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On local semi CAP -subgroups of finite groups

By XIUYUN GUO (Shanghai), JIANJUN LIU (Shanghai) and QIANLU LI (Datong)

Abstract. A subgroupH of a finite group G is said to have the semi cover-avoiding

property in G if there is a normal series of G such that H covers or avoids every normal

factor of the series. In this paper we analyze how certain properties of semi cover-

avoiding subgroups influence the structure of groups.

1. Introduction

A subgroup H of a group G is said to have the cover-avoiding property in G

ifH covers or avoids every chief factor of G. Since 1962, whenGaschütz introdu-

ced a certain conjugacy class of subgroups of a finite solvable group (see [2]) which

have the cover-avoiding property, there has been much interest in investigating the

topic on the cover-avoiding property. On the one hand, some authors continued to

find some kind of subgroups of a finite solvable group having the cover-avoiding

property [3], [16]. On the other hand, many authors hope to obtain structural

insight into a finite group when some of its subgroups have the cover-avoiding

property.

Recently, Fan, Guo and Shum introduced the semi cover-avoiding property

and obtained some new results.
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Definition 1.1 ([1, Definition 2.1]). A subgroup H of a finite group G is said

to have the semi cover-avoiding property in G if there is a normal series

G = G0 > G1 > · · · > Gn = 1

of G such that for every i = 0, 1, 2, . . . , n− 1, H either covers Gi/Gi+1 or avoids

Gi/Gi+1. In this case, we also say that H is a semi cover-avoiding subgroup of G.

For short, H is a semi CAP -subgroup of G.

Recall that a subgroup H of a finite group G is said to be c-normal in G if

there is a normal subgroup N in G such that G = HN and H∩N ≤ coreG(H). It

is clear that the semi cover-avoiding property covers not only the cover-avoiding

property but also c-normality. It has been proved that the concept of semi CAP -

subgroup is suitable for describing the structure of groups [5], [7], [11], [17]. Our

motivation in this paper comes from the following example.

Example 1.1. Let N = 〈a〉 × 〈b〉 be an elementary abelian 5-group of order

52 and c ∈ Aut(N) such that ac = b2, bc = a. Then the semidirect product

G = N o 〈c〉 is of order 52 × 23. It is clear that K = 〈b〉 is not a semi CAP -

subgroup of G, but K is a semi CAP -subgroup of H = N o 〈c2〉.
Therefore, it is a natural question to ask how much information about the

structure of the group G we can uncover knowing that some subgroups are semi

CAP -subgroups of G. In this paper, we first study this question. Then we

investigate the solvability of some normal subgroup by using certain maximal

subgroups, which is a generalization of known results.

Throughout this paper, the terminology and notation not mentioned here

agree with standard usage.

2. Basic definitions and preliminary results

From now on, let G be a finite group and let p be a prime. We denote the

derived subgroup of a group G by G′. Let M l G mean that M is a maximal

subgroup of G. If M ≤ G, then MG denotes the core of M in G. Let N and K

be normal subgroups of a group G with K ≤ N . Then N/K is called a normal

factor of G. It is clear that every chief factor of a group is a normal factor of the

group. A subgroup H of G is said to cover N/K if HN = HK. On the other

hand, if H ∩N = H ∩K, then H is said to avoid N/K.

Recall that a class of groups F is a formation if F contains all homomorphic

images of groups in F and if, for all normal subgroups M , N of G with G/M and
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G/N in F , we also have G
/
(M ∩N) in F . A formation F is said to be saturated

if G/Φ(G) ∈ F implies that G ∈ F [10, VI, Satz 7.1 and 7.2]. Throughout this

paper U will denote the class of supersolvable groups. Clearly, U is a saturated

formation [10, VI, Satz 8.6].

For convenience, we write CAPs(G) to denote the set of all semi CAP -

subgroups of G.

Lemma 2.1. A subgroup H of a group G is a semi CAP -subgroup of G if

and only if there is a chief series of G such that H covers or avoids every chief

factor of the series.

Proof. It can be seen from [1, Lemma 1] and Definition 1.1. ¤

Lemma 2.2 ([5, Lemma 2.5]). Let H be a subgroup of a group G. If H ∈
CAPs(G), then H ∈ CAPs(K) for every subgroup K of G with H ≤ K.

Lemma 2.3 ([5, Lemma 2.6]). Let N be a normal subgroup of a group G

and let H ∈ CAPs(G). Then HN/N ∈ CAPs(G/N) if one of the following holds:

(1) N ≤ H.

(2) gcd(|H|, |N |) = 1, where gcd(−,−) denotes the greatest common divisor.

Lemma 2.4. Let N/K be a chief factor of a group G. Then:

(1) If a p-group H covers N/K, then N/K is an elementary abelian p-group.

(2) Let P be a Sylow p-subgroup of G and let P1 be a maximal subgroup of P .

If N/K is avoided by P1 and N/K is a p-group, then N/K is of order p.

Proof. (1) If HN = HK, then it follows from |N/K| = |(HK ∩N) : K| =
|(H ∩ N)K : K| = |H ∩ N : H ∩ N ∩ K| = |H ∩ N : H ∩ K| that N/K is an

elementary abelian p-group.

(2) Since P1 avoids N/K, P1K/K ∩ N/K = 1. By hypothesis, N/K is a

p-group, hence P1K/K is a maximal subgroup of PK/K. Therefore N/K is of

order p. ¤

Lemma 2.5. Let N be a normal subgroup of a group G and let P be a

Sylow p-subgroup of G. If every maximal subgroup of P lies in CAPs(NG(P )),

then every maximal subgroup of PN/N lies in CAPs(NG/N (PN/N)).

Proof. Let M/N be a maximal subgroup of PN/N . Then M = N(M ∩P )

and P ∩M is a maximal subgroup of P . Set P1 = P ∩M . By hypothesis, there

exists a chief series

NG(P ) = T0 > T1 > · · · > Tn = 1
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such that P1 covers or avoids Ti/Ti+1, for every i = 0, 1, 2, . . . , n − 1. It is easy

to see that the following series

NG(P )N/N = T0N/N ≥ T1N/N ≥ · · · ≥ Tn−1N/N ≥ 1

is a normal series of NG(P )N/N .

Since NG(P ) is p-solvable, Ti/Ti+1 is a p-group or p′-group. If Ti/Ti+1 is a

p′-group. Obviously, the p-group P1N/N avoids (TiN/N)
/
(Ti+1N/N).

Now suppose that Ti/Ti+1 is a p-group. If Ti/Ti+1 was covered by P1,

obviously (TiN/N)
/
(Ti+1N/N) was covered by P1N/N . If Ti/Ti+1 was avo-

ided by P1, then Ti/Ti+1 is of order p by Lemma 2.4 (2). Hence the order of

(TiN/N)/(Ti+1N/N)=TiN
/
Ti+1N is at most p. Therefore (TiN/N)

/
(Ti+1N/N)

is covered or avoided by P1N/N .

Hence M/N = P1N/N lies in CAPs(NG/N (PN/N)) = CAPs(NG(P )N/N).

This completes the proof of the lemma. ¤

If we replace the hypothesis that P is a Sylow p-subgroup of G in Lemma 2.5

by the hypothesis that P is a Sylow p-subgroup of some normal subgroup of G,

we obtain the following result.

Lemma 2.6. Let H be a normal subgroup of a group G and let P be a

Sylow p-subgroup of H. If N is a normal p′-subgroup of G and every maximal

subgroup of P lies in CAPs(NG(P )), then every maximal subgroup of PN/N lies

in CAPs(NG/N (PN/N)).

Proof. By using similar arguments as in the proof of Lemma 2.5, we only

need to prove either P1TiN = P1Ti+1N or P1N ∩ TiN = P1N ∩ Ti+1N whenever

both P1 and NG(P ) ∩ N avoid Ti/Ti+1, where P1 is a maximal subgroup of P

and Ti/Ti+1 is a chief factor of NG(P ) as in the proof of Lemma 2.5.

Now we consider the index |P1TiN : P1Ti+1N |. On the one hand, we have

|P1TiN : P1Ti+1N | = |Ti/Ti+1| |P1 ∩ Ti+1N : P1 ∩ TiN |. On the other hand,

|P1TiN : P1Ti+1N | = |Ti/Ti+1| |N ∩ P1Ti+1 : N ∩ P1Ti|. Therefore |P1 ∩ TiN :

P1 ∩ Ti+1N | = |N ∩ P1Ti : N ∩ P1Ti+1|. However, |P1 ∩ TiN : P1 ∩ Ti+1N |
is a p-number and |N ∩ P1Ti : N ∩ P1Ti+1| is a p′-number. It follows that

|P1 ∩ TiN : P1 ∩ Ti+1N | = 1. Hence P1 ∩ TiN = P1 ∩ Ti+1N and therefore

P1N ∩ TiN = P1N ∩ Ti+1N , as desired. ¤

Lemma 2.7 ([9, Lemma 2.6]). Let N be a solvable normal subgroup of a

group G with N 6= 1. If every minimal normal subgroup of G which is contained

in N is not contained in Φ(G), then the Fitting subgroup F (N) of N is the direct

product of minimal normal subgroups of G which are contained in N .
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3. Main results

In this section, we study the structure of a group G when some subgroups

are semi CAP -subgroups of a local subgroup of G. Our first result is about

p-nilpotency.

Theorem 3.1. Let p be the smallest prime dividing the order of a group G

and let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every

maximal subgroup of P lies in CAPs(NG(P )) and P ′ ∈ CAPs(G).

Remark 3.1. The hypothesis that P ′ ∈ CAPs(G) in Theorem 3.1 is essential.

In fact, Let G = PSL(2, 7) and P a Sylow 2-subgroup of G. Since P = NG(P ),

every maximal subgroup of P lies in CAPs(NG(P )), but G is not 2-nilpotent.

Even if G is a solvable group and p is an odd prime, the hypothesis that

P ′ ∈ CAPs(G) in Theorem 3.1 is also essential. For example, letH = C3×C3×C3

be an elementary abelian group of order 33. Then there is a subgroup C13 o C3

in the automorphism group of H, where C13 o C3 is a semidirect product. Let

G = (C3 × C3 × C3) o (C13 o C3) be the corresponding semidirect product and

P ∈ Syl3(G). Clearly, P = NG(P ). It follows that every maximal subgroup of P

lies in CAPs(NG(P )), but G is not 3-nilpotent.

Furthermore we can not remove the hypothesis that p is the smallest prime

dividing the order of a group G in Theorem 3.1. In fact, let P be a Sylow 3-

subgroup of A5, the alternating group of degree 5. Then every maximal subgroup

of P lies in CAPs(NG(P )) and P ′ ∈ CAPs(G), but A5 is not 3-nilpotent.

Proof of Theorem 3.1. Since every p-subgroup of a p-supersolvable group

G is a semi CAP -subgroup of G, we only need to prove the sufficiency. Suppose

that the theorem is not true and let G be a counterexample with smallest order.

Then:

(1) Op′(G) = 1.

Otherwise, Op′(G) 6= 1. Since (POp′(G)/Op′(G))′ = P ′Op′(G)/Op′(G),

(POp′(G)/Op′(G))′ lies in CAPs(G/Op′(G)) by Lemma 2.3. Furthermore, every

maximal subgroup of POp′(G)/Op′(G) lies in CAPs(NG/Op′ (G)(POp′(G)/Op′(G)))

by Lemma 2.5. We can see that G/Op′(G) satisfies the hypothesis of our the-

orem. Thus, by the minimality of G, G/Op′(G) is p-nilpotent and therefore G is

p-nilpotent, a contradiction.

(2) If H is a proper subgroup of G with P ≤ H, then H is p-nilpotent. In

particular, NG(P ) is p-nilpotent.

It is clear that NH(P ) ≤ NG(P ), and hence every maximal subgroup of P lies

in CAPs(NH(P )) and P ′ ∈ CAPs(H) by Lemma 2.2. It follows that H satisfies
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the hypothesis of our theorem. Now, by the minimality of G, H is p-nilpotent. If

NG(P ) = G, then G is p-nilpotent by [5, Theorem 3.2] or [11, Theorem 3.1]. So

NG(P ) < G and NG(P ) is p-nilpotent.

(3) Op(G) 6= 1 and there exists a minimal normal subgroup N of G such that

G/N is p-nilpotent and G is p-solvable.

In fact, if P ′ = 1, then NG(P ) = CG(P ) since NG(P ) is p-nilpotent, so G

is p-nilpotent by Burnside’s Theorem [8, Theorem 7.2.1], a contradiction. Thus

P ′ 6= 1. By the hypothesis, there exists a chief series

G = G0 > G1 > · · · > N > Gn = 1 (∗)

of G such that P ′ covers or avoids Gi/Gi+1, where 1 ≤ i ≤ n − 1. If P ′ covers
N/1, then N ≤ P ′, whence N ≤ Op(G). So we may assume that P ′ avoids N/1.

Then P ′ ∩N = P ′ ∩ 1 = 1. Thus (P ∩N)′ ≤ P ′ ∩N = 1, hence P ∩N is abelian.

If NG(P ∩ N) = G, then P ∩ N is normal in G. The minimal normality of N

means that N ≤ P and therefore N ≤ Op(G), as desired. Hence we may assume

that NG(P ∩ N) is a proper subgroup of G. Since P ≤ NG(P ∩ N), we have

that NG(P ∩N) is p-nilpotent by (2) and so NN (P ∩N) is p-nilpotent. It follows

that NN (N ∩ P ) = CN (N ∩ P ). Now Burnside’s Theorem [8, Theorem 7.2.1]

implies that N is p-nilpotent and therefore the minimal normality of N means

that N ≤ Op(G).

According to (∗), we can see that the following series

G/N = G0/N > G1/N > · · · > 1

is a chief series of G/N . By our hypothesis, P ′ covers or avoids Gi/Gi+1, where

0 ≤ i ≤ n − 1. If P ′ covers Gi/Gi+1, then P ′N/N covers Gi/N
/
Gi+1/N .

If P ′ avoids Gi/Gi+1, then P ′N/N avoids Gi/N
/
Gi+1/N . This means that

P ′N/N lies in CAPs(G/N). Moreover, every maximal subgroup of PN/N lies

in CAPs(NG/N (PN/N)) by Lemma 2.5. Hence G/N satisfies the hypothesis of

the theorem, the minimality of G implies that G/N is p-nilpotent. Therefore G

is p-solvable, as desired.

(4) There exists a Sylow q-subgroup Q of G with q 6= p such that G = PQ.

Since G is p-solvable, there exits a Sylow q-subgroup Q of G such that PQ =

QP for any prime q 6= p by [4, Theorem 6.3.5]. If PQ < G, then PQ is p-

nilpotent by (2). It follows that Q ≤ CG(Op(G)) ≤ Op(G) by [13, Theorem 9.3.1],

a contradiction.

(5) NG(P ) = P is a maximal subgroup of G.
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Let M be a maximal subgroup of G with NG(P ) ≤ M . By (2) M is p-

nilpotent and therefore Op′(M) ≤ CG(Op(G)) ≤ Op(G). So NG(P ) = P is a

maximal subgroup of G.

(6) QN/N is a minimal normal subgroup of G/N and Q is an elementary

abelian group.

Let K/N be a minimal normal subgroup of G/N contained in QN/N . It

follows from (5) that PK = G and therefore claim (6) is true.

(7) P ′ ∩N = 1 and N ≤ Z(P ).

Since P ′ covers or avoids N/1, N ≤ P ′ or N ∩ P ′ = 1. If N ≤ P ′, then
P ∩ NQ = N ≤ P ′ ≤ Φ(P ). Thus NQ is p-nilpotent by a famous theorem of

Tate [15] and therefore G is p-nilpotent, in contradiction to the choice of G. Thus

N ∩ P ′ = 1. It follows from [P,N ] ≤ [P, P ] = P ′ that [P,N ] ≤ P ′ ∩ N = 1, as

desired.

(8) Q is cyclic of order q and has no fixed points on N .

In fact, if there exists a non-trivial element x in N and a non-trivial element

y in Q such that [x, y] = 1, then 〈P, y〉 ≤ CG(x). Since P is a maximal subgroup

of G, x ∈ Z(G) and hence N = 〈x〉. In this case, NQ = N × Q, hence Q is a

normal p-complement in G, a contradiction. So Q has no fixed points on N . It

follows from Theorem 8.3.2 in [8] that Q is a cyclic group of order q and the claim

(8) is true.

(9) Final contradiction.

Let a ∈ N and let b ∈ Q be such that Q = 〈b〉. Since NQ is normal in G,

G = NNG(Q) by the Frattini argument. As N is an elementary abelian subgroup

of G, we see that N ∩NG(Q) is normal in G. It follows that N ∩NG(Q) = 1 or

N . If the latter is true, then Q is a normal p-complement in G, a contradiction.

Hence N ∩NG(Q) = 1. Let P1 ∈ Sylp(NG(Q)) such that P1 ≤ P and let g ∈ P1.

By (7), we have N ≤ Z(P ) and hence P1 ≤ CG(N). As CG(N) is normal

in G and P1 normalizes Q, it follows that [P1, Q] ≤ CG(N) ∩ Q = 1, by (8).

Therefore P1 ≤ CG(Q), and Q is abelian by (8). Together with (4) we deduce

that NG(Q) = P1Q = CG(Q) and hence Burnside’s Theorem [8, Theorem 7.2.1]

implies that G = NG(P ). This final contradiction completes our proof. ¤

As an immediate consequence of Theorem 3.1, we have:

Theorem 3.2. Let p be the smallest prime of the order of a group G and

let H a normal subgroup of G such that G/H is p-nilpotent. Let P ∈ Sylp(H)

and suppose that every maximal subgroup of P lies in CAPs(NG(P )) and that

P ′ ∈ CAPs(G). Then G is p-nilpotent.
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Proof. We argue by induction on the order of G. By Lemma 2.2, every

maximal subgroup of P lies in CAPs(NH(P )), and P ′ ∈ CAPs(H). By Theo-

rem 3.1, H is p-nilpotent. Let K be a normal p-complement in H. Then K is

normal in G and (G/K)
/
(H/K) ∼= G/H is p-nilpotent. In view of Lemma 2.3

and 2.6, we conclude that G/K satisfies the hypothesis of the theorem for its

normal subgroup H/K.

If K 6= 1, then G/K is p-nilpotent by induction and so G is p-nilpotent.

Hence we may assume that K = 1 and therefore H = P is a p-group. For any

prime q dividing the order of G with p 6= q and Q ∈ Sylq(G), it is clear that PQ

satisfies the hypothesis of Theorem 3.1 and therefore PQ = P ×Q. Let S/H be

a normal p-complement in G/H. The above arguments imply that S = H × S1

where S1 is a Hall p′-subgroup of S. Hence S1 is a normal p-complement in G.

This completes the proof. ¤
Corollary 3.1. For every Sylow subgroup P of a group G, suppose that

every maximal subgroup of P lies in CAPs(NG(P )) and that P ′ ∈ CAPs(G).

Then G is a Sylow tower group of supersolvable type.

We can now prove:

Theorem 3.3. Let F be a saturated formation containing the class of all

supersolvable groups U and let H be a normal subgroup of a group G such that

G/H ∈ F . Suppose that, for all primes p dividing the order of H and for all

P ∈ Sylp(H), every maximal subgroup of P lies in CAPs(NG(P )) and suppose

that P ′ ∈ CAPs(G). Then G ∈ F .

Proof. Suppose that the theorem is false and let G be a counterexample

with smallest order.

Case 1: H is a p-group for some prime p.

If Φ(H) 6= 1, then, since Φ(H) E G and G/Φ(H)
/
H/Φ(H) ∼= G/H, we

see that G/Φ(H) satisfies the hypothesis of our theorem by Lemma 2.3. Thus

G/Φ(H) ∈ F by the minimal choice of G, it follows that G/Φ(G) belongs to F
and so does G, a contradiction. Hence Φ(H) = 1.

Let N be a minimal normal subgroup of G contained in H. G/N satisfies

the hypothesis of the theorem and the minimality of G implies that G/N ∈ F .

Noticing that N � Φ(G) and with Lemma 2.7 in mind, we may assume that

H = N1 ×N2 × · · · ×Ns

where N1, . . . , Ns are all the minimal normal subgroups of G. By the above

argument, G/Ni ∈ F for all i ∈ {1, . . . , s}. If s > 1, then

G ∼= G
/
(N1 ∩N2) ∈ F .



On local semi CAP -subgroups of finite groups 127

Hence H = N1 is a minimal normal subgroup of G.

Let P1 be a maximal subgroup of H. Since H is itself a p-group, by the

hypothesis, there exists a chief series of G = NG(H)

G = G0 > G1 > · · · > Gn−1 > Gn = 1

such that P1 covers or avoids Gj/Gj+1 for j = 0, 1, . . . , n− 1. Since H ≤ G0 and

H � GnP1, there exists an integer i such that H ≤ GiP1, but H � Gi+1P1, where

1 ≤ i ≤ n − 1. Noticing that P1 covers or avoids Gi/Gi+1 and GiP1 6= Gi+1P1,

we have P1 ∩Gi = P1 ∩Gi+1. Since H = H ∩GiP1 = (H ∩Gi)P1 and H ∩Gi is

a normal subgroup of G, H ∩Gi = H by the minimal normality of H. It follows

that P1 ∩ Gi+1 = P1 ∩ Gi = P1. On the other hand, H � Gi+1P1 implies that

H ∩Gi+1 < H. Hence H ∩Gi+1 = P1. The minimality of H implies that P1 = 1.

It follows that H is a cyclic group of order p and hence G ∈ F , a contradiction.

Case 2: H is not of prime power order.

In view of Corollary 3.1 and Lemma 2.2, H is a Sylow tower group of supers-

olvable type. Let r be the largest prime dividing the order of H and let R be a

Sylow r-subgroup of H. Then R is normal in G and G/R
/
H/R ∼= G/H ∈ F . By

Lemma 2.3 and 2.6, we can see that G/R satisfies the hypothesis of the theorem

for its normal subgroup H/R. By the minimality of G, G/R ∈ F . It follows from

the first case that G ∈ F . The proof of the theorem is now complete. ¤

Finally we study the solvability of some normal subgroup of G by looking at

certain maximal subgroups, leading to generalizations of known results.

Let H be a normal subgroup of a group G. We define the following families

of subgroups:

M(G) = {M | M lG}
Mpc(G) = {M | M ∈ M(G), |G : M |p = 1 and |G : M | is composite}
Mpcn(G) = {M | M ∈ M(G), NG(P ) ≤ M for a Sylow p-subgroup P of G,

M is non-nilpotent and |G : M | is composite}
MH(G) = {M | M ∈ M(G) and H �M}

Theorem 3.4. Let H be a normal subgroup of a group G and let p be the

largest prime dividing the order of G. If every member of Mpc(G)∩MH(G) lies

in CAPs(G), then H is solvable.

Proof. Suppose that Mpc(G) ∩ MH(G) = ∅, then we claim that H is

solvable. In fact, if Mpc(G) = ∅, by [12, Theorem 8], G is solvable and so is H.
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If Mpc(G) 6= ∅, then H is contained in every member of Mpc(G). Applying [12,

Theorem 8] again, H is solvable. Now we may assume thatMpc(G)∩MH(G) 6= ∅.
Let N be a minimal normal subgroup of G, and let M/N be a maximal

subgroup of G/N with M/N ∈ Mpc(G/N) ∩ MH(G/N), where MH(G/N) =

{M/N | M/N ∈ M(G/N) and HN/N �M/N}. Then M ∈ Mpc(G) ∩MH(G).

Furthermore, M/N lies in CAPs(G/N) by Lemma 2.3. It is clear that G/N

satisfies the hypothesis of the theorem for the normal subgroup HN/N and so

HN/N is solvable by induction. If N � H, then H ∼= HN/N is solvable, as

desired. Suppose that N ≤ H. If G has two minimal normal subgroups N1 and

N2, then both H/N1 and H/N2 are solvable and so is H
/
(N1 ∩N2). This implies

that the group H is solvable. Hence we may assume that G has a unique minimal

normal subgroup N .

Suppose that N is non-solvable. Let q be the largest prime dividing the

order of N and Q a Sylow q-subgroup of N . If NG(Q) = G, then Q is normal

in G. The minimality of N means that N = Q, contradicting the fact N is

non-solvable. Then G = NG(Q)N by the Frattini argument. So there exists a

maximal subgroup M of G which contains NG(Q), but N � M . By hypothesis,

p ≥ q. If p > q, it is clear that |G : M |p = |N : M ∩ N |p=1. If p = q, then

NG(Q) contains a Sylow p-subgroup of G. Thus we conclude that |G : M |p = 1 in

these two cases. Furthermore, we can see that |G : M |q = 1 because NG(Q) ≤ M

contains a Sylow q-subgroup of G. If |G : M | = r for some prime r, then, since

MG = 1, we have that G is isomorphic to a subgroup of the symmetric group Sr

of degree r. This implies that |G| | r! and so |N | | r!, in contradiction to that q is

the largest prime in π(N). Hence we conclude that M ∈ Mpc(G) ∩MH(G). By

the hypothesis, M ∈ CAPs(G) and so MN = M or M ∩N = 1. However, neither

of this is possible because NG(Q) is contained in M and N �M , a contradiction.

This shows that N is solvable and therefore H is solvable. ¤

From Theorems 3.4, we have the following corollary:

Corollary 3.2. Let p be the largest prime dividing the order of a group G.

If every member of Mpc(G) lies in CAPs(G), then G is solvable.

Proof. Let G = H in Theorem 3.4. Then we have the corollary. ¤

Remark 3.2. In Theorem 3.4 the group G may not be necessarily solvable.

For example:

Let K, H be the alternating group of degree 5 and 4, respectively and let

G = K×H. Suppose thatM = K×C3, where C3 is a cyclic group of order 3 ofH.

Then M is a maximal subgroup of G. It is clear that H � M and |G : M | = 4.
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Thus M ∈ Mpc(G) ∩ MH(G) and we can also see that Mpc(G) ∩ MH(G) =

{Mg | g ∈ G}. Furthermore, it is easy to see that the following series

G > K ×K4 > K > 1

is a chief series of G and thatMg avoids (K4×K)/K and covers the rest, whereK4

is the Klein four group contained in H. That is, Mg ∈ CAPs(G). This shows that

G satisfies the hypothesis of Theorem 3.4 for the normal subgroup H. However,

G is not solvable.

Theorem 3.5. Let H be a normal subgroup of a group G and let p be the

largest prime dividing the order of G. If every member of Mpcn(G)∩MH(G) lies

in CAPs(G), then H is p-solvable.

Proof. If Mpcn(G) ∩ MH(G) = ∅, then we can see that H is p-solvable

by [6, Lemma 2.4]. Now, we may assume that Mpcn(G) ∩ MH(G) 6= ∅. Let

P ∈ Sylp(G). If P is normal in G, then G is certainly p-solvable and so is H. So

we may assume that NG(P ) < G.

Let N be a minimal normal subgroup of G. It is clear that G/N satisfies the

hypothesis of the theorem for the normal subgroup HN/N and so HN/N is p-

solvable by induction. By a routine argument, we can assume that N is contained

in H and N is the unique minimal normal subgroup of G.

Suppose that N is not p-solvable. Then p is a divisor of the order of N . We

know that N ∩ P ∈ Sylp(N) and P ∩ N is not normal in G. With a Frattini

argument, we have that G = NG(P ∩N)N . So there exists a maximal subgroup

M of G which contains NG(P ∩ N) and M � N . It is clear that NG(P ) ≤ M .

If |G : M | = q is a prime, then, using the permutation representation of G on

S = {Mg | g ∈ G}, we see that G is isomorphic to a subgroup of the symmetric

group Sq of degree q. This implies that |G| | q! and so |N | | q!. This contradicts

p being the largest prime which divides the order of N . Hence |G : M | must be a

composite number. If M is nilpotent, then M has non-trivial Sylow 2-subgroups

by [13, Theorem 10.4.2]. LetM2′ be a Hall 2′-subgroup of M . By [14, Theorem 1],

M2′ is normal in G and therefore P E G since P is a characteristic subgroup of

M2′ . It follows that P ∩N EG, a contradiction. Thus, M ∈ Mpcn(G)∩MH(G).

By the hypothesis, M ∈ CAPs(G) and so MN = M or M ∩ N = 1. However,

these two situations are impossible. This shows that N is p-solvable and therefore

H is p-solvable. The proof of the theorem is now complete. ¤

Corollary 3.3 ([6, Theorem 3.8]). Let G be a group and let p be the largest

prime dividing the order of G. If every member ofMpcn(G) has the cover-avoiding

property in G, then G is p-solvable.
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In Theorem 3.5, the group G need not be p-solvable as the following example

shows.

Example 3.1. Let H = C2 × C2 × C2 × C2 be an elementary abelian group

of order 24. Then there is a subgroup M = A5 in the automorphism group of H,

where A5 is the alternating group of degree 5. Let G = (C2×C2×C2×C2)oA5 be

the corresponding semidirect product. We can deduce that Mpcn(G)∩MH(G) =

{Mg | g ∈ G}. Furthermore, there exists a chief series

G > H > 1

such that Mg covers G/H and avoids H/1. Thus, Mg ∈ CAPs(G). That is, G

satisfies the hypothesis of Theorem 3.5 with the normal subgroup H. However,

G is not 5-solvable.
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