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Diffeomorphic theorems for open Riemannian manifolds
with curvature decay

By CHUANXI WU (Wuhan), ZHIQI XIE (Wuhan) and GUANGHAN LI(Wuhan)

Abstract. In this paper, we study the topology of complete non-compact Rie-

mannian manifolds with curvature decay to a non-positive constant. We show that such

a complete open manifold M is diffeomorphic to a Euclidean n-space Rn if it contains

enough rays starting from the base point. As applications, we also show that this kind

of manifolds with Ricci curvature bounded from below by a non-positive constant are

diffeomorphic to Rn if the volumes of geodesic balls in M grow properly. Our results

generalize the main theorems of Wang–Xia for manifolds with quadratic curvature decay

to zero.

1. Introduction

Let (M, g) be a complete non-compact n(≥ 2)-dimensional Riemannian ma-

nifold. For a fixed point p ∈ M and any r > 0, denote by B(p, r) the open geodesic

ball around p with radius r in M , and S(p, r) the corresponding geodesic sphere.

Denote by KM the sectional curvature of M , and let

kp(r) = inf
M\B(p,r)

KM ,

where the infimum is taken over all the sections at all points on M\B(p, r). It

is easy to see that we can choose kp(r) to be a non-positive monotone increasing

function of r.
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In this paper, we consider complete open Riemannian manifolds with cur-

vature decay to a non-positive constant, that is to say, there exists a positive

monotone decreasing function K(r) with limr→∞ K(r) ≥ 0 satisfying

kp(r) ≥ −(K(r))2, for all r > 0.

Let Rp denote the (point set) union of rays issuing from p. One can show

that Rp is a closed subset of M . Define a function hp on M by

hp(x) = d(x,Rp),

where d is the distance function on M . We set for r > 0 (cf. [8], [17], [21])

H(p, r) = max
x∈S(p,r)

d(x,Rp). (1.1)

By definition, we always have

H(p, r) ≤ max
x∈S(p,r)

d(x, p) = r, for all r > 0.

If M is a complete simply connected Riemannian manifold with non-positive

sectional curvature, then H(p, x) ≡ 0. This follows from the fact that any point

in M lies in some ray starting from p.

For a constant c ≥ 0, we denote by Mn(−c) an n-dimensional complete

simply connected Riemannian manifold of constant curvature −c. If the Ricci

curvature of M satisfies RicM ≥ −(n− 1)c, the relative volume comparison the-

orem [4] tells us that the function r → vol[B(p,r)]
αn(r,−c) is monotone decreasing, where

vol[B(p, r)] is the volume of B(p, r) and αn(r,−c) the volume of a geodesic ball

of radius r in Mn(−c). It is well known that

αn(r,−c) = ωn−1

∫ r

0

fn−1
−c (t)dt,

where

f−c(t) =





t, c = 0,

sinh(
√
ct)√

c
, c > 0,

(1.2)

and ωm is the volume of Sm(1).

For any p ∈ M , we set

v−c(p) = lim
r→∞

vol[B(p, r)]

αn(r,−c)
,
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and define

v−c = inf
p∈M

v−c(p). (1.3)

One always has

vol[B(p, r)]

αn(r,−c)
≥ v−c(p) ≥ v−c, ∀r > 0, ∀p ∈ M.

Abresch [1] proved that if
∫∞
0

rkp(r)dr > −∞, then M is of finite topologi-

cal type. Xia [21] proved that if M is an n-dimensional complete open Riemann-

ian manifold with nonnegative sectional curvature in which there exists a p ∈ M

such that H(p, r) < r, for all r > 0, then M is diffeomorphic to Rn. Wang–Xia

[19] proved that there exists a constant ε = ε(n) > 0 such that an n-dimensional

open manifold with quadratic curvature decay to zero and H(p, r) < εr for all

r > 0 is diffeomorphic to Rn. For recent progress on manifolds with quadratic

curvature decay, we refer to the paper of Yeganefar [24] for more details.

In this paper, we first obtain the following pinching theorem, which genera-

lizes the result of Wang–Xia in [19]

Theorem 1.1. Given a positive monotone decreasing function K(r), there

are positive constants ε, δ ∈ (0, 1) with ε + δ < 1, such that any n-dimensional

complete open manifold M satisfying

kp(r) ≥ −(K(r))2,

and

H(p, r) < εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
, (1.4)

for some p ∈ M and all r > 0 is diffeomorphic to Rn.

Our second theorem is on a Riemannian manifold with large volume growth,

i.e. v−c > 0. There have many articles studying complete noncompact Riemann-

ian manifold with large volume growth (cf. [3], [7], [8], [11], [12], [14]–[23]). If M

has nonnegative Ricci curvature, it has been proven by Li [12] and Anderson

[3] that π1(M) is finite. Perelman [15] has shown that there is a small constant

ε(n) > 0 depending only on n such that if v0 > 1− ε(n), then M is contractible,

and Cheeger–Colding [7] showed that the manifold in Perelman’s theorem is

actually diffeomorphic to Rn. Shen [17] has shown that M has finite topological

type, provided that vol[B(p,r)]
ωnrn

= v0 + o( 1
rn−1 ) and, either the conjugate radius
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conjM ≥ c > 0 or the sectional curvature KM ≥ K0 > −∞. Sha–Shen [16]

proved that these manifolds have finite topological type if in addition the mani-

folds have quadratic curvature decay to zero. One can find some other topological

uniqueness theorems about M , e.g. in [8], [14], [22].

Given a point p ∈ M , we denote by critp the criticality radius of M at p,

i.e., critp is the smallest critical value for the distance function d(p, .) : M → R.
Recall that q is not a critical point of this distance function iff there exists a

vector v ∈ SqM such that for all minimizing geodesics σ from σ(0) = q to p, we

have ∠(v, σ′(0)) > π
2 (cf. [6, 9]). In view of Theorem 1.1, we have the following

topological rigidity theorem for manifolds with Ricci curvature bounded from

below by a non-positive constant and large volume growth.

Theorem 1.2. Given a positive monotone decreasing function K(r), there

are positive constants ε, δ ∈ (0, 1) with ε + δ < 1, such that any n-dimensional

complete open manifold M with RicM ≥ −(n− 1)c (c ≥ 0), v−c > 0,

kp(r) ≥ −(K(r))2,

and
vol[B(p, r)]

αn(r,−c)
<

{
1 +

∫ A

0
fn−1
−c (t)dt∫ 2r

0
fn−1
−c (t)dt

}
v−c, (1.5)

for some p ∈ M and all r > 0 is diffeomorphic to Rn, where

A = εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
.

Especially, if M is of nonnegative Ricci curvature, we have

Theorem 1.3. Given a positive monotone decreasing function K(r), there

are positive constants ε, δ ∈ (0, 1) with ε + δ < 1, such that any n-dimensional

complete open manifold M with RicM ≥ 0, v0 > 0,

kp(r) ≥ −(K(r))2,

and

vol[B(p, r)]

ωnrn
<

{
1 + 22−3nr1−n

[
εr − 1

2K(δr)
ln

(
cosh2(K(δr)εr)

+

√
cosh4(K(δr)εr)− 1

)]n−1
}
v0, (1.6)

for some p ∈ M and all r > 0 is diffeomorphic to Rn.
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Remark 1.4. (i) If the curvature of M is quadratic decay to zero, i.e., there

exists a constant C > 0 such that K(r)r ≤ C for all r > 0, then we can choose ε

in Theorem 1.1 small enough so that (1.4) becomes

H(p, r) < ε̃r,

for some ε̃ ∈ (0, 1) depending on ε, δ and C. Then by Theorem 1.1, M is diffeo-

morphic to Rn, and this recovers Wang–Xia’s result in [19].

(ii) If the function K(r) = Cr−β for C > 0, β ∈ [0, 1] and the Ricci curvature

of M is nonnegative, (1.6) can be written in an explicit form, therefore we again

obtain a Wang–Xia’s type theorem in [19].

2. Preliminaries

Let (M, g) be a complete non-compact n-dimensional Riemannian manifold.

For a fixed point p ∈ M . We say that Kmin
p ≥ c if for any minimal geodesic γ

issuing from p all sectional curvatures of planes which are tangent to γ are greater

than or equal to c. For p, q ∈ M , the excess function epq(x) is defined by

epq(x) = d(p, x) + d(q, x)− d(p, q).

We denote by M2(c) the complete simply connected surface of constant cur-

vature c. Throughout this paper, all geodesics are assumed to have unit speed. In

[13], Machigashira proved the following Toponogov-type comparison theorem

for complete manifolds with Kmin
p ≥ c.

Lemma 2.1. Let M be a complete n-manifold and p be a point of M with

Kmin
p ≥ c. Let γi : [0, li] → M , i = 0, 1, 2 be minimal geodesics with γ1(0) =

γ2(l2) = p, γ0(0) = γ1(l1) and γ0(l0) = γ2(0). Then there exist minimal geodesics

γ̃i : [0, li] → M2(c), i = 0, 1, 2 with γ̃1(0) = γ̃2(l2), γ̃0(0) = γ̃1(l1) and γ̃0(l0) =

γ̃2(0) which are such that

L(γi) = L(γ̃i) for i = 0, 1, 2,

and

∠(−γ′
1(l1), γ

′
0(0)) ≥ ∠(−γ̃′

1(l1), γ̃
′
0(0)),

∠(−γ′
0(l0), γ

′
2(0)) ≥ ∠(−γ̃′

0(l1), γ̃
′
2(0)).
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Lemma 2.2 ([22]). Let M be a complete n-manifold with RicM ≥ 0 and

v0 > 0. Then for any r > 0 and any x ∈ S(p, r), we have

d(x,Rp) ≤ 2v
− 1

n
0

{
vol[B(p, r)]

ωnrn
− v0

} 1
n

r.

Lemma 2.3 ([2]). Let (M, g) be a complete n-manifold with RicM ≥ 0. Let

γ : [0, a] → M be a minimal geodesic from p to q. Then for any x ∈ M

epq(x) ≤ 8

(
sn

r

) 1
n−1

,

where s = d(x, γ) and r = min(d(p, x), d(q, x)).

Let Σ be a closed subset of the unit tangent sphere SpM of M at p. Denote

by BΣ(p, r) the set of points x ∈ B(p, r) such that there is a minimizing geodesic

γ from p to x with γ′(0) ∈ Σ. For 0 < r ≤ ∞, let Σp(r) denote the set of unit

vectors v ∈ Σ such that the geodesic γ(t) = expp(tv) is minimizing on [0, r).

Notice that

Σp(r2) ⊂ Σp(r1), for 0 < r1 < r2; Σp(∞) =
⋂
r>0

Σp(r).

The standard argument [4, 5] gives the following generalized Bishop’s comparison

theorem.

Lemma 2.4 ([22]). Let (M, g) be a complete n-manifold with RicM ≥ 0 and

v0 > 0. Then
vol[BΣp(∞)(p, r)]

αn(r, 0)
≥ v0.

Lemma 2.5 ([23]). Let (M, g) be a complete n-manifold with RicM ≥
−(n− 1) and v−1 > 0. Then

vol[BΣp(∞)(p, r)]

αn(r,−1)
≥ v−1.

It is not difficult to check that Lemma 2.5 also holds for RicM ≥ −(n− 1)c

(c > 0). We then have the following corollary.

Corollary 2.6. Let (M, g) be a complete n-manifold with RicM ≥ −(n−1)c,

c ≥ 0 and v−c > 0. Then for any p ∈ M and any r > 0, we have

∫ H(p,r)

0

fn−1
−c (t)dt ≤ v−1

−c

∫ 2r

0

fn−1
−c (t)dt

{
vol[B(p, r)]

αn(r,−c)
− v−c

}
,

where f−c(t) is defined in (1.2), and v−c is defined in (1.3).
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Proof. Fix an point x ∈ S(p, r), and set s = d(x,Rp), then s ≤ r and

B(p, r)
⋃

BΣp(∞)(p, 2r) ⊂ B(p, 2r).

The left hand side is a disjoint union. We have

vol[B(p, r)] ≥ v−c{αn(s,−c)}.

From Lemma 2.4 and 2.5, one obtains

vol[B(p, 2r)] ≥ vol[B(x, s)] + vol[BΣp(∞)(p, 2r)]

≥ v−cαn(s,−c) + v−cαn(2r,−c).

By Bishop’s comparison theorem, we have

vol[B(p, 2r)]

αn(2r,−c)
≤ vol[B(p, r)]

αn(r,−c)
.

We then obtain

∫ H(p,r)

0

fn−1
−c (t)dt ≤ v−1

−c

∫ 2r

0

fn−1
−c (t)dt

{
vol[B(p, r)]

αn(r,−c)
− v−c

}
. ¤

3. Proofs of Theorems

Proof of theorem 1.1. We shall prove that M contains no critical points

of the distance function d(p, ·) other than p, and therefore it is diffeomorphic to

Rn (cf. [9], Disk Theorem). We refer to [6], [9], [10] for the notion of critical

points of the distance functions and their applications.

For any ε, δ ∈ (0, 1) with ε+ δ < 1 and any r > 0, we see

cosh(2K(δr)εr)− cosh2(K(δr)εr) = cosh2(K(δr)εr)− 1 > 0. (3.1)

By definition, cosh(2K(δr)εr) = 1
2 (e

2K(δr)εr + e−2K(δr)εr), we have from (3.1)

(e2K(δr)εr)2 − 2 cosh2(K(δr)εr)e2K(δr)εr + 1 > 0,

which implies

εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
> 0. (3.2)
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Take an arbitrary point x( 6= p) ∈ M and set r = d(p, x). By (1.1), H(p, r)

must be nonnegative. By (3.2), we see that our condition (1.4) is reasonable, and

this enables us to find a ray γ : [0,+∞) → M such that

s = d(x, γ) < εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
. (3.3)

Fix a minimizing geodesic σ from x to q = γ(2r). For any minimal geodesic

σ1 from x to p, let p̃ = σ1(εr) and q̃ = σ(εr). The choice of ε and δ indicates that

σ|[0,εr] and σ1|[0,εr] are disjoint with B(p, δr). Moreover, the sectional curvature

of M satisfies KM ≥ −(K(δr))2 on M \B(p, δr). Applying the Toponogov com-

parison theorem Lemma 2.1 to the hinge (σ|[0,εr], σ1|[0,εr]) in M \ B(p, δr), we

have

cos θ sinh2(K(δr)εr) ≤ cosh2(K(δr)εr)− cosh(K(δr)d(p̃, q̃)), (3.4)

where θ = ∠(σ′(0), σ′
1(0)) is the angle of σ and σ1 at x.

Let m ∈ γ be such that d(x,m) = d(x, γ), then m ∈ γ(0, 2r). It follows from

the triangle inequality that

d(p̃, q̃) ≥ d(p, q)− d(p, p̃)− d(q, q̃)

= d(p,m) + d(q,m)− [d(p, x)− d(p̃, x)]− [d(x, q)− d(x, q̃)]

= 2εr + [d(p,m)− d(p, x)] + [d(q,m)− d(q, x)] ≥ 2εr − 2d(x,m).

Introducing (3.3) into the above inequality we see that

d(p̃, q̃) >
1

K(δr)
ln

{
cosh2(Kεr) +

√
cosh4(Kεr)− 1

}
. (3.5)

This implies that

cosh2(K(δr)εr)− cosh(K(δr)d(p̃, q̃)) < 0. (3.6)

From (3.4) and (3.6), we obtain

cos θ sinh2(K(δr)εr) ≤ cosh2(K(δr)εr)− cosh(K(δr)d(p̃, q̃)) < 0.

Thus

θ >
π

2
.

Therefore any minimizing geodesic σ1, from x to p has ∠(σ′
1(0), σ

′(0)) > π
2 ,

which implies that x is not a critical point of d(p, ·). Theorem 1.1 follows. ¤
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Proof of theorem 1.2. We take the constants ε and δ in Theorem 1.2

to be the same as in Theorem 1.1. Therefore in order to prove Theorem 1.2, it

suffices to show that

H(p, r) < εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
.

Since RicM ≥ −(n− 1)c, where c ≥ 0, we have by Corollary 2.6

∫ H(p,r)

0

fn−1
−c (t)dt ≤ v−1

−c

∫ 2r

0

fn−1
−c (t)dt

{
vol[B(p, r)]

αn(r,−c)
− v−c

}
.

Substituting the assumption (1.5) into the above inequality, we have

∫ H(p,r)

0

fn−1
−c (t)dt <

∫ A

0

fn−1
−c (t)dt.

Thus

H(p, r) < εr − 1

2K(δr)
ln

{
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

}
.

This completes the proof of Theorem 1.2. ¤

Before proving Theorem 1.3, we need the following lemma.

Lemma 3.1. Given a positive monotone decreasing function K(r), there

are positive constants ε, δ ∈ (0, 1) with ε + δ < 1, such that any n-dimensional

complete open manifold M with RicM ≥ 0,

kp(r) ≥ −(K(r))2,

and

H(p, r)] < r
1
n

[
1

4
εr − 1

8K(δr)
ln

(
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

)]n−1

,

for some p ∈ M and all r > 0 is diffeomorphic to Rn.

Proof. We take the constants ε and δ as same in Theorem 1.1. Fix any

point q ∈ M and set r = d(p, q). We only need to show that q is not a critical

point of d(p, ·).
Take a point m ∈ Rp so that d(q,m) = d(q,Rp). Set s = d(q,m). It then

follows from the assumption of Lemma 3.1 that

s < r
1
n

[
1

4
εr − 1

8K(δr)
ln

(
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

)]n−1

.

(3.7)
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Take a ray γ : [0,+∞) → M starting from p and passing through m. It

follows from the triangle inequality that min(d(p, q), d(γ(t), q)) = r for all t ≥ 2r.

Thus m ∈ γ(0, 2r)) and so d(q, γ|[0,2r]) = s. By Lemma 2.3 and (3.7) we have

ep,γ(2r)(q) < 2εr − 1

K(δr)
ln

(
cosh2(K(δr)εr) +

√
cosh4(K(δr)εr)− 1

)
. (3.8)

Set z = γ(2r) and take a minimal geodesic σ̃ from q to z. For any minimal

geodesic σ̃1 from q to p, let p′ = σ̃1(εr) and z′ = σ̃(εr), and set θ̃ = ∠(σ̃′(0), σ̃′
1(0)).

Since KM ≥ −(K(δr))2 on M \B(p, δr) we can apply the Toponogov comparison

theorem to the hinge
(
σ̃|[0,εr], σ̃1|[0,εr]

)
in M \B(p, δr) to get

cos θ̃ sinh2(K(δr)εr) ≤ cosh2(K(δr)εr)− cosh(K(δr)d(p′, z′)). (3.9)

It follows from the triangle inequality that

d(p′, z′) ≥ −d(p, p′)− d(z, z′) + d(p, z)

= −d(p, q) + d(p′, q)− d(q, z) + d(z′, q) + d(p, z) = 2εr − ep,z(q).

Inserting (3.8) into the above inequality and noticing (3.9), one obtains

cos θ̃ sinh2(K(δr)εr) ≤ cosh2(K(δr)εr)− cosh(K(δr)(2εr − ep,z(q))) < 0.

Thus θ̃ > π
2 . Consequently, q is not a critical point of d(p, ·). Lemma 3.1 follows.

¤

Proof of theorem 1.3. We take the constants ε and δ to be the same as

in Lemma 3.1. In order to prove Theorem 1.3, it suffices to show that

H(p, r) < r
1
n

[
1

4
εr − 1

8K(δr)
ln

(
cosh2(K(δr)εr)

+

√
cosh4(K(δr)εr)− 1

)]n−1

. (3.10)

By Lemma 2.2

d(x,Rp) ≤ 2v
− 1

n
0

{
vol[B(p, r)]

ωnrn
− v0

} 1
n

r.

By the definition (1.1), it then follows from the assumption (1.6) of Theorem 1.3

that (3.10) holds, and therefore we complete the proof of the theorem. ¤
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