) = e(n+ 1) = e(n+ 2) = e(n+ 3)

Proof. The fact that the set E is infinite is easy. For example if n = 2k − 2

then from Corollary 2.2 we get that e(n) = e(2k−1−1)+1 = k−1 and e(n+1) =

e(2k−1) = k−1. But it should be noted that the set E contains infinite arithmetic

progressions. More precisely we have

e(8m+ 1) = e(8m+ 2) and e(8m+ 6) = e(8m+ 7).

This property is a consequence of the identities

e(8m+ 1) = e(2m) + 1 = e(m) + 2,

e(8m+ 2) = e(4m+ 1) + 1 = e(m) + 2
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and

e(8m+ 6) = e(4m+ 3) + 1 = e(m+ 1) + 2,

e(8m+ 6) = e(4(2m+ 1) + 3) + 1 = e(2m+ 2) + 1 = e(m+ 1) + 2.

Now if m ∈ E then e(m) = e(m+ 1) and we have

e(4m+ 1) = e(m) + 1,

e(4m+ 2) = e(2m+ 1) + 1 = max{e(m), e(m+ 1)}+ 1 = e(m) + 1,

e(4m+ 3) = e(m+ 1) + 1 = e(m) + 1,

and we are done.

Suppose now that e(n) = e(n+ 1) = e(n+ 2). We show that n = 4m+ 1. If

n = 4m then e(n) = e(4m) = e(m) + 2 and e(n+1) = e(4m+1) = e(m) + 1 and

we get a contradiction. If n = 4m+ 2 then e(n+ 1) = e(4m+ 3) = e(m+ 1) + 1

and e(n+ 2) = e(4m+ 4) = e(m+ 1) + 2 and we get a contradiction. Finally, if

n = 4m + 3 then e(n) = e(4m + 3) = e(m + 1) + 1 and e(n + 1) = e(4m + 4) =

e(m+ 1) + 2 and once again we get a contradiction.

We have shown that if e(n) = e(n+ 1) = e(n+ 2) then n = 4m+ 1 for some

m ∈ N. If now e(n) = e(n+ 1) = e(n+ 2) for n = 4m+ 1 then

e(n) = e(4m+ 1) = e(m) + 1,

e(n+ 1) = e(4m+ 2) = e(2m+ 1) + 1 = max{e(m), e(m+ 1)}+ 1,

e(n+ 2) = e(4m+ 3) = e(m+ 1) + 1.

Thus we get that e(m) = max{e(m), e(m + 1)} = e(m + 1) and the first part of

our theorem is proved.

In order to prove (2) we consider two cases: n even and n odd. The case

n even is immediately ruled out by the result from (1). If n = 2k + 1 and the

equality e(n) = e(n+ 1) = e(n+ 2) = e(n+ 3) holds then

max{e(k), e(k + 1)} = e(k + 1) + 1 = max{e(k + 1), e(k + 2)} = e(k + 2) + 1.

From the second equality we deduce that e(k + 1) + 1 = e(k + 2) and form the

third equality we get e(k+1) = e(k+2)+1 and we arrive at a contradiction. ¤

In Corollary 3.3 we obtain a closed form of the sum
∑2n

i=1 Bi(t). We compute

an analogous sum for the sequence {e(n)}∞n=1.
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Corollary 4.7. For n ≥ 1 we have

2n∑

i=1

e(i) =
1

36
((6n− 7)2n+2 + 18n+ 27 + (−1)n). (16)

Proof. Let us define S(n) =
∑2n

i=1 e(i) and let T (n) denote the right hand

side of the identity (16). In order to get a closed form of the sum S(n) we proceed

by induction on n. Note that (16) holds for n = 1, 2. Let us assume that (16)

holds for n and n+ 1. We prove that the identity holds for n+ 2. In order to do

this we compute

S(n+ 2) =

2n+1∑

i=1

e(2i) +

2n−1∑

i=1

e(4i+ 1) +

2n−1∑

i=1

e(4i+ 3)

=

2n+1∑

i=1

(e(i) + 1) +

2n−1∑

i=1

(e(i) + 1) +

2n−1∑

i=0

(e(i+ 1) + 1)

= S(n+ 1) + 2n+1 + S(n) + 2n − 1 + S(n)− e(2n) + 2n

= S(n+ 1) + 2S(n) + 2n+2 − n− 1 = T (n+ 1) + 2T (n) + 2n+2 − n− 1,

where the last equality follows from the induction hypothesis. A simple calculation

shows that T (n+2) = T (n+1)+2T (n)+2n+2−n−1 and the result follows. ¤

Corollary 4.8. For n ≥ 1 we have

2n∑

i=1

(−1)ie(i) =
1

12
(2n+2 + 6n− 3 + (−1)n+1).

5. Special values of Bn(t) and some of their consequences

In this section we compute some special values of the polynomials Bn(t).

Next, we use the computed values it in order to solve some polynomial diophantine

equations involving Stern polynomials.

We start with the following.

Theorem 5.1. We have the following:

(1) If i ∈ {0, 1} then:

Bn(t) ≡ i (mod t) ⇔ n ≡ i (mod 2).
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(2) If i ∈ {−1, 0, 1} then:

Bn(t) ≡ i (mod t+ 1) ⇔ n ≡ i (mod 3).

(3) For each n ∈ N we have the following congruences:

Bn(t) ≡ s(n) (mod t− 1),

Bn(t) ≡ n (mod t− 2).

Proof. Each case in our theorem can be proved with the help of mathema-

tical induction. However, we use a different approach. Let us note that for any

integer a we have the congruence Bn(t) ≡ Bn(a) (mod t− a). So, we see that in

order to prove our theorem it is enough to know the value of the polynomial Bn(t)

at t = 0,−1, 1, 2. We will compute these values with the help of the generating

function of the sequence {Bn(t)}∞n=0.

We start with the evaluation of Bn(t) at t = 0

B(0, x) =

∞∑
n=1

Bn(0)x
n = x

∞∏

i=0

(1 + x2i+1

)

=
x

1 + x

∞∏

i=0

(1 + x2i) =
x

1− x2
=

∞∑

i=0

x2i+1,

where in the last equality we used the well known formula
∏∞

i=0(1 + x2i) = 1
1−x .

Our computation shows that Bn(0) = 0 for n even and Bn(0) = 1 for n odd.

Now we compute the value of Bn(−1). Similarly as in the previous case we

use the generating function of the sequence {Bn(t)}∞n=0 . Before we do that let

us note that

1− x2i + x2i+1

=
1 + x3·2i

1 + x2i
for i ∈ N.

This identity implies that

B(−1, x) =

∞∑
n=1

Bn(−1)xn = x

∞∏

i=0

(1− x2i + x2i+1

)

= x

∞∏

i=0

(
1 + x3·2i

1 + x2i

)
= x

1
1−x3

1
1−x

=

∞∑

i=0

x3i+1 −
∞∑

i=1

x3i−1.

Comparing now these two expansions of B(−1, x) we get that Bn(−1) = 0 for

n ≡ 0 (mod 3), Bn(−1) = 1 for n ≡ 1 (mod 3) and Bn(−1) = −1 for n ≡ −1

(mod 3).
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The first congruence given in (3) is obvious due to the fact that Bn(1) = s(n).

The second comes from the identity

B(2, x) = x

∞∏
n=0

(1 + 2x2n + x2n+1

) = x

∞∏
n=0

(1 + x2n)2 =
x

(1− x)2
=

∞∑
n=1

nxn.

Our theorem is proved. ¤

We use the above theorem to prove the following.

Theorem 5.2. If degt(Bn+1(t)−Bn(t)) = 0 for some n ∈ N then n = 2m−2

and Bn+1(t)−Bn(t) = 1.

Proof. First of all we observe that if Bn+1(t)−Bn(t) is a constant then n

is even. Indeed, let us suppose that n = 2m+1 for some m ∈ N. Then n ≡ 1, 3 or

5 (mod 6). Now we use the characterization of values Bn(0) and Bn(−1) given

in Theorem 5.1.

If n ≡ 1 (mod 6) then we have

Bn+1(−1)−Bn(−1) = −1− 1 = −2,

Bn+1(0)−Bn(0) = 0− 1 = −1,

and we get a contradiction with the condition degt(Bn+1(t)−Bn(t)) = 0. If now

n ≡ 3 (mod 6) then we have

Bn+1(−1)−Bn(−1) = 1− 0 = 1,

Bn+1(0)−Bn(0) = 0− 1 = −1,

and again we get a contradiction. Finally, if n ≡ 5 (mod 6) then we have

Bn+1(−1)−Bn(−1) = 0− (−1) = 1,

Bn+1(0)−Bn(0) = 0− 1 = −1,

and once again we get a contradiction. Our reasoning shows that if the polynomial

Bn+1(t)−Bn(t) is constant then n is even.

Now we show that if degt(Bn+1(t)−Bn(t)) = 0 then n ≡ 2 (mod 4). Suppose

that n = 4m for some m. Then we have B4m(t) = t2Bm and we get that

B4m+1(t)− t2Bm(t) = c for some c ∈ Z. If we now differentiate this relation with

respect to t we get B′
4m+1(t) − t(2Bm(t) + tB′

m(t)) = 0 for all ∈ R. Taking now

t = 0 we get that B′
4m+1(0) = 0 which is a contradiction. This follows from the
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fact proved in [4, Theorem 8] that the sequence B′
n(0) counts the number of 1’s

in the standard Grey code for n− 1 and thus it is nonzero for n ≥ 1.

Now we are ready to finish the proof of our theorem. Let us suppose that n

is the smallest integer not of the form 2k − 2 with the property degt(Bn+1(t) −
Bn(t)) = 0. From the preceding reasoning we know that n = 4m + 2 for some

m ∈ N and there exists a positive integer k such that 2k −2 < 4m+2 < 2k+1−2.

This implies that 2k−1 − 2 < 2m+ 1 < 2k − 2. Now we have

B4m+3(t)−B4m+2(t) = B2m+1(t) +B2m(t)− tB2m+1(t)

= Bm(t) +Bm+1(t) + tBm(t)− tBm(t)− tBm+1(t)

= Bm(t) + (1− t)Bm+1(t) = B2m+1(t)−B2m+2(t).

This computation shows that the polynomial B2m+2(t)−B2m+1(t) is constant. So

we see that the number n′ = 2m+1 has the property degt(Bn′+1(t)−Bn′(t)) = 0

and we have n′ < n. Moreover n′ is not of the form 2k − 2 because n′ is odd. So
we get a contradiction with the assumption of minimality of n = 4m+ 2. ¤

Now we easily deduce the following generalization of Theorem 5.2.

Corollary 5.3. If a ≥ 2 is an integer then the equation Bn+a(t)−Bn(t) = c

has no solutions in integers n, c.

Proof. First of all let us note that if equation Bn+a(t) − Bn(t) = c has a

solution in n, c then c = a. Indeed, this follows from the fact that Bn+a(2) −
Bn(2) = a. Now if a is an even integer then n + a and n have the same parity

and Bn+a(0) − Bn(0) = 0, a contradiction. If a is odd then for even n we have

that Bn+a(0)−Bn(0) = 1 < a, which leads to contradiction. If now n is odd then

Bn+a(0)−Bn(0) = −1 < a, and once again we arrive at a contradiction. We thus

proved that the equation Bn+a(t)− Bn(t) = c has not solutions in integers n, c,

which finishes the proof. ¤

Theorem 5.4. If degt(Bn+1(t)−Bn(t)) = 1 for some n ∈ N then n = 1 and

Bn+1(t)−Bn(t) = t− 1.

Proof. We consider two cases: n even and n odd.

If n is even then Bn+1(0)−Bn(0) = 1−0 = 1. So if degt(Bn+1(t)−Bn(t)) = 1

then we have Bn+1(t) − Bn(t) = at + 1 for some a ∈ Z. Putting now t = 2 and

using part (2) of Theorem 5.1 we get that Bn+1(2)−Bn(2) = n+ 1− n = 1. So

we deduce that 2a+ 1 = 1 and we get a = 0, a contradiction.

If n is odd then Bn+1(0) − Bn(0) = 0 − 1 = −1. So if the equality

degt(Bn+1(t) − Bn(t)) = 1 holds we have Bn+1(t) − Bn(t) = at − 1 for some
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a ∈ Z. Putting now t = 2 and using part (2) of Theorem 5.1 we get that

Bn+1(2) − Bn(2) = n + 1 − n = 1. So we deduce that 2a − 1 = 1 and we get

a = 1. Because n is odd we have n = 2m+ 1 and thus

Bn+1(t)−Bn(t) = B2m+2(t)−B2m+1(t) = (t− 1)Bm+1(t)−Bm(t) = t− 1.

Putting now t = 1 we get Bm(1) = 0. We know that Bm(1) = s(m) is the Stern

diatomic sequence and in particular s(m) > 0 for positive m. Thus we deduce

that m = 0, which implies n = 1 and we get the equality B2(t) − B1(t) = t − 1.

Our theorem is proved. ¤

Essentially the same method as in the proof of the Theorem 5.2 can be used to

characterize those integers for which degt(Bn+1(t)−Bn(t)) = 2. However, because

the calculations are rather lengthy we leave the task of proving the following

theorem to the reader.

Theorem 5.5. If degt(Bn+1(t)−Bn(t)) = 2 for some n ∈ N then n = 2m+1

and then Bn+1(t)−Bn(t) = t2−t−1 or n = 3 ·2m−2 and then Bn+1(t)−Bn(t) =

−t2 + t+ 1.

6. Problems and conjectures

In this section we state some problems and conjectures which are related to

the sequence of Stern polynomials or to the sequence of their degrees. Based on

extensive numerical computation with PARI we state the following.

Conjecture 6.1. If a ∈ Q and there exists a positive integer n such that

Bn(a) = 0 then a ∈ {−1,−1/2,−1/3, 0}.
Let us define B̄n(t) = te(n)Bn

(
1
t

)
. A polynomial Bn(t) is reciprocal if

Bn(t) = B̄n(t). We define

R := {n : Bn(t) = B̄n(t)}.

Let us recall that, as was proved in [4, Theorem 2], if we write

Bn(t) =

e(n)∑

l=0

p(n− 1, l)tl

then the number p(n− 1, l) is the number of hyperbinary representations of n− 1

containing exactly l digits 1. Thus, if n ∈ R then for each l ≤ e(n) we have
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p(n − 1, l) = p(n − 1, e(n) − l). It is an interesting question if the set R can be

characterized in a reasonable way.

Let us note that if m is odd and m ∈ R then then for all k ∈ N we have

2km ∈ R. Thus we see that in order to characterize the set R it is enough to

characterize its odd elements. All odd n ∈ R, n ≤ 215, are contained in the table

below.

n ∈ R, n ≤ 215

1, 3, 7, 9, 11, 15, 27, 31, 49, 59, 63, 123, 127, 135, 177, 201, 225, 251, 255, 287, 297,

363, 377, 433, 441, 507, 511, 567, 729, 855, 945, 961, 1019, 1023, 1401, 1969, 2043,

2047, 3087, 3135, 3143, 3449, 3969, 4017, 4091, 4095, 5929, 7545, 8113, 8187, 8191,

11327, 15737, 16129, 16305, 16379, 16383, 27711, 28551, 28799, 29199, 32121,

32689, 32763, 32767,

It is an easy exercise to show that if n = 2m−1 for some m ∈ N or n = 2m−5

for m ≥ 3 then the polynomial Bn(t) is reciprocal. Another infinite family of

integers with this property is n = (2m − 1)2. It is natural to state the following.

Problem 6.2. Characterize the set R := {n ∈ N : Bn(t) = B̄n(t)}.
During the course of the proof of the Theorem 4.6 we noted that the set

E = {n : e(n) = e(n + 1)} contains infinite arithmetic progressions. It is an

interesting question whether other infinite arithmetic progressions are contained

in E .
Let us define

pn := un−1 =
4n − 1

3
, qn :=

5 · 4n − 2

3
= 5pn + 1.

It is easy to see that p1 = 1 and pn+1 = 4pn + 1 for n ≥ 1. Moreover we have

q1 = 6 and qn+1 = 4qn +2 for n ≥ 1. Now let i ∈ N+ and consider the arithmetic

progressions

Ui := {22i+1n+ pi : n ∈ N+}, Vi := {22i+1n+ qi : n ∈ N+}.

We will prove that
⋃∞

i=1(Ui ∪ Vi) ⊂ E . Because Ui ∩ Uj = ∅ for i 6= j and the

same property holds for Vi, Vj , it is enough to show that Ui, Vi ⊂ E for i ∈ N+.

We will proceed by induction on i. We start with Ui. We know that the set U1 is

contained in E . So let us suppose that Ui ⊂ E . We take an element of Ui+1 and

get

e(22i+3n+pi+1) = e(22i+3n+4pi+1) = e(4(22i+1n+pi)+1) = e(22i+1n+pi)+1,
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and

e(22i+3n+ pi+1 + 1) = e(22i+3n+ 4pi + 2) = e(22i+2n+ 2pi + 1) + 1

= max{e(22i+1n+ pi), e(2
2i+1n+ pi + 1)}+ 1 = e(22i+1n+ pi) + 1,

where the last equality follows from the induction hypothesis. This shows that

Ui ⊂ E .
Because exactly the same type of reasoning can be used to show that Vi ⊂ E ,

we leave the details to the reader.

We also check that the sequences {2pn}∞n=1, {qn}∞n=1 are contained in E . In
order to show that the 2pn ∈ E for given n ∈ N+ we proceed by induction. Clearly

2p1 = 2 ∈ E . Let us suppose that for some n the number 2pn is an element of E ,
and thus e(2pn) = e(2pn + 1). Then we have

e(2pn+1) = e(2(4pn + 1)) = e(4pn + 1) + 1 = e(pn) + 2,

e(2pn+1 + 1) = e(4(2pn) + 3) = e(2pn + 1) + 1 = e(2pn) + 1 = e(pn) + 2.

Using induction we prove that qn ∈ E for any given n. Indeed, for n = 1 we

have q1 = 6 and e(6) = e(7). Suppose that e(qn) = e(qn + 1) for some n. Then

we have

e(qn+1) = e(4qn + 2) = e(2qn + 1) + 1

= max{e(qn), e(qn + 1)}+ 1 = e(qn + 1) + 1,

e(qn+1 + 1) = e(4qn + 3) = e(qn + 1) + 1.

Now we define the set

E ′ := {2pn}∞n=1 ∪ {qn}∞n=1 ∪
∞⋃

i=1

(Ui ∪ Vi).

Using a simple script written in PARI [9] we calculated all members of the set E
for n ≤ 108 and we checked that all these numbers are contained in the set E ′.
This leads us to the following.

Conjecture 6.3. We have E = E ′.

Conjecture 6.4. Let p be a prime number. Then the polynomial Bp(t) is

irreducible.

Using a simple script written in PARI we check that the above conjecture is true

for the first million primes.
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Conjecture 6.5. For each k ∈ N+ there exists an integer n with exactly k

prime divisors such that the polynomial Bn(t) is irreducible.

Let k be positive integer and let ck be the smallest integer such that ck has exactly

k prime divisors and the polynomial Bck(t) is irreducible. Below we tabulate the

values of ck for k ≤ 7.

k ck Factorization of ck
1 2 2

2 55 5 · 11
3 665 5 · 7 · 19
4 6545 5 · 7 · 11 · 17
5 85085 5 · 7 · 11 · 13 · 17
6 1616615 5 · 7 · 11 · 13 · 17 · 19
7 37182145 5 · 7 · 11 · 13 · 17 · 19 · 23
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