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Pointwise summability of Vilenkin–Fourier series

By USHANGI GOGINAVA (Tbilisi) and LARRY GOGOLADZE (Tbilisi)

Abstract. In this paper we give a characterization of points in which Fejér means
of Vilenkin–Fourier series converge.

1. The One-dimensional Vilenkin–Lebesgue points

Let N+ denote the set of positive integers, N := N+ ∪ {0}. Let m :=

(m0,m1, . . . ) denote a sequence of positive integers not less than 2. Denote by
Zmk

:= {0, 1, . . . ,mk − 1} the additive group of integers modulo mk. Define the
group Gm as the complete direct product of the groups Zmj , with the product of
the discrete topologies of Zmj ’s. The direct product µ of the measures

µk({j}) := 1

mk
(j ∈ Zmk

)

is the Haar measure on Gm with µ(Gm) = 1. If the sequence m is bounded, then
Gm is called a bounded Vilenkin group. The elements of Gm can be represented
by sequences x := (x0, x1, . . . , xj , . . . ), (xj ∈ Zmj ). The group operation + in
Gm is given by x + y = (x0 + y0 mod m0, . . . , xk + yk( mod mk, . . . ), where
x = (x0, . . . , xk, . . . ) and y = (y0, . . . , yk, . . . ) ∈ Gm. The inverse of + will be
denoted by −.

It is easy to give a base for the neighborhoods of Gm:

I0(x) := Gm,

In(x) := {y ∈ Gm|y0 = x0, . . . , yn−1 = xn−1}
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for x ∈ Gm, n ∈ N. Define In := In(0) for n ∈ N+. Set en := (0, . . . , 0, 1, 0, . . . ) ∈
Gm the n th coordinate of which is 1 and the rest are zeros (n ∈ N).

If we define the so-called generalized number system based on m in the fol-
lowing way: M0 := 1,Mk+1 := mkMk(k ∈ N), then every n ∈ N can be uniquely
expressed as n =

∑∞
j=0 njMj , where nj ∈ Zmj

(j ∈ N+) and only a finite num-
ber of nj ’s differ from zero. We use the following notation. Let (for n > 0)
|n| := max{k ∈ N : nk 6= 0} (that is, M|n| ≤ n < M|n|+1).

Next, we introduce on Gm an orthonormal system which is called the Vilen-
kin system. At first define the complex valued functions rk(x) : Gm → C, the
generalized Rademacher functions in this way

rk(x) := exp
2πıxk

mk
(ı2 = −1, x ∈ Gm, k ∈ N).

Now define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as follows.

ψn(x) :=

∞∏

k=0

rnk

k (x) (n ∈ N).

Specifically, we call this system the Walsh–Paley one if m ≡ 2.
The Vilenkin system is orthonormal and complete in L1(Gm) [1].
Now, introduce analogues of the usual definitions of the Fourier analysis. If f ∈
L1(Gm) we can establish the following definitions in the usual way:
Fourier coefficients:

f̂(k) :=

∫

Gm

fψkdµ (k ∈ N),

partial sums:

Snf :=

n−1∑

k=0

f̂(k)ψk (n ∈ N+, S0f := 0),

Fejér means:

σnf :=
1

n

n∑

k=1

Skf (n ∈ N+),

Dirichlet kernels:

Dn :=

n−1∑

k=0

ψk (n ∈ N+),

Fejér kernels:

Kn (x) :=
1

n

n∑

k=1

Dk (x) .
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Recall that

DMn
(x) =

{
Mn, if x ∈ In,

0, if x ∈ Gm\In.
(1)

It is well known that

σnf (x) =

∫

Gm

f (t)Kn (x− t) dµ (t) .

The norm (or quasinorm) of the space Lp (Gm) is defined by

‖f‖p :=

(∫

Gm

|f(x)|p dµ (x)

)1/p

(0 < p < +∞) .

The space weak-Lp(Gm) consists of all measurable functions f for which

‖f‖weak−Lp(Gm) := sup
λ>0

λµ (|f | > λ)
1/p

< +∞.

The σ-algebra generated by the intervals {In(x) : x ∈ Gm} will be denoted
by Fn(n ∈ N).

Denote by f = (f (n), n ∈ N) a martingale with respect to (Fn, n ∈ N) (for
details see, e.g. [12], [15]).

The maximal function of a martingale f is defined by

f∗ = sup
n∈N

∣∣f (n)
∣∣.

In case f ∈ L1(Gm), the maximal functions are also be given by

f∗ (x) = sup
n∈N

1

µ(In(x))

∣∣∣∣∣
∫

In(x)

f (u) dµ(u)

∣∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp(Gm) consist of all martinga-
les for which

‖f‖Hp
:= ‖f∗‖p < ∞.

If f ∈ L1(Gm) then it is easy to show that the sequence (SMn(f) : n ∈ N)
is a martingale. If f is a martingale, that is f = (f (n) : n ∈ N), then the
Vilenkin–Fourier coefficients must be defined in a little bit different way:

f̂(i) = lim
k→∞

∫

Gm

f (k)(x)ψi (x) dµ (x) .
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The Vilenkin–Fourier coefficients of f ∈ L1(Gm) are the same as those of the
martingale (SMn(f) : n ∈ N) obtained from f .

A bounded measurable function l is an Hp(Gm)-atom if there exists a Vilen-
kin interval I ∈ Fn for any n ∈ N such that





a) supp(l) ⊂ I

b)
∫

I

ldµ = 0

c) ‖l‖∞ ≤ (µ(I))−1/p

. (2)

Weisz [13] proved that the following is true.

Theorem W1. Suppose that the operator T is sublinear and
∫

Gm\I
|T l|p dµ ≤ cp (p0 < p ≤ 1) (3)

for every Hp(Gm)-atom l. If the operator T is bounded from Lp1 to Lp1(1 < p1 ≤
∞) then

‖Tf‖p ≤ cp ‖f‖Hp
(f ∈ Hp)

for every p0 < p ≤ p1. Moreover, if p0 < 1 then the operator T is of weak type
(1, 1), i.e. if f ∈ L1(Gm), then

‖Tf‖weak−L1(Gm) ≤ c ‖f‖1 .

In the one-dimensional case a point x ∈ (−∞,∞) is called a Lebesgue point
of a function f if

lim
h→0

1

h

∫ x+h

x

|f (t)− f (x) |dµ(t) = 0.

It is known that a.e. point x ∈ (−∞,∞) is a Lebesgue point of f ∈ L1 and that
the Fejér means of the trigonometric Fourier series of f ∈ L1 converge to f at
each Lebesgue point (see Butzer and Nessel [2]).

Weisz introduced the one-dimensional Walsh–Lebesgue point in [12]: x ∈ G2

is a Walsh–Lebesgue point of f ∈ L1(G2), if

lim
n→∞

n∑

k=0

2k
∫

In(x+ek)

|f (t)− f (x) |dt = 0,

where G2 is a Walsh group. Weisz proved in [12] that a.e. point x ∈ G2 is a
Walsh–Lebesgue point of an integrable function f . Moreover, the Fejér means of
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the Walsh–Fourier series of f ∈ L1(G2) converge to f at each Walsh–Lebesgue
point.

Pál and Simon [11] proved that the one-dimensional Fejér means of the
Vilenkin–Fourier series on bounded Vilenkin group of an integrable function con-
verge a.e. to the function.

In this paper we will characterize the set of convergence of Vilenkin–Fejér
means. We introduce first the operator

WAf(x) :=

A−1∑
s=0

Ms

ms−1∑
rs=1

∫

IA(x−rses)

|f(t)− f(x)|dµ(t).

A point x ∈ Gm is a Vilenkin–Lebesgue point of f ∈ L1(Gm), if

lim
A→∞

WAf (x) = 0.

Denote

VAf (x) :=

A∑
s=0

Ms

ms−1∑
rs=1

∫

IA(x−rses)

f (t) dµ (t)

=

A∑
s=0

Ms

MA

ms−1∑
rs=1

∫

Gm

f (t)DMA
(x− rses − t) dµ (t)

It is easy to see that WAf(x) → 0 as A → ∞ if and only if

lim
A→∞

VA (|f − f(x)|) (x) = 0.

Let
V f := sup

A
|VAf |.

For one-dimensional Vilenkin–Fejér means we prove that the following is true

Theorem 1. Let f ∈ L1 (Gm). Then

lim
n→∞

σnf (x) = f (x)

for all Vilenkin–Lebesgue points of f .

Theorem 2. Let p > 0. Then

‖V f‖p ≤ cp ‖f‖p (f ∈ Hp (Gm))

and
sup
λ

λµ {V f > λ} ≤ c ‖f‖1 .

It is easy to show that limA→∞ WAf(x) = 0 for every Vilenkin polynomials
and x ∈ Gm. Since the Vilenkin polynomials are dense in L1(Gm), Theorem 2
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and the usual density argument (see Marcinkiewicz and Zygmund [9]) imply

Corollary 1. Let f ∈ L1(Gm). Then

lim
A→∞

WAf (x) = 0 for a.e. x ∈ Gm,

thus a.e. point is a Vilenkin–Lebesgue point of f .

Corollary 2. Let f ∈ L1(Gm), where Gm is a bounded Vilenkin group.
Then

σnf (x) → f (x) for a.e. x ∈ Gm.

We note that for the unbounded Vilenkin group and for special indices Gát
[6] proved that σMnf(x) → f(x) a.e. for f ∈ L(Gm) (see also [4]). On the ot-
her hand, for full indices and unbounded Vilenkin group Gát [4] showed that
σnf(x) → f(x) a.e. for f ∈ Lp(Gm) (1 < p ≤ ∞).

Proof of Theorem 1. Since [11], [1]

|KMA (x) | ≤ c

A∑
s=0

Ms

ms−1∑
rs=1

1IA(rses) (x) (4)

and

n|Kn (x) | ≤ c

|n|∑

A=0

MA|KMA (x) | (5)

we can write

|σnf (x)− f (x)| ≤ c

n

|n|∑

A=0

MA

∫

Gm

|f(t)− f(x)| |KMA (x− t) |dµ (t)

≤ c

n

|n|∑

A=0

MA

A∑
s=0

Ms

ms−1∑
rs=1

∫

IA(x−rses)

|f(t)− f (x)| dµ (t)

=
c

n

|n|∑

A=0

MAWAf (x) → 0 as n → ∞.

Theorem 1 is proved. ¤

Proof of Theorem 2. By Theorem W1, the proof of Theorem 2 will be
complete if we show that the operator V satisfies (3) and is bounded from L∞(Gm)

to L∞(Gm).
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The boundedness follows from the inequality

‖V f‖∞ ≤ c‖f‖∞ sup
A

1

MA

A−1∑
s=0

Ms ≤ c ‖f‖∞ .

To verify (3), let l be an arbitrary atom with support Ia(z). It is easy to see
that VA(a) = 0 if A < a. Therefore we can suppose that A ≥ a. Since the dyadic
addition is a measure preserving group operation, we may assume that z = 0.

From (1), (4) and (5) we can write

|VAl (x)| ≤ c

A∑
s=0

Ms

mA

ms−1∑
rs=1

∫

Gm

|l (t)| |DMA
(x− rses − t) |dµ (t)

≤ cM1/p
a

a−1∑
s=0

Ms

MA

ms−1∑
rs=1

∫

Ia

|DMA
(x− rses − t) |dµ (t)

≤ cM
1/p
a

Ma

a−1∑
s=0

Ms

ms−1∑
rs=1

1Ia(rses) (x) , x ∈ Ia.

Hence ∫

Ia

(V l (x))
p
dx ≤ cMa

Mp
a

1

Ma

a−1∑
s=0

Mp
s ≤ cp < ∞.

Theorem 2 is proved. ¤

2. The two-dimensional Vilenkin–Lebesgue points

The rectangular partial sums of the double Vilenkin–Fourier series are defined
as follows:

SM,N (f ;x1, x2) :=

M−1∑

i=0

N−1∑

j=0

f̂(i, j)ψi

(
x1

)
ψj

(
x2

)
,

where the number

f̂ (i, j) =

∫

Gm×Gm

f
(
x1, x2

)
ψi

(
x1

)
ψj

(
x2

)
dµ

(
x1, x2

)

is said to be the (i, j)th Vilenkin–Fourier coefficient of the function f .
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The norm (or quasinorm) of the space Lp(Gm ×Gm) is defined by (µ is the
product measue µ× µ)

‖f‖p :=

(∫

Gm×Gm

∣∣f (
x1, x2

)∣∣p dµ (
x1, x2

))1/p

(0 < p < +∞) .

The space weak-Lp(Gm×Gm) consists of all measurable functions f for which

‖f‖weak−Lp(Gm×Gm) := sup
λ>0

λµ (|f | > λ)
1/p

< +∞.

Let
In,k

(
x1, x2

)
:= In

(
x1

)× Ik
(
x2

)
.

The σ-algebra generated by the rectangles {In,k(x1, x2):(x1, x2)∈Gm×Gm}
will be denoted by Fn,k(n, k ∈ N).

Denote by f = (f (n,k), n, k ∈ N) a martingale with respect to (Fn,k, n, k ∈ N)
(for details see, e.g. [12], [15]).

The maximal function of a martingale f is defined by

f∗ = sup
n,k∈N

∣∣∣f (n,k)
∣∣∣ .

In case f ∈ L1(Gm ×Gm), the maximal function is also be given by

f∗ (x1, x2
)
= sup

n,k∈N

1

µ (In,k(x1, x2))

∣∣∣∣∣
∫

In,k(x1,x2)

f
(
u1, u2

)
dµ

(
u1, u2

)
∣∣∣∣∣

(
x1, x2

) ∈ Gm ×Gm.

For 0 < p < ∞ the Hardy martingale spaces Hp(Gm × Gm) consist of all
martingales for which

‖f‖Hp
:= ‖f∗‖p < ∞.

A function l ∈ L2(Gm × Gm) is an Hp(Gm × Gm)-atom if there exists a
Vilenkin rectangle R ∈ Fa,b for any a, b ∈ N such that





a) supp (l) ⊂ R

b) ‖l‖2 ≤ (µ (R))
1/2−1/p

c)
∫

Gm

l
(
x1, x2

)
dµ

(
xi
)
= 0, i = 1, 2.

(6)
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We say that a measurable function f is in L log+ L(Gm ×Gm) if
∫

Gm×Gm

∣∣f (
x1, x2

)∣∣ log+ |f (
x1, x2

) |dµ (
x1, x2

)
< ∞,

where log+ u := 1{u>1} log u.
For a two-dimensional integrable function f we need to introduce the hybrid

maximal function

f#
(
x1, x2

)
:= sup

n∈N

1

µ (In (x1))

∣∣∣∣∣
∫

In(x1)

f
(
t, x2

)
dµ (t)

∣∣∣∣∣ .

We say that a two-dimensional function f ∈ L1 (Gm ×Gm) is in the space H#
1 if

‖f‖H#
1
:=

∥∥f#
∥∥
1
< ∞.

Recall that L log+ L (Gm ×Gm) ⊂ H#
1 (Gm ×Gm) , more exactly,

‖f‖H#
1
≤ c+ c

∥∥|f | log+ |f |
∥∥
1

(
f ∈ L log+ L

)
.

However, for a non-negative function f ∈ L1 (Gm ×Gm), the conditions f ∈
L log+ L (Gm ×Gm) and f ∈ H#

1 (Gm ×Gm) are equivalent.
For each Vilenkin rectangle R ∈ Fa,b let Rr(r ∈ N) be the Vilenkin rectangle

from Fa−r,b−r for which R ⊂ Rr. Let

Rr := Ia−r × Ib−r.

Theorem W2 (Weisz [14]). Suppose that the operator T is sublinear and
p0 < p ≤ 1. Furthermore, assume that there exist δ > 0 such that for every
Hp(Gm ×Gm)-atom a supported on the rectangle R and for every r ≥ 1 one has

∫

(Gm×Gm)\Rr

|T l|pdµ ≤cp2
−δr, (7)

where cp is a constant depending only on p. If T is bounded from L2(Gm ×Gm)

to L2(Gm ×Gm), then

‖Tf‖p ≤ cp ‖f‖Hp
(f ∈ Hp (Gm ×Gm) , p0 < p ≤ 2) .

Moreover,T is of weak type (H#
1 (Gm×Gm), L1(Gm×Gm)) i.e. if f ∈ H#

1 (Gm×
Gm) then

sup
λ

λµ (|Tf | > λ) ≤ c ‖f‖H#
1
.
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If f ∈ L1(Gm ×Gm) then it is easy to show that the sequence (SMn,Mk
(f) :

n, k ∈ N) is a martingale. If f is a martingale, that is f = (f (n,k) : n, k ∈ N), then
the Vilenkin–Fourier coefficients must be defined in a little bit different way:

f̂ (i, j) = lim
min(k,l)→∞

∫

Gm×Gm

f (k,l)
(
x1, x2

)
ψi

(
x1

)
ψj

(
x2

)
dµ

(
x1, x2

)
.

The Vilenkin–Fourier coefficients of f ∈ L1(Gm×Gm) are the same as those
of the martingale (SMn,Mk

(f) : n, k ∈ N) obtained from f .
For n, k ∈ N+ and a martingale f the Fejér mean of order (n, k) of the double

Vilenkin–Fourier series of f is given by

σn,kf(x
1, x2) =

1

nk

n∑

i=1

k∑

j=1

Si,jf(x
1, x2).

For a martingale f the unrestricted maximal operators of the Fejér means
are defined by

σ∗f
(
x1, x2

)
= sup

n,k∈N
|σn,kf(x

1, x2)|.

It is well known that

σn,kf(x
1, x2) =

∫

Gm×Gm

f
(
t1, t2

)
Kn

(
x1 − t1

)
Kk

(
x2 − t2

)
dµ

(
t1, t2

)
.

In 1992 Móricz, Schipp and Wade [10] proved with respect to the Walsh–
Paley system that

σn,kf → f

a.e. for each f ∈ L log+ L(G2×G2), when min(n, k) → ∞. In 2000Gát proved [5]
that the theorem of Móricz, Schipp andWade above can not be improved. Namely,
let δ : [0,+∞) → [0,+∞) be a measurable function with property limt→∞ δ(t) =

0. Gát proved [5] the existence of a function f ∈ L1(G2 × G2) such that f ∈
L log+ Lδ(L), and σn,kf does not converge to f a.e. as min{n, k} → ∞. That is,
the maximal convergence space for the (C, 1) means of two-dimensional partial
sums is L log+ L(G2 ×G2), and not L1(G2 ×G2).

In [13] Weisz proved with respect to the Vilenkin system that

σn,kf → f

a.e. for each f ∈ L log+ L(Gm × Gm), when min(n, k) → ∞. Feichtinger and
Weisz [3] investigate two-dimensional Lebesgue points for trigonometric Fourier
series (see also Weisz [16])
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In this section we will characterize the set of convergence of two-dimensional
Vilenkin–Fejér means. We introduce first the operators

WA,Bf(x
1, x2) :=

A∑

i=0

B∑

j=0

MiMj

mi−1∑

r1i=1

mj−1∑

r2j=1

×
∫

IA(x−r1i ei)×IB(x2−r2j ej)

|f(t1, t2)− f(x1, x2)|dµ(t1, t2),

H
(2)
B f(x1, x2) :=

B∑

j=0

Mj

mj−1∑

r2j=1

∫

Gm×IB(x2−r2j ej)

|f(t1, t2)− f(x1, x2)|dµ(t1, t2)

and

H
(1)
A f(x1, x2) :=

A∑

i=0

Mi

mi−1∑

r1i=1

∫

IA(x1−r1i ei)×Gm

|f (
t1, t2

)− f
(
x1, x2

) |dµ (
t1, t2

)
.

Definition 1. Let f ∈ L1(Gm × Gm). A point (x1, x2) ∈ Gm × Gm is a
two-dimensional Vilenkin–Lebesgue point of f , if

lim
min(A,B)→∞

WA,Bf
(
x1, x2

)
= 0, (8)

sup
A

H
(1)
A f

(
x1, x2

)
< ∞ (9)

and
sup
B

H
(2)
B f

(
x1, x2

)
< ∞. (10)

First, we note that condition (8) does not imply the condition (9) and (10),
indeed let

f
(
t1, t2

)
:=





1√
|t1| , (t1, t2) ∈ (Gm\({(0, 0)}⋃ I2(1, 1)))× I2(1, 1)

1√
|t2| , (t1, t2) ∈ I2(1, 1)× (Gm\({(0, 0)}⋃ I2(1, 1)))

0, otherwise

,

where

|x| :=
∞∑

k=0

xk

Mk+1
, x ∈ Gm.
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Then it is easy to show that

WA,Bf (0, 0) = 0.

On the other hand,

H
(1)
A f(0, 0) =

A∑

i=0

Mi

mi−1∑

r1i=1

∫

IA(r1i ei)×Gm

|f(t1, t2)|dµ(t1, t2)

=

A∑

i=0

Mi

mi−1∑

r1i=1

∫

IA(r1i ei)×I2(1,1)

1√
|t1|dµ(t

1, t2)

≥ c

MA

A−1∑

i=0

M
3/2
i → ∞ as A → ∞.

Analogously, we can prove that

H
(2)
B f (0, 0) → ∞ as B → ∞.

Let|f | ∈ H#
1 (Gm ×Gm). We prove that the conditions (9) and (10) hold for

a.e. (x1, x2) ∈ Gm ×Gm. Indeed, let

F
(
t2
)
:=

∫

Gm

∣∣f (
t1, t2

)∣∣ dµ (
t1
)
.

Then we can write
∫

Gm

(
sup
n

1

|In(x2)|
∫

In(x2)

F (t2)dµ(t2)

)
dµ(x2)

≤
∫

Gm×Gm

(
sup
n

1

|In(x2)|
∫

In(x2)

|f(t1, t2)|dµ(t2)
)
dµ(t1)dµ(x2)

=

∫

Gm×Gm

|f |# (
t1, x2

)
dµ

(
t1, x2

)
< ∞.

Hence F ∈ H1(Gm).
Since

sup
A

A∑

i=0

Mi

mi−1∑

r1i=1

∫

IA(x1−r1i ei)

(∫

Gm

|f(t1, t2)|dµ(t2)
)
dµ

(
t1
)
= V F

(
x1

)
.

From Theorem 2 we conclude that V F ∈ L1(Gm). Hence

sup
A

H
(1)
A f(x1, x2) < ∞ a.e.

(
x1, x2

) ∈ Gm. (11)
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Analogously, we can prove that

sup
B

H
(2)
B f

(
x1, x2

)
< ∞ a. e.

(
x1, x2

) ∈ Gm. (12)

Denote
VA,Bf

(
x1, x2

)

:=

A∑

i=0

B∑

j=0

MiMj

mi−1∑

r1i=1

mj−1∑

r2j=1

∫

IA(x1−r1i ei)×IB(x2−r2j ej)
f
(
t1, t2

)
dµ

(
t1, t2

)
.

It is easy to see that WA,Bf(x
1, x2) → 0 as min(A,B) → ∞ if and only if

lim
min(A,B)→∞

VA,B

(|f − f(x1, x2)|) (x1, x2
)
= 0.

Let
V f := sup

A,B
|VA,Bf |.

For the two-dimensional Vilenkin–Fejér means we prove that the following is
true

Theorem 3. Let f ∈ L1(Gm ×Gm). Then

lim
min(n,k)→∞

σn,kf
(
x1, x2

)
= f

(
x1, x2

)

for all two-dimensional Vilenkin–Lebesgue points of f .

Theorem 4. Let p > 0. Then

‖V f‖p ≤ cp ‖f‖p (f ∈ Hp (Gm ×Gm))

and
sup
λ

λµ {V f > λ} ≤ c ‖f‖H#
1
.

It is easy to show that limmin(A,B)→∞ WA,Bf(x
1, x2) = 0 for every Vilenkin

polynomials and (x1, x2) ∈ Gm×Gm. Since the Vilenkin polynomials are dense in
L1(Gm ×Gm), Theorem 4 and the usual density argument (see Marcinkiewicz
and Zygmund [9]) imply

Corollary 3. Let f ∈ L log+ L(Gm ×Gm) (|f | ∈ H#(Gm ×Gm)). Then

lim
min(A,B)→∞

WA,Bf
(
x1, x2

)
= 0 for a.e. (x1, x2) ∈ Gm ×Gm.
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Corollary 4. Let f ∈ L log+ L(Gm ×Gm). Then

lim
min(n,k)→∞

σn,kf
(
x1, x2

)
= f

(
x1, x2

)
a.e.

(
x1, x2

) ∈ Gm ×Gm.

For special indicies and two-dimensional unbounded Vilenkin group a.e. con-
vergence of Fejer means was investigated by Gát [8]

Proof of Theorem 3. From (1), (4) and (5) we can write

|σn,kf(x
1, x2)− f(x1, x2)| ≤ c

nk

|n|∑

A=0

MA

|k|∑

B=0

MB

∫

Gm×Gm

|f(t1, t2)− f(x1, x2)|

×
∣∣KMA

(
x1 − t1

)∣∣ ∣∣KMB

(
x2 − t2

)∣∣ dµ (
t1, t2

)

≤ c

nk

|n|∑

A=0

MA

|k|∑

B=0

MB

A∑

i=0

B∑

j=0

MiMj

mi−1∑

r1i=1

mj−1∑

r2j=1

×
∫

IA(x−r1i ei)×IB(x2−r2j ej)

∣∣f (
t1, t2

)− f
(
x1, x2

)∣∣µ (
t1, t2

)

=
c

nk

|n|∑

A=0

MA

|k|∑

B=0

MBWA,Bf
(
x1, x2

)
. (13)

Let α(n) = [(1/4) logM n], where M := sup{mi : i ≥ 0}. Then from (13) we
obtain

∣∣σn,kf
(
x1, x2

)− f
(
x1, x2

)∣∣

≤ c

nk




α(n)−1∑

A=0

α(k)−1∑

B=0

+

α(n)−1∑

A=0

|k|∑

B=α(k)

+

|n|∑

A=α(n)

α(k)−1∑

B=0

+

|n|∑

A=α(n)

|k|∑

B=α(k)




×MAMBWA,Bf
(
x1, x2

)
=

4∑

i=1

Ii. (14)

Since
WA,Bf

(
x1, x2

)
< c

(
x1, x2

)
MAMB

for I1 we can write

I1 ≤ c

nk

α(n)−1∑

A=0

α(k)−1∑

B=0

M2
AM

2
B ≤

cM2
α(n)M

2
α(k)

nk

≤ cM2(α(n)+α(k))

nk
≤ c

(nk)
1/2

→ 0 as min (n, k) → ∞. (15)
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Since

WA,Bf
(
x1, x2

)

≤ cMA

B−1∑

j=0

Mj

mj−1∑

r2j=1

∫

G×IB(x2−r2j ej)
|f (

t1, t2
)− f

(
x1, x2

) |dµ (
t1, t2

)

≤ cMAH
(2)
B f

(
x1, x2

)
.

From (10) we have

I2 ≤ c

nk

α(n)−1∑

A=0

|k|∑

B=α(k)

MAMBWA,Bf
(
x1, x2

)

≤ c

nk

α(n)−1∑

A=0

M2
A

|k|∑

B=α(k)

MBH
(2)
B f

(
x1, x2

)

≤
cM2

α(n)

n
≤ c√

n
→ 0 as n → ∞. (16)

Analogously, we can prove that

I3 → 0 as m → ∞. (17)

From (8) it is easy to show that

c

nk

|n|∑

A=α(n)

|m|∑

B=α(m)

MAMBWA,Bf
(
x1, x2

) → 0 as min (n, k) → ∞. (18)

Combining (14)–(18) we conclude the proof of Theorem 3. ¤

Proof of Theorem 4. By Theorem W2, the proof of Theorem 4 will be
complete if we show that the operator V satisfies (7) and is bounded from L2(Gm×
Gm) to L2(Gm ×Gm).

Since VA,Bf = VA(VBf) and
∥∥∥∥sup

A
|VAf |

∥∥∥∥
p

≤ cp ‖f‖p (1 < p ≤ ∞)

iterating the one-dimensional result we get easily that
∥∥∥∥sup
A,B

|VA,Bf |
∥∥∥∥
p

≤ cp ‖f‖p (1 < p ≤ ∞) .
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To verify (7), let a be an arbitrary atom with support Ia(z
′) × Ib(z

′′). It
is easy to see that VA,B(a) = 0 if A < a or B < b. Therefore we can suppose
that A ≥ a and B ≥ b. Since the dyadic addition is a measure preserving group
operation, we may assume that z′ = z′′ = 0.

Step 1: Integrating over Ia−r × Ib−r. Since

Ia−r × Ib−r =
(
(Ia−r\Ia)× Ib−r

) ∪ (
Ia × Ib−r

)

we will consider two cases:
a) Let (x1, x2) ∈ Ia × Ib−r. Then we can write

VA,Bl
(
x1, x2

)
=

A∑

i=0

Mi

MA

B∑

j=0

Mj

MB

mi−1∑

r1i=1

mj−1∑

r2j=1

×
∫

Ia×Ib

l
(
t1, t2

)
DMA

(
x1 − r1i ei − t1

)
DMB

(
x2 − r2j ei − t2

)
dµ

(
t1, t2

)

=

b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

) ∫

Ib

( A∑

i=0

Mi

MA

mi−1∑

r1i=1

×
∫

Ia

l
(
t1, t2

)
DMA

(
x1 − r1i ei − t1

)
dµ

(
t1
))

dµ
(
t2
)

=

b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

) ∫

Ib

VAl
(
x1, t2

)
dµ

(
t2
)
.

Hence

V l
(
x1, x2

) ≤
b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

) ∫

Ib

sup
A

VAl
(
x1, t2

)
dµ

(
t2
)

≤ 1

M
1/2
b

b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)
(∫

Ib

(
sup
A

VAl
(
x1, t2

))2

dµ
(
t2
)
)1/2

.

Applying the inequality
(∑

k

ak

)p

≤
∑

k

apk (ak ≥ 0, 0 < p ≤ 1)

from Theorem 2 we can write
∫

Ia

(
V l

(
x1, x2

))p
dµ

(
x1

) ≤ 1

M
p/2
b

b−r∑

j=0

Mp
j

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)
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×
∫

Ia

(∫

Ib

(
sup
A

VAl
(
x1, t2

))2

dµ
(
t2
)
)p/2

dµ
(
x1

)

≤ 1

M
p/2
b M

1−p/2
a

b−r∑

j=0

Mp
j

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)

×
(∫

Ib

(∫

Ia

(
sup
A

VAl
(
x1, t2

))2

dµ
(
t2
)
)
dµ

(
x1

)
)p/2

≤ 1

M
p/2
b M

1−p/2
a

b−r∑

j=0

Mp
j

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)

×
(∫

Ia

∫

Ib

(
l
(
x1, t2

))2
dµ

(
x1

)
dµ

(
t2
))p/2

≤ 1

M
p/2
b M

1−p/2
a

(
1

MaMb

)p/2−1 b−r∑

j=0

Mp
j

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)
,

∫

Ia×Ib−r

(
V l

(
x1, x2

))p
dµ

(
x1

)
dµ

(
x2

)

≤ 1

Mp−1
b

1

Mb

b−r∑

j=0

Mp
j ≤ cp2

−rp. (19)

b) Let (x1, x2) ∈ (Ia−r\Ia)× Ib−r. Then we can write

∣∣VA,Bl
(
x1, x2

)∣∣ ≤
a∑

i=0

Mi

mi−1∑

r1i=1

1Ia(r1i ei)
(
x1

)

×
b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

) ∫

Ia×Ib

|l (t1, t2) |dµ (
t1, t2

)

≤
a∑

i=0

Mi

mi−1∑

r1i=1

1Ia(r1i ei)
(
x1

)

×
b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)( 1

MaMb

)1/2 (
1

MaMb

)1/2−1/p

.
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Consequently,

∫

(Ia−r\Ia)×Ib−r

(
V l

(
x1, x2

))p
dµ

(
x1, x2

)

≤
(

1

MaMb

)p a∑

i=0

Mp
i

b−r∑

j=0

Mp
j ≤ cp2

−rp. (20)

Step 2: Integrating over Ia−r × Ib−r. Then we can write

∣∣VA,Bl
(
x1, x2

)∣∣ ≤
a−r∑

i=0

Mi

mi−1∑

r1i=1

1Ia(r1i ei)
(
x1

)

×
b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

) ∫

Ia×Ib

∣∣l (t1, t2)∣∣ dµ (
t1, t2

)
,

≤
(

1

MaMb

)1−1/p a−r∑

i=0

Mi

mi−1∑

r1i=1

1Ia(r1i ei)
(
x1

) b−r∑

j=0

Mj

mj−1∑

r2j=1

1Ib(r2j ej)
(
x2

)

×
∫

Ia−r×Ib−r

(V l
(
x1, x2

)
)pdµ

(
x1, x2

)

≤
(

1

MaMb

)p a−r∑

i=0

Mp
i

b−r∑

j=0

Mp
j ≤ cp2

−2rp. (21)

Step 3: Integrating over Ia−r× Ib−r. This case is analogous to the step 1
and we obtain that

∫

Ia−r×Ib−r

(
V l

(
x1, x2

))p
dµ

(
x1, x2

) ≤ cp2
−rp. (22)

Combining (19)–(22) we complete the proof of Theorem 4. ¤

Finally, we note that only condition (8) does not guarantee convergence of
σn,kf . Indeed, let

f1
(
x1

)
:=




0, if x1 ∈ I2(0, 0) ∪

m0−1⋃
x0=1

m1−1⋃
x1=1

(I2 (x0, 0) ∪ I2(0, x1))

1 otherwise
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and

f2
(
x2

)
:=





∞∑

k=1

ψk (x)

k
, x2 6= 0

0, x2 = 0.

Let
Φ
(
x1, x2

)
:= f1

(
x1

)
f2

(
x2

)
.

Then it is easy to show that

WA,BΦ(0, 0) = 0.

On the other hand,

σn,kΦ(0, 0) = σn (f1, 0)σk (f2, 0) .

Since
|Sk (f2, 0)| → ∞ as k → ∞

we conclude that (see [17])

|σk (f2, 0)| → ∞ as n → ∞.

For every fixed n we choose k = k(n) such that

∣∣σn (f1, 0)σk(n) (f2, 0)
∣∣ ≥ n.

Hence
lim
n→∞

∣∣σn,k(n)Φ(0, 0)
∣∣ = +∞.
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