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Pointwise summability of Vilenkin—Fourier series

By USHANGI GOGINAVA (Thilisi) and LARRY GOGOLADZE (Thbilisi)

Abstract. In this paper we give a characterization of points in which Fejér means
of Vilenkin—Fourier series converge.

1. The One-dimensional Vilenkin—Lebesgue points

Let N1 denote the set of positive integers, N := N U {0}. Let m :=
(mg,m1,...) denote a sequence of positive integers not less than 2. Denote by
Zm,, :=1{0,1,...,my — 1} the additive group of integers modulo my. Define the
group G, as the complete direct product of the groups Z,,,, with the product of
the discrete topologies of Z,,,;’s. The direct product u of the measures

() = mik ( € Zuny)

is the Haar measure on G,, with u(G,,) = 1. If the sequence m is bounded, then
G, is called a bounded Vilenkin group. The elements of G, can be represented
by sequences x := (zo,T1,...,%j,...), (¥; € Zn,;). The group operation + in
Gy, is given by © +y = (z¢ + yo mod my,...,xx + yx( mod my,...), where
x = (zoy. -, Tpy...) and y = (Yo,---Yk,---) € Gm. The inverse of + will be
denoted by —.

It is easy to give a base for the neighborhoods of G,,:

Io(aj) = Gm,

In(z) ={y € Gmlyo =20,.. ., Yn—1 = Tn_1}
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for x € Gy, n € N. Define I, := I,,(0) for n € N;. Set e, :=(0,...,0,1,0,...) €
G, the nth coordinate of which is 1 and the rest are zeros (n € N).

If we define the so-called generalized number system based on m in the fol-
lowing way: Mg := 1, Myy1 := mi My (k € N), then every n € N can be uniquely
expressed as n = Z?io njMj, where n; € Z,,, (j € N;) and only a finite num-
ber of n;’s differ from zero. We use the following notation. Let (for n > 0)
In| := max{k € N:ny # 0} (that is, M), <n < My41).

Next, we introduce on G,, an orthonormal system which is called the Vilen-
kin system. At first define the complex valued functions ri(x) : G,, — C, the
generalized Rademacher functions in this way

2mxy,

ri(x) == exp (1 =—1, € Gy, k EN).

mg

Now define the Vilenkin system 1 := (¢, : n € N) on G,, as follows.

Un(@) =[] ri*(z) (neN).
k=0

Specifically, we call this system the Walsh—Paley one if m = 2.

The Vilenkin system is orthonormal and complete in L!(G,,) [1].

Now, introduce analogues of the usual definitions of the Fourier analysis. If f €
L'(G,,) we can establish the following definitions in the usual way:

Fourier coefficients:

fioi= [ foudn kew,
Gm
partial sums:

Suf =Y fk)r  (neNy, Spf:=0),

Fejér means:
Dirichlet kernels:

Fejér kernels:
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Recall that

Dy (o) [ Moo Tz €D "
xT) =
Mo 0, ifze G\l

It is well known that
onf (z / F () Ko (2~ ) dp (1)

The norm (or quasinorm) of the space L, (G,,) is defined by

1£, = ( /| P dy <x>)w (0<p<+00).

The space weak-L,(G,,) consists of all measurable functions f for which
I flhvenkzy (@) = 50 M (] > NP < too.
>

The o-algebra generated by the intervals {I,,(z) : © € G,,} will be denoted
by F,(n € N).

Denote by f = (f),n € N) a martingale with respect to (F,,n € N) (for
details see, e.g. [12], [15]).

The maximal function of a martingale f is defined by

o =sup |0,
neN

In case f € Li1(G,,), the maximal functions are also be given by

| @)
In(x)

For 0 < p < oo the Hardy martingale spaces H,(G),) consist of all martinga-

R S
@) = s @)

les for which

11, = 117, < o0

If f € L1(Gy) then it is easy to show that the sequence (Sp, (f) : n € N)
is a martingale. If f is a martingale, that is f = (f™ : n € N), then the
Vilenkin—Fourier coefficients must be defined in a little bit different way:

—hm/ 9 (@), (2) dp ()

k—o0



92 Ushangi Goginava and Larry Gogoladze

The Vilenkin—Fourier coefficients of f € L1(G,,) are the same as those of the
martingale (Spz, (f) : » € N) obtained from f.

A bounded measurable function [ is an H,(G,,)-atom if there exists a Vilen-
kin interval I € F;, for any n € N such that

a) supp(l) C I

/ ldp =0 . (2)

) oo < (u(1)~H7

WEISz [13] proved that the following is true.

Theorem W1. Suppose that the operator T is sublinear and

/G TP i<, (m<p<) 3)

for every H,(G,,)-atom l. If the operator T is bounded from L,, to L,, (1 < p; <
o0) then

ITfll, < cpllflle, (f € Hp)

for every py < p < p1. Moreover, if pyg < 1 then the operator T is of weak type
(1,1), i.e. if f € L1(G,y), then

1T | weax— Li(Gm) = <c|fll;-

In the one-dimensional case a point x € (—o0, 00) is called a Lebesgue point

it [0 - @ =

It is known that a.e. point & € (—o0, 00) is a Lebesgue point of f € Ly and that

of a function f if

the Fejér means of the trigonometric Fourier series of f € L; converge to f at
each Lebesgue point (see BUTZER and NESSEL [2]).

Weisz introduced the one-dimensional Walsh-Lebesgue point in [12]: = € G
is a Walsh—Lebesgue point of f € L1(Gq), if

lim ) 2" / 1 (8) = f () |dt = 0,
n_)ookzzo In(x‘i‘ek)

where G2 is a Walsh group. WEISZ proved in [12] that a.e. point € G2 is a
Walsh-Lebesgue point of an integrable function f. Moreover, the Fejér means of
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the Walsh—Fourier series of f € Li(G2) converge to f at each Walsh-Lebesgue
point.

PAL and SIMON [11] proved that the one-dimensional Fejér means of the
Vilenkin-Fourier series on bounded Vilenkin group of an integrable function con-
verge a.e. to the function.

In this paper we will characterize the set of convergence of Vilenkin—Fejér
means. We introduce first the operator

mg—1

Waf(x ZM > | — F(@)ldu(t).

re=1 Y1a(z—rses )
A point z € G,, is a Vilenkin—Lebesgue point of f € L1(G,,), if
lim Wyf(x)=0
A—o0

Denote
Vaf @) =3 S / (t) dp (1
s=0 re=1 /1a(z— “’s)
msfl
Z SN ARG
rs=1

It is easy to see that W, f(z) — 0 as A — oo if and only if
Tim Vi (If — f(@)) () = 0.
—00
Let
Vfi=sup|Vafl.
For one-dimensional Vilenkin—Fejér means we prove that the following is true
Theorem 1. Let f € Ly (Gy,). Then
Jim o, f (z) = f(2)

for all Vilenkin—Lebesgue points of f.

Theorem 2. Let p > 0. Then

VI, <elfll, (f€Hp(Gm))

and

Slip/\u{Vf > A} <cllfll; -

It is easy to show that lima_ oo W, f(z) = 0 for every Vilenkin polynomials
and x € G,,. Since the Vilenkin polynomials are dense in L;(G,,), Theorem 2
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and the usual density argument (see MARCINKIEWICZ and ZYGMUND [9]) imply

Corollary 1. Let f € L1(G,,). Then
lim Waf(x)=0 forae x€G,y,
A—o0

thus a.e. point is a Vilenkin—Lebesgue point of f.

Corollary 2. Let f € Li(G,,), where Gy, is a bounded Vilenkin group.
Then
onf(x) = f(x) forae x€ Gy

We note that for the unbounded Vilenkin group and for special indices GAT
[6] proved that op, f(x) — f(x) a.e. for f € L(G,,) (see also [4]). On the ot-
her hand, for full indices and unbounded Vilenkin group GAT [4] showed that
onf(z) = f(z) ae. for f € L,(Gy,) (1 <p < o0).

PROOF OF THEOREM 1. Since [11], [1]

ms—1
|KMA | < CZM Z 1IA(Tbeb) (4)
re=1
and
In|
Ky ()| < e MalKn, ()] (5)
A=0

we can write

In|

o] () = £ (@) < 73 Ma L 150 = @) B = 1) e 1)

IN

c s

\nl

:EZMAWAf(x)HO as n — oo.
n

\ /\

3 / 0= f (@) du (1)

ra=1 (z— Tses)

Theorem 1 is proved. (I

PrOOF OF THEOREM 2. By Theorem W1, the proof of Theorem 2 will be
complete if we show that the operator V satisfies (3) and is bounded from Lo (G.,)
t0 Loo(Gm)-



Pointwise summability of Vilenkin—Fourier series 95

The boundedness follows from the inequality

IV Fllo < el flloo sup 37 ZM <cllfll

To verify (3), let I be an arbitrary atom with support I,(z). It is easy to see
that V4(a) = 0 if A < a. Therefore we can suppose that A > a. Since the dyadic
addition is a measure preserving group operation, we may assume that z = 0.

From (1), (4) and (5) we can write

A me—1
Val ()] < 30 53./ ()] Doty (& — raes — 1) dpa (2)
:0
méfl

re=1

re=1
Ml/p — ms—1 _
< € Z Z 11,1(“6é 3 HAS Ia~
s=0 re=1
Hence 1
cM, 1 «
/Ia (VI(2)) do < i E;Mf < ¢, < 00.
Theorem 2 is proved. O

2. The two-dimensional Vilenkin—Lebesgue points

The rectangular partial sums of the double Vilenkin—Fourier series are defined
as follows:

M—-1N-1

Sun(fizt 2’ ZZ (i, )i (") ¥ (%),

=0 4=0

where the number
Fii= [ £ )T, @) du el o?)
G XG

is said to be the (7, j)th Vilenkin—Fourier coefficient of the function f.
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The norm (or quasinorm) of the space L, (G, X Gy,) is defined by (p is the
product measue p X p)

1/p
M= ([ @ ata?)) T 0<p< o).

The space weak-L,, (G, X G, ) consists of all measurable functions f for which
1
1/ ek~ L (@ Gy = SUR A (IF] > 2) P < tc.
>

Let
Ik (xl,xz) =1, (ml) x I, (332) .

The o-algebra generated by the rectangles {I,, x(z', 2?):(2!, 2?)€G,, x G }
will be denoted by F, i(n,k € N).

Denote by f = (f™*) n,k € N) a martingale with respect to (F, x,n,k € N)
(for details see, e.g. [12], [15]).

The maximal function of a martingale f is defined by

In case f € L1(Gy, X Gyy,), the maximal function is also be given by

1
* 1 2
r,r°) = sup —————
f ( ) n,kENM(In,k(xlva))

/ f (ul,u2) du (ul, u2)
I i (zt,z?)

(ml,xQ) € Gy X G

For 0 < p < oo the Hardy martingale spaces H,(G,, X Gy,) consist of all
martingales for which
1N g, == L], < oo

A function | € Ly(Gy, X Gyy) is an Hp(G,, X Gy,)-atom if there exists a
Vilenkin rectangle R € F,; for any a,b € N such that

a) supp(l) C R
b) il < (u(R))MEHE 6)

c) / l(ml,x2) du (x’) =0,71=1,2.
Gm
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We say that a measurable function f is in Llogt L(G,, x G,,) if
/ ’f (:vl,x2)}log+ |f (ml,xQ) |du (xl,mQ) < 00,
G XGm

where log™ u := 1{u>1y logu.
For a two-dimensional integrable function f we need to introduce the hybrid
maximal function

f# (ml,xQ) 1= sup 1

nen (I (z1)) /In(ml)f(t,x )dp (t)|.

We say that a two-dimensional function f € Ly (G, X G,,) is in the space Hﬁé if
Ly = 7%, < oc.
Recall that Llog® L (G, x Gyn) € HY (G, x G,y) , more exactly,

1fllge <+ clllfilog* 1£1], (f € Llog™ L).

However, for a non-negative function f € L; (G, X G,,), the conditions f €
Llogt L(Gm x Gy) and f € HY (G, x G,) are equivalent.

For each Vilenkin rectangle R € F,, ; let R"(r € N) be the Vilenkin rectangle
from Fy_,p—r for which R C R". Let

R" = a—r X Ip_p.

Theorem W2 (WEIsz [14]). Suppose that the operator T is sublinear and
po < p < 1. Furthermore, assume that there exist § > 0 such that for every
H, (G, x G,,)-atom a supported on the rectangle R and for every r > 1 one has

/ TUPdp <ep27°7, (7)
(G XGm)\R"

where ¢, is a constant depending only on p. If T is bounded from Lo(G,, x G,)
to Lo(Gy X Gyy,), then

ITfll, <epllfla, (f € Hp(GmxGm), po<p<2).

Moreover, T' is of weak type (HI (G X Grn), L1 (G X Gyn)) de. if f € HY (G X
G,) then
sup A (ITf] > A) < ellfllay
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If f € Li(Gyn x Gyy,) then it is easy to show that the sequence (Sar, ar, (f) :
n,k € N) is a martingale. If f is a martingale, that is f = (f(™*) : n, k € N), then
the Vilenkin—Fourier coefficients must be defined in a little bit different way:

f(i,j) = lim / D (x17x2) b, (:vl) Ej (1’2) du (xl, x2) .
min(k,l)—o0 J&, xG..,
The Vilenkin—Fourier coefficients of f € Li(G,, x G,,) are the same as those
of the martingale (Sas,, a, (f) : n, k € N) obtained from f.
For n, k € Ny and a martingale f the Fejér mean of order (n, k) of the double
Vilenkin—Fourier series of f is given by

n k
1
Un,kf('rlvxZ) = % Zzsi)jf(l'l,l‘2).

i=1j=1

For a martingale f the unrestricted maximal operators of the Fejér means
are defined by

o*'f ($1,£E2) = sup |crn7kf(x1,x2)|.
n,keN

It is well known that

o f (e, 2%) = / P 2) K (2 — ) K (27— 2) du (1, 2).
GmXGm
In 1992 MORICZ, SCHIPP and WADE [10] proved with respect to the Walsh—
Paley system that

Jn,kf — f

a.e. for each f € Llog™ L(Go x Gy), when min(n, k) — oo. In 2000 GAT proved [5]
that the theorem of Méricz, Schipp and Wade above can not be improved. Namely,
let ¢ : [0, +00) — [0, +00) be a measurable function with property lim; o, 6(t) =
0. GAT proved [5] the existence of a function f € L;(G2 x G2) such that f €
Llog™ L§(L), and On,if does not converge to f a.e. as min{n,k} — co. That is,
the maximal convergence space for the (C,1) means of two-dimensional partial
sums is Llog™ L(G4 x G3), and not Lq(G2 x G2).
In [13] WEISZ proved with respect to the Vilenkin system that

Jn,kf — f

a.e. for each f € Llog™ L(G,, x Gy,), when min(n, k) — co. FEICHTINGER and
WEIsZ [3] investigate two-dimensional Lebesgue points for trigonometric Fourier
series (see also WEISzZ [16])
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In this section we will characterize the set of convergence of two-dimensional
Vilenkin—Fejér means. We introduce first the operators

A B ;
WAny(xl,xZ) ::ZZMiMj Z

x/ F(EL82) — F(a, 22) (e, £2),
La(z—rjei)xIp(z?—re;)

B
Y fatot) =y Y [ ) = F ) due? )

GmxIp(z2—r3e;)

and

A
HY f(z',2?) =2 M; Z/ If (£,12) = f (2 2?) |dp (£,42) .

IA(QZl—T}Ci)XG»,”

Definition 1. Let f € Li(G, x G). A point (21,22) € G, x G, is a
two-dimensional Vilenkin—Lebesgue point of f, if

li 147 La?) =0 8
min(Al,Illi”l)%oo A’Bf (l’ & ) ’ ( )
sup H1(41)f (xl,xQ) < o0 (9)
A
and
sup H](;)f (xl,x2) < 0. (10)
B

First, we note that condition (8) does not imply the condition (9) and (10),
indeed let

L 2) € (Ga\({(0,0)} UL(1, 1)) x I(1,1)

f (1) = S @) € B X @\ {00} UL D)
0, otherwise
where

oo
Tg
z| = z € Gy
=3 g e
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Then it is easy to show that

Wa gf(0,0)=0.
On the other hand,
A mifl
1

1100 =Y 3 | () du(, )
i—0 ri=1 Ia(rlei)xXGm
A m;—1

=S, / du(t', %)

2 M ) Ta(rle)xIx(1,1) /[t!]

=0 pl=1
o Al y
Z—ZM52—>00 as A — oo.
Ma =
Analogously, we can prove that

Hg)f(0,0) — 00 as B — oc.

Let|f| € H¥ (G, X Gpn). We prove that the conditions (9) and (10) hold for
a.e. (z1,22) € G x Gy, Indeed, let

F(2) ;:/G 1 (5 62) | dp (1),

m

Then we can write

/G ( 1P 1. (@) )12 F(t7)dpu(t )) du(z?)

1
< SUp ———— FE ) dut?) | dup(th)dp(«?
ﬁ%wm<nuﬁﬁﬂbw$< () | du(t)du(z?)
:/G . |f|# (t17x2) du (tl,x2) < o0.
e

Hence F € H1(Gp).
Since

A mifl
sup M; / (/
A ; Tgl Ta(zl—rle;) G

From Theorem 2 we conclude that VF € L1(G,,). Hence

|f(t1,t2)|du(t2)) du(t') =VF (z').

m

supHS)f(;vl,xQ) <oo ae. (z',2%) € G (11)
A
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Analogously, we can prove that

supH](;)f (z',2%) <00 a. e. (z',2%) € Gp. (12)
B
Denote
VA,Bf (xlaxQ)
A B m;—1 m;—1
= M; M, / (83 dp (11, %) .
zz:%jzo ! T}Z—:l TJZZ_:I Ta(zt—rle;)xIp(z2—r2e;) ( ) ( )

It is easy to see that Wa g f(z!,2?) — 0 as min(A, B) — oo if and only if

lim ~ Vap (If - f@a',2?)]) (2',2%) = 0.

min(A,B)—oco
Let
V= sup|Vas/fl.
A,B
For the two-dimensional Vilenkin—Fejér means we prove that the following is

true

Theorem 3. Let f € L1(G,, X Gy,). Then

min(}j,rl?)aooan’kf (xl,xz) =f (ml’xz)

for all two-dimensional Vilenkin—-Lebesgue points of f.

Theorem 4. Let p > 0. Then

VI, < collfll,  (f € Hp(Gm x Gm))

and
Sl;p M{Vf>A<c Hf”Hf‘ :

It is easy to show that limy,in(a,B)— oo Wa g f(zt,2%) = 0 for every Vilenkin
polynomials and (2!, 2%) € G,,, X G,,. Since the Vilenkin polynomials are dense in
L1(Gyy % Gy, Theorem 4 and the usual density argument (see MARCINKIEWICZ
and ZYGMUND [9]) imply

Corollary 3. Let f € Llog™ L(Gy, x Gy) (|f] € H# (G, x Gy)). Then

lim Wasf (zl,xz) =0 forae. (z',2%) € Gp X Gpp.

min(A,B)— oo
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Corollary 4. Let f € Llogt L(G,, x G,,). Then
lim Onkf (x17x2) =f (x17x2) a.e. (xl,x2) € Gm X G-
min(n,k)—oo
For special indicies and two-dimensional unbounded Vilenkin group a.e. con-

vergence of Fejer means was investigated by GAT [8]

PROOF OF THEOREM 3. From (1), (4) and (5) we can write

In| Ll

|O'n7kf(qj1’x2) _ f( —k Z MA Z MB/ |f(t17t2) _ f(,]j173;2)|

GmXGm
X |Kar, (2t —t1)] |KM (x —t2)|d,u (tl,tz)

In K| B mi—1mj—1

ZMAZMBZZ M DL 2

= T 1— 7"2 1

% 1 42) — L g2 t1 42

/IA(m_ﬁei)“B(xz_rfej)|f< )= 1 ()| (1, 2)
In| k|

:n—CkZMAZMBWA,Bf(Z‘l,x2). (13)
A=0

Let a(n) = [(1/4) logys n], where M := sup{m,; : ¢ > 0}. Then from (13) we
obtain

. a(n)=la(k)-1 a(n)-1 |k In]  a(k)-1 In] K|
< + DD RIS
A=0 B=0 A=0 B=a(k) A=a(n) B=0 A=a(n) B=a(k)
4
x MaMpWapf (z',2%) =Y L. (14)
i=1
Since

Wapf (z' 2?) <c(a',2®) MaMp

for I; we can write

a(n) 1a(k)— eM?2 M2
a(n) " a(k)
net 3 g < il
CM2<a<n>+a<k>> .

< < i k . 15
< s < (nk)1/2 — 0 as min (n, k) — oo (15)
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Since

Wanf (3?17902)

mj—1

<cMAZM Z/ 7 (0 7 o) a0

GXIB —T e]
< cMAH](g)f (xl,xz) .

From (10) we have

¢ a(n)—1  |k|
1,2
L<— > MaMpWaspf (z',2°)
A=0 B=a(k)
-1 K|
(2
<23 Y e
B=a(k)
cMi(n) c
<——<——=>0asn—o0.
n vn

Analogously, we can prove that
I3 — 0 as m — oo.

From (8) it is easy to show that

In| |m|

nck Z Z MAMBWA,Bf(xl,xQ)AOaS min (n, k) — oo
A=a(n) B=a(m)

Combining (14)—(18) we conclude the proof of Theorem 3.

t?)

103

PrOOF OF THEOREM 4. By Theorem W2, the proof of Theorem 4 will be
complete if we show that the operator V satisfies (7) and is bounded from Lo (G, X

Gpm) to Lo(Gry X Gop).
Since V4 pf = Va(Vpf) and

<elfll, (1<p<oo)
p

sup [Va f]|
A

iterating the one-dimensional result we get easily that

sup [Vasfl| <epllfll, (1<p<oc).

p
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To verify (7), let a be an arbitrary atom with support I,(2") x I;(z"). Tt
is easy to see that V4 p(a) = 0if A < a or B < b. Therefore we can suppose
that A > a and B > b. Since the dyadic addition is a measure preserving group
operation, we may assume that z’ = z” = 0.

Step 1: Integrating over I,_, x I,_,. Since

Ia—r X Tb—r = ((Ia—r\Ia) X Tb—r) U (Ia X 7b—r)
we will consider two cases:
a) Let (zt,2%) € I, x I_,. Then we can write

J

— m;—1
Z Z ]'Ib 7‘ e; 12 / sup VAZ (xl,tz) dﬂ (t2)
7=0 2 -1 J A

Iy,

b—r m;—1 2 1/2
1
< Mil/Q Z Mj Z 1Ib(T]25j) (:Ez) <‘/I (Sljxp VAl ($1,t2)> d,u (t2)>
b =0 r2=1 b
Applying the inequality

p
(o) <Xad @=00<p<)
k k
from Theorem 2 we can write

/ (VI (2!, 22))" dy (&

I, M/2

mj—1

ZMP Z IIbTeJ :c2
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X/I (/I (SngAl(xlatz))zdu(t2)>p/2du(x1)

m;—1
Z Z 1[ r e] ‘T2
Mp/2 1 -p/2 : ral ’7
9 p/2
X (/ (/ (supVAl (Jcl,tz)) du (t2)> du (J]l)>
n, \JI1, \ 4

m;—1

Mp/2 1 —p/2 ZMP Z 1Ib 7" eg

/2

(/ /I 2, 12)) du (= )du(tQ))

1 p/2—1b—r mj—1
< 4 2
Mf/zM; p/2 <MaMb> Z M Z llh 1" e] I‘ )

/Ia Ty (VI (z"2%))" du («") dp (2°)

b—r
1
- 14 —Trp
<TG ;:0 MP < c,27". (19)

b) Let (z',2%) € (I4—\Ia) X Ip—,. Then we can write

|VABZJ?LZZ ’<ZM Zl Te xl

ri=1

J 1[},(7’26]') (332) / |l (t17t2) |d/.t (t17t2)
I, x1Iy
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Consequently,
/ (VI (2!, 22))" dp (o, 27)
(Ia—\L)XTp
<MM> ZM”ZM”<C2 v, (20)
b

=0

Step 2: Integrating over I,_, x I;,_,. Then we can write

m;—1
|Va, Bl (a*, 2? \<ZM 21 (rier) (@)
mj—l
XZM Z L, (r2e,) (#%) /IXI (', £%) | du (£, 17),
a b

1 1-1/pa—r m;—1 m;—1
= (MaMb> ;MZ ;1 1Ia(T'il€1 ZM Z 11& 7" e
/ Vl 17 , T ))pdu (xl,zz)
To—rXTp_y

pa I
P /4 —2r
<M Mb> > M ZMj <27, (21)

=0 7=0

Step 3: Integrating over I,_, x I_,. This case is analogous to the step 1
and we obtain that

/7 . (Vi (xl,xz))pd,u (z',2%) < cp27"P. (22)
a—rXlp—r

Combining (19)—(22) we complete the proof of Theorem 4. O

Finally, we note that only condition (8) does not guarantee convergence of
Onkf. Indeed, let

mo— 1m1 1

) 0, ifa' € L(0,00U |J |J (2(20,0)UI2(0,21))
fl(x):: zo=1 z1=1

1 otherwise
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and

i T/Jkk(x)’ 22 40
=1

k
0, 22 =0.

f2 (31’2) =
Let

Then it is easy to show that

Wa,5®(0,0)=0.
On the other hand,

O'n,kq) (an) =0n (flao) Ok (f270) .
Since
|Sk (f2,0)] > 00 ask — oo

we conclude that (see [17])
lok (f2,0)] = 00 asn — oo.

For every fixed n we choose k = k(n) such that

‘Un (flvo) Ok(n) (f?ao)} > n.
Hence
lim |0, () ® (0,0)] = 4o00.

n—oo
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