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Abstract. Let F' be a field of odd prime characteristic p, G a group, U the group
of units in the group algebra F'G, and U™ the subgroup of U generated by the elements
of U fixed by the anti-automorphism of F'G which inverts all elements of G. It is known
that U is nilpotent if G is nilpotent and the commutator subgroup G’ has p-power order,
and then the nilpotency class of U is at most the order of G’; this bound is attained
if and only if G’ is cyclic and not a Sylow subgroup of G. Adalbert Bovdi and J4nos
Kurdics proved the ‘if’ part of this last statement by exhibiting a nontrivial commutator
of the relevant weight. For the special case when G is a nonabelian torsion group (so G’
cannot possibly be a Sylow subgroup), the present paper identifies such a commutator
in U', showing (Theorem 1) that the same bound is attained even by the nilpotency
class of this subgroup. We do not know what happens when G’ is not a Sylow subgroup
but G is not torsion.

It can happen that U™ is nilpotent even though U is not. The torsion groups G
which allow this are known (from the work of Gregory T. Lee) to be precisely the direct
products of a finite p-group P, a quaternion group @ of order 8, and an elementary
abelian 2-group. Theorem 2: in this case, the nilpotency class of U™ is strictly smaller
than the nilpotency index of the augmentation ideal of the group algebra F P, and this
bound is attained whenever P is a powerful p-group. The nonabelian group P of order 27
and exponent 3 is not powerful, yet the G = P x @ formed with this P also leads to
a U™ attaining the general bound, so here a necessary and sufficient condition remains
elusive.
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1. Introduction

Let G be a group and let gq,...,9, € G. By the symbol (¢1,...,9,) we
denote the commutator of the elements g1, ..., g, which is defined inductively as
(g1,-->9n) = (915 -, n—1), 9n) With (g1,92) = g1 'g5 '9192. As usual, for the
subsets X,Y of G by the commutator (X,Y’) we mean the subgroup generated
by all commutators (z,y) with x € X,y € Y. This allows us to define the lower
central series of a nonempty subset H of G: let vp41(H) = (yo(H), H) with
v (H) = H. We say that H is nilpotent if v,(H) = 1 for some n. It is not so
hard to show the equivalence of the following statements: (i) H is a nilpotent
subset; (ii) H satisfies the group identity (g1,92,...,9n) = 1 for some n > 2; (iii)
(H) is a nilpotent group (see [14]). For a nilpotent subset H C G the number
cl(H) = min{n € Ny : yp4+1(H) = 1} is called the nilpotency class of H.

Let R be an associative ring with unity. Then R can be considered as a
Lie ring with the Lie commutator defined by [z,y] = xy — yx for all z,y € R.
For X,Y C R, by [X,Y] we denote the additive subgroup generated by all Lie
commutators [z,y] with # € X,y € Y. The upper Lie powers of a nonempty
subset S of R are defined inductively: set [S]; = S and for n > 2 let [S],, be the
associative ideal of R generated by all Lie commutators [z, y] with x € [S],—_1,
y € S. S is said to be upper Lie nilpotent if some upper Lie power of S vanishes;
the minimal n for which [S],, = 0 is called the upper Lie nilpotency index of S
(in notation t£(S)). Denote by U(S) the set of units in the subset S and suppose
that it is nonempty. By the equality (z,y) = 1+x "1y~ [z, y], where z,y € U(S),
it is easy to see that v, (U(S)) C 14 [S], for all n > 2, which implies that the set
of units of an upper Lie nilpotent subset S is nilpotent, and cl(U(S)) < tL(S) —1.

Let F be a field and let G be a group. For the noncommutative group algebra
FG the equivalence of the following statements follows from [12], [16]: (i) F'G is
upper Lie nilpotent; (ii) char F = p > 0, G is nilpotent and its commutator
subgroup G’ has p-power order; (iii) FG is modular and U(FG) is nilpotent. As
the reader can see in [2], [3], [9], [17], [18], [19], significant developments have
been achieved concerning the study of the nilpotency class of U(F'G), however a
complete description is not yet known.

Let * be the canonical involution on F'G; that is, the F-linear extension of the
anti-automorphism of G sending each element to its inverse. We will denote by
ST the set of symmetric elements of S C F'G; that is, ST ={z € S:2* =z}. A
number of interesting results on the symmetric units of group rings can be found,
for example, in the articles [4], [6], [7], [14], [15] and in the book [13]. This paper is
devoted to the study of the nilpotency class of Ut (FG). Assume first that F'G is
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a modular group algebra with a nilpotent unit group. Then U*(F@G) is nilpotent
as well, but we do not know if cl(U ™ (FQ)) reaches cl(U(FQG)) all the time or not.
Furthermore, F'G is upper Lie nilpotent, and by [20], t*(FG) < |G’| + 1. This
gives that |G’| is an upper bound on cl(U (FG)) and so on cl(UT(FQG)). We prove
the following theorem.

Theorem 1. Let F'G be the group algebra of a torsion group G over a field
F of characteristic p > 2 such that U(FQ) is nilpotent. Then cl(UT(FG)) = |G|
if and only if G’ is cyclic.

We cannot expect that this theorem remains true for non-torsion groups.
Indeed, by Theorem 4.3 of [3], if G’ is a cyclic group of order p" > 2 and Syl,,(G) =
G, then cl(UT(FQG)) < (U(FG)) = |G'] — 1. It is obvious that G’ cannot
possibly be a Sylow subgroup whenever G is torsion.

Corollary 1. Let F'G be the group algebra of a torsion group G over a field
F of characteristic p > 2 such that U(FG) is nilpotent. If G’ is cyclic, then
(UM (FQ)) = cl(U(FG)).

Now assume that Ut (FG) is nilpotent, but U(FG) is not. According to [14],
if char F' = p # 2 and G is a torsion group, then G = Qg x E x P, where Qg
is the quaternion group of order 8, E is an elementary abelian 2-group and P
is a finite p-group as long as p > 0, otherwise P = 1. For the non-torsion case
the characterization is only known when F is infinite by [15]. It is easy to verify
that if P is trivial, then the elements of UT(FG) commute for any field F, so
c(UT(FQ)) = 1. Our next result is about the case when P is nontrivial. In order
to state it, we require a couple of definitions. By the augmentation ideal of a
group algebra FG we mean the ideal in F'G, generated by the set {g—1 | g € G},
and it will be denoted by w(FG). In [10] it was proved that w(FQ) is nilpotent
if and only if G is a finite p-group and char F' = p. In this case, the nilpotency
index of w(F'@G) will be denoted by tn(G). We also recall that a finite p-group G
is called powerful if either p is odd and G’ € GP, or p = 2 and G’ C G*.

Theorem 2. Let F' be a field of characteristic p > 2, and let G be a torsion
group with a nontrivial Sylow p-subgroup P such that U™ (FG) is nilpotent but
U(FG) is not. Then cl(UT(FQ)) < tn(P)—1. In addition, if P is powerful, then
the equality holds.

We should remark that the assumption P to be powerful is not necessary for
the equality. Using the LAGUNA [5] software package in the GAP [21] computer
algebra system, it is easy to verify that if P is the noncommutative group of
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order 27 with exponent 3 and char F' = 3, then the equality holds, although this
group is not powerful.

It is well known that if P has order p™, then 1+n(p—1) < tx(P) < p", with
equality on the left (right) hand side if and only if P is elementary abelian (resp.
cyclic). Furthermore, if P is the direct product of cyclic groups of order p™:
(1<i<mn), then tn(P)=1+> " (p™ —1). In general, there is a formula for
tn (P) which gives its exact value in terms of the orders of the so-called dimension
subgroups of P. In the case when P is powerful, its dimension subgroups are its
powers.

The identities

ab—1=(a—1)(b—1)4 (a—1)+ (b—1);
[ab,c] = a[b,c] + [a,c]b and [a,bc] = bla, c] + [a, b]c;
[a,b] = ba((a,b) — 1) and (a,b) =1+a 'b"'[a,b] (here a, b are units),

hold for all elements a,b, c of an arbitrary associative ring R, and they will be
used freely. We denote by ((G) and ((F'G) the centers of the group G and the
group algebra F'G, respectively. Throughout this paper by p we always mean an
odd prime and by F a field of characteristic p.

2. Proof of Theorem 1

First of all, we collect and examine those Lie commutators of associative
powers of the augmentation ideal that we need in the proof. By definition,

w(FG)? = FG.

Lemma 1. Let G be a finite p-group such that v3(G) C (G')?. Then for all
k,l,m,n>1

W(FG"™,w(FG)'] Cw(FG)'w(FG )™
W(FG)*,w(FG)'] C w(FG)* ' 2w(FG);
W(FG)*w(FG)™ w(FG)'| C w(FG) = 2w(FG )™
[FGW(FG')™, w(FQ)'| € FGw(FG' )™ !,

PROOF. The first two inclusions were proved in [1], and they are followed by
the last two, because

w(FG)*w(FG)™, w(FG)']
C W(FG M w(FG)™, w(FG)] + [w(FG)¥, w(FG)Jw(FG)™,
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and
FGw(FG"" = w(FG)w(FG')™ + w(FG")™. O

We can also easily observe that
g" —1=m(g—1) (mod w(FG)?) (1)

for every g € G and integer m.
Let now G be a finite p-group with derived subgroup G’ = (z), and let
a,b € G such that (a,b) = z. It is easy to check (see e.g. [11] p. 252) that

[a™,b°] = ms-ba™(xz —1) (mod FGw(FG')?). (2)

For n > 2 denote by I, the ideal w(FG)3w(FG')"~! + FGw(FG')" of FG.
In the next lemma we need the congruences

[(a=1)(b—-1),(a— (@ =D =2(a—1)*(z —1) (mod Ip),
[(a=1)@ ' =1),(0-1D)0 " =] =4(a—1)(b~1)(z—1) (mod L),
[(a—1%0b-1)0b"=1)]=-4(a—1)(b—1)(z—1) (mod I). (3)

Now we prove the first one, the last two can be obtained analogously. Applying
(2) we can calculate that

[(a=1)(b~1),(a—-1)(a™" ~1)]
=(a—1)?Db,a ]+ (a—1)b,a](a”* — 1)
=(a—1%a " (z—1) = (a—1ba(z —1)(a™* —1) (mod I5).

Furthermore,

(a—1)%ba " (z—1) = (a — Dba(z — 1)(a™* = 1)
=(a—1)%0ba"' = 1)(z — 1)+ (a — 1)*(z — 1)
—(a—1)(ba—1)(z—1)(a"t =1) = (a—1)(z — 1)(a ' = 1).
Clearly, (a—1)%(ba=! —1)(z — 1) € W(FG)3w(FG") C I, and using the fact that
the value of the product (g — 1)(h — 1)(z — 1) is independent of the order of its
factors modulo I, we have that (a — 1)(ba — 1)(z — 1)(a~* — 1) is also belongs
to I. Hence, applying (1) we have
[(a=1)-1),(a= D@ =] =(a=1)*(z~1) = (a= (@ -1)(a' ~1)
=2(a—1)*(z—1) (mod Iy).
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Lemma 2. Let G be a finite p-group with cyclic derived subgroup. Then
d(UT(FG)) > |G).

PROOF. Let us choose the elements x,a and b in G such that = = (a,b) and
(x) = G'. We are going to prove that for n > 2 there exist 2, € 7,(UT(FG))
such that

{1 +ap(a—1)2%z—-1)""1 (mod I,) if n is odd;
o = (4)

1+ ap(a—1)(b—1)(x—1)""t (mod I,) ifn iseven,

where a, € F'\ {0}.
Forn > 1 let

(a—1)(a=t —=1) if nis odd;
Uy =
(b—1)(b~t —1) ifnis even.

Evidently, u,, is a nilpotent symmetric element and so 1+ u,, is a symmetric unit
for all n. Applying (3) we have

(1 4+ u, 1 —|-UQ) =1+ (1 +U1)71(1 +’UJ2)71[U1,U2}
=1+ (T4 un) (U4 u2) ™t = 1)[u, ug] + [ur, ug)
=14+4(a—1)(b—-1)(z—1) (mod I),

which confirms (4) for n = 2. Assume by induction the truth of (4) for some 4
(i > 2); i.e., there exist p € I; and «o; € F'\ {0} such that

zi =14+ aqvi(z — 1)+ p e w(UT(FQG)),

where either v; = (a—1)? or v; = (a—1)(b—1) when i is odd or even, respectively.
Applying Lemma 1 and (3) we have

(zis 14+ uip1) = 14 2,7 (1 + wir) ™ e, wig]
=1+ (2 (U4 uig) ™ = D([aavi(e — 1) wiga] + [, wiga])
+ [ovi(z — 1) wiga] + [ wigd]
=1+ ai[vi,ui+1}(x - 1)i_1 =1+ ai—i—lvi—i-l(x - 1)i (mod Ii+1),
where «;11 = —4; if @ is odd, else ;11 = 2a;. Thus, (4) is true for all n > 2.

We finish the proof by showing that z,, is not zero for m = |G’|. To this
we show that the element y = v,,(z — 1)™~! does not belong to I,,. Since now
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m = |G|, so FGw(FG')™ = 0 and I, = w(FG)3w(FG')™~1. According to [10],
the element z —1 is of weight ¢ > 2, so y has weight 2+¢(m —1), which means that
y € W(FG)?>Tm=1D\ w(FG)3+t =1 Since w(FG)" has an F-basis consisting
of regular elements of weight not less than 4, the inclusion w(FG)3w(FG" )™~ C
w(FG)>T1m=1) holds. Therefore y cannot be in I,,. O

PROOF OF THEOREM 1. According to [8], if G’ is not cyclic, then tL'(FG) <
|G’|+1, which forces the inequality cl(UT(FQG)) < |G’|. Conversely, if G’ is cyclic,
we can choose the elements z, a and b in G such that z = (a,b) and (z) = G'.
As a finitely generated torsion nilpotent group, N = {(a,b) is finite, and it is the
direct product of its Sylow subgroups. Let us denote by P the Sylow p-subgroup
of N. Since G’ is a p-group we have P’ = N’ = G’. Now if G’ is cyclic, then by
Lemma 2 we are done, because

IG'| = |P'| < l(U(FP)*") < (UT (FG)). O

3. Proof of Theorem 2

Assume that G is a torsion group such that U*(FG) is nilpotent but U(F'G)
is not. Then G = Qg x E x P, where E? = 1 and P is a finite p-group. In what
follows we suppose that P is nontrivial. Set N = Qg x E and J(P) = FGw(F'P).
Obviously, J(P) is a nilpotent ideal, so the set {1+« : z € J(P)} is a normal
subgroup of the unit group U(FG).

The upper bound ty(P) — 1 on cl(UT(FQG)) is a consequence of the next
lemma.

Lemma 3. t?(FG*) < tn(P).

PROOF. As it is well known, F'G™ is generated as an F-space by the set

S={g+g':gcG}.
Now, in our case
S ={a(h+a*h™"):a € N,hc P}.
Since
a(h+ad*h ™) =ah—1)+a*(h™ —1) +a+d’,
and the element a + a® is central in F'G, so we obtain that
FGT C3(P) +((FG).

Hence by induction one can easily get that [FG*], C J(P)" for all n > 2, which
forces the desired inequality. a
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PROOF OF THEOREM 2. It remains to show that if P is powerful, then
(UM (FG)) > tn(P) — 1. Denote by c the generator element of N2. We are
going to prove by induction that for any a € N\ ((N) and hq,...,h, € P there
exists u € v, (UT(FQ)) such that

u=1—a(l—c)(hy —1)--(h,—1) (mod J(P)" ).
Indeed, for any a € N\ {(N) and h € P we have

l—ah—1)—a*h'—1)=1-ah—1)+a*(h—-1)
=1-—a(l—c)(h—1) (mod J(P)?)

and we are done for n = 1.

Assume the statement for somen > 1. Let a € N\((N),h1,...,hn, hpt1 € P
and choose ay, a2 € N \ ((N) such that (a1,az2) # 1 and ajas = a. Then, by the
induction, there exist u € v, (UT(FQG)) and v € Ut (FQG) such that

u=1—ay(1-c)(hy —1)---(hp —1) (mod J(P)"T1),
v=1-as(1—c)(hps1 —1) (mod J(P)?).
Since u=tv=! — 1 € J(P), it is clear that
(w,v) =1+ (u o™ = D)[u,v] + [u,v] =1+ [u,v] (mod J(P)"T2). (5)
Further,

[a1(1 = ¢)(hy — 1)+ (hn — 1), a2(1 = €)(hpg1 — 1)]
=ai1(1—c)[(h1 —=1)- - (hn —1),a2(1 = ¢)(hn41 — 1)]
+[a1(1 = ¢),a2(1 = ¢)(hpt1 — D] (1 = 1) -+ (hyy — 1)
= araz(1 = ¢)*[(h1 = 1) -+ (hy = 1), (hng1 = 1)]
+ [ar,a2)(1 = ) (hpyr = 1) (ha = 1) -+ (hy — 1),
and using the equality (1 — ¢)? = 2(1 — ¢) we get

[u,v] = 2ara2(l —c)(hy — 1) -+ (hyy — 1) (hpg1 — 1)
+ 2a1a2(1 — ¢)(hpy1 — 1) (hy — 1) -+ (hy, — 1)  (mod J(P)"2).

Recall that P is assumed to be powerful and char F' = p > 3, thus

(hi,hj) —1 € w(P') Cw(PP) Cw(P)? CI(P)?
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and
(hi = 1)(hy = 1) = (hy — 1)(hy — 1) + hyhi((h, hy) — 1)

(hj = 1)(hi = 1) (mod 3(P)?)

for all i, j, therefore
[u,v] = daras(l —¢)(hy — 1)+ (hy — 1)(hps1 — 1) (mod J(P)"+2),
and by (5)
(u,v) =14+4a(l —c)(h1 — 1)+ (hpg1 — 1) (mod I(P)"*2).

Keeping in mind that p is an odd prime we can choose an integer s such that
4s = —1 (mod p) and we can apply the binomial theorem to have

(u,v)* =1—a(l —c)(hy — 1) (hpy1 — 1) (mod J(P)"+?).

Since (u,v)® € v, (UT(FG)) the induction is done.
For n < ty(P) there exist hy,...,h, € P such that (hy —1)---(hy, — 1) #0
and we get that cl(U'(FG)) > tn(P) — 1. O
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