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Finsler angle-preserving connection in dimensions N ≥ 3

By G. S. ASANOV (Moscow)

Abstract. The Finsler space is considered to be the deformated Riemannian space

under the condition that the indicatrix of the Finsler space is a space of constant cur-

vature. In this case, the Finslerian two-vector angle can explicitly be found, which gives

rise to simple and explicit representation for the connection preserving the angle in the

indicatrix-homogeneous case. The connection is metrical and the Finsler space is obta-

inable from the Riemannian space by means of the parallel deformation. Since also the

transitivity of covariant derivative holds, in such Finsler spaces the metrical non-linear

angle-preserving connection is the respective export of the metrical linear Riemannian

connection. In case of the FS-space, the example can be developed which entails the

explicit connection coefficients and the metric function of the Finsleroid type.

1. Motivation and description

In any dimension N ≥ 3 the Finsler metric function F geometrizes the tan-

gent bundle TM over the base manifold M such that at each point x ∈ M the

tangent space TxM is endowed with the curvature tensor constructed from the

respective Finslerian metric tensor g{x}(y) by means of the conventional rule of

the Riemannian geometry considering y to be the variable argument. There arises

the Riemannian space R{x} = {g{x}(y), TxM} supported by the point x ∈ M such

that TxM plays the role of the base manifold for the space. In the Riemannian

limit of the Finsler space, the spaces R{x} are Euclidean spaces and the tensor

g{x}(y) is independent of y. The conformally flat structure of the spaces R{x}
can naturally be taken to treat as the next level of generality of the Finsler space.
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Can the metrical connection preserving the two-vector angle be introduced on

that level?

The deformation of the Riemannian space to the Finsler space proves to

be convenient invention to apply. Namely, when the Riemannian space can be

deformated to the Finsler space characterized by the conformally flat structure

of the spaces R{x} the positive and clear answer to the above question can be

arrived at.

Given an N -dimensional Riemannian space RN = (M,S), where S denotes

the Riemannian metric function, one may endeavor to obtain a Finsler space

FN = (M,F ) by applying an appropriate deformation C of the space RN . The

notation F stands for the Finsler metric function. The base manifoldM is keeping

the same for both the spaces, RN and FN .

We assume that the transformation C is restrictive, in the sense that no point

x ∈ M is shifted under the transformation, so that in each tangent space TxM

the deformation maps tangent vectors y ∈ TxM into the tangent vectors of the

same TxM :

y = C(x, ȳ), y, ȳ ∈ TxM. (1.1)

In general, this transformation is non-linear with respect to ȳ. Non-singularity

and sufficient smoothness are always implied.

We may evidence in the Riemannian space RN the metrical linear Riemann-

ian connection RL, which in terms of local coordinates {xi} introduced in M is

given by

RL = {Lm
j , L

m
ij} : Lm

j = −amijy
i, Lm

ij = amij , (1.2)

with amij = amij(x) standing for the Christoffel symbols constructed from the

Riemannian metric tensor amn(x) of the space RN . The indices i, j, . . . are spe-

cified on the range (1, . . . , N). The respective covariant derivative ∇ can be

introduced in the natural way, namely by means of the definition (4.11) which

involves the action of the operator

dRiem
i =

∂

∂xi
+ Lk

i
∂

∂yk
, (1.3)

considering tensors on the tangent bundle underlined the space RN . In the space,

the scalar product 〈y1, y2〉Riem
{x} = amn(x)y

m
1 yn2 of two vectors y1, y2 supported by

a fixed point x ∈ M is linear with respect to each vector, which gives rise to

the profound meaning of the connection (1.2) to preserve the product under the

entailed parallel transports of the entered vectors along curves running on M .
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For a given function F we can construct the covariant tangent vector ŷ = {yi}
and the Finslerian metric tensor {gij} in the ordinary way: yi := (1/2)∂F 2/∂yi

and gij := ∂yi/∂y
j . The contravariant tensor {gij} defined by the reciprocity

conditions gijg
jk = δki , where δ stands for the Kronecker symbol.

In the Finsler space, the scalar product is essentially non-linear object with

respect to the entered vectors, so that we may hope to meet similar preservation

property in the Finslerian domains if only we apply the connection which is non-

linear, in the sense that the involved connection coefficients depend on tangent

vectors y in non-linear way. With this hope, we need the metrical non-linear

Finsler connection FN , such that

FN = {Nm
i, D

m
ij} : Nm

i = Nm
i(x, y), Dm

ij = Dm
ij(x, y). (1.4)

The adjective “metrical” means that the action of the entailed covariant derivative

D on the Finsler metric function, and also on the Finsler metric tensor, yields

identically zero. The coefficients Nm
i and Dm

ij are assumed to be positively

homogeneous regarding the dependence on vectors y, respectively of degree 1 and

degree 0.

In this respect, the most important object what should be lifted from the Rie-

mannian to Finslerian space is the two-vector angle, to be denoted by α{x}(y1, y2),
where y1, y2 ∈ TxM . Like to the Riemannian geometry proper, the underlined

idea is to measure the angle by means of length of the respective geodesic arcs

evidenced on the indicatrix. The Finsler space endows the vector pair y1, y2 with

the scalar product

〈y1, y2〉{x} = F (x, y1)F (x, y2) cosα{x}(y1, y2) (1.5)

on analogy of the Riemannian geometry.

The non-linear deformation

FN = C · RL (1.6)

of the Riemannian connection may exist to yield the Finsler connection FN which

preserves the Finslerian two-vector angle α{x}(y1, y2) under the associated parallel

transports of the vectors y1, y2.

In the theory of Finsler spaces, the key objects, the connection included, were

introduced and studied on the basis of various convenient sets of axioms (see [1]–

[5] and references therein). Regarding the significance of the angle notion, the

important farther step was made in [6] were in processes of studying implications

of the two-vector angle defined by area, the theorem was proved which states that

a diffeomorphism between two Finsler spaces is an isometry iff it keeps the angle.
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This Tamássy’s theorem substantiates the idea to develop the Finsler connection

from the Finsler two-vector angle, possibly on the analogy of the Riemannian

geometry. The idea should influence the researchers to develop the Finsler geo-

metry anew, namely by proceeding from the starting-point: The Priority of the

two-vector angle over the connection.

To meet new methods of applications, the interesting chain of linear connec-

tions was introduced and studied in [3]. It was emphasized that in the Riemannian

geometry we have naturally the metrical and linear connection. We depart from

this connection to develop the Finsler connection by the help of an outstanding

non-linear deformation.

Namely, we shall confine our attention to the case when the space FN is

obtainable from the space RN by means of the deformation which is specified by

the stipulations (2.1)–(2.3) of Section 2. We assume that under the used trans-

formations the Finslerian indicatrix IF {x} ∈ TxM and the Riemannian sphere

S{x} ∈ TxM are in correspondence (according to (2.2)). Also, we subject the

applied transformations to the condition of positive homogeneity with respect to

tangent vectors y, denoting the homogeneity degree by H.

Remarkably, such Finsler spaces of dimensions N ≥ 3 can be characterized

by the condition that the indicatrix is a space of constant curvature (see Propo-

sition 2.1). The indicatrix curvature value is the square of the homogeneity degree

H (which is indicated in Proposition 2.1). The relevant conformal multiplier p2

is constructed from the Finsler metric function F , according to p = (1/H)F 1−H .

The condition has been realized, the Finslerian two-vector angle α{x}(y1, y2)
proves to be a factor of the angle operative traditionally in the Riemannian space,

namely the simple equality

α{x}(y1, y2) =
1

H(x)
αRiem
{x} (ȳ1, ȳ2) (1.7)

(see (2.26)–(2.28)) is obtained.

The equality

S(x, ȳ) = (F (x, y))
H

(1.8)

is arisen (see the last part of the proof of Proposition 2.1), which validates the

indicatrix correspondence principle (2.2); S(x, ȳ) =
√
amn(x)ȳmȳn.

We set forth the conventional requirement of preservation of the Finsler met-

ric function F (x, y), namely diF = 0 with

di =
∂

∂xi
+Nk

i(x, y)
∂

∂yk
. (1.9)
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With the natural definition Dyn := dyn − Nn
j(x, y)dx

j of covariant disp-

lacement of the tangent vector, the parallel transport of the vector means the

vanishing

Dyn = 0. (1.10)

We apply this observation to the two-vector angle α{x}(y1, y2): the coeffici-

ents Nk
i(x, y) fulfill the angle preservation equation

diα{x}(y1, y2) = 0, y1, y2 ∈ TxM (1.11)

under the parallel displacements of the entered vectors y1 and y2, if the involved

operator di is taken to read

di =
∂

∂xi
+Nk

i(x, y1)
∂

∂yk1
+Nk

i(x, y2)
∂

∂yk2
. (1.12)

The Nk
i(x, y) thus appeared can naturally be interpreted as the coefficients

of the non-linear connection produced by angle.

In this way we fulfill the canonical geometrical principle: the angle α{x}(y1, y2)
formed by two vectors y1 and y2 is left unchanged under the parallel displacements

of the vectors y1 and y2, namely Dα
def
= (dxi)diα = 0, for diα = 0.

When diF=0 is fulfilled, the vanishings diα{x}(y1, y2)= 0 and di〈y1, y2〉{x}=0

reciprocally determine each other (see (1.5)). We may say that the notion “the

metrical Finsler angle-preserving connection” is tantamount to the notion “the

connection which preserves the Finsler scalar product”.

In general the indicatrix curvature value CInd. may depend on the points

x ∈ M . We say that the space FN is indicatrix-homogeneous, if the value is a

constant. In view of the result CInd. ≡ H2 such spaces can be characterized by

the condition that the homogeneity degree H of the underlined transformation is

independent of x.

It proves that in the indicatrix-homogeneous case of the studied space FN

the equations (1.11)–(1.12) can explicitly be solved for the coefficients Nk
i (see

Proposition 2.2 and Note placed thereafter in Section 2).

From the obtained coefficients Nk
m given by (2.30), the entailed coefficients

Nk
mn =

∂Nk
m

∂yn
, Nk

mnj =
∂Nk

mn

∂yj
(1.13)

can straightforwardly be evaluated (Section 3). Let us use the coefficients to con-

struct the covariant derivative Dmgnj of the Finsler metric tensor gnj = gnj(x, y)

of the considered space FN , namely

Dmgnj := dmgnj +Nk
mjgkn +Nk

mngkj , (1.14)



186 G. S. Asanov

where dm is given by (1.9). It proves that the covariant derivative introduced by

(1.14) with the coefficients Nk
m given by (2.30) possesses the property Dmgnj = 0

in the indicatrix-homogeneous case. The property can be verified by straightfor-

ward substitutions which result in the vanishing

ykN
k
mnj = 0 (1.15)

(see Proposition 3.1).

It is amazing but the fact that the last vanishing is an implication of the

identity ykCknj = 0 shown by the Cartan tensor Cknj = (1/2)∂gkn/∂y
j . Indeed,

additional evaluation leads to the result

Nk
mnj = −DmCk

nj (1.16)

in the indicatrix-homogeneous case (see Proposition 3.2), where

DmCk
nj := dmCk

nj −Nk
mtC

t
nj +N t

mnC
k
tj +N t

mjC
k
nt. (1.17)

The coefficients Nkmnj = gkhN
h
mnj can be written as Nkmnj = −DmCknj

and, therefore, they are symmetric with respect to the subscripts k, n, j.

Thus, with the identification

Dk
in(x, y) = −Nk

in(x, y), (1.18)

in the Finsler space FN of the indicatrix-homogeneous type (that is, when H =

const) the metrical angle-preserving connection (1.4) is given by the coefficients

{Nk
i , D

k
in} found explicitly. Recollecting the assumed homogeneity of the coef-

ficients, from (1.18) we infer the equality

Dk
iny

n = −Nk
i. (1.19)

Realizing the C-transformation locally by yi = yi(x, t) with tn ≡ ȳn (see

(2.8)), it is possible to conclude that

Nn
i = dRiem

i yn (1.20)

(see (2.41)). This representation of the coefficientsNn
i manifests a clear geometri-

cal and tensorial meaning and is alternative (and equivalent) to the representation

(2.30). The derivation of the representation (1.20) uses the formula (1.19).

According to Proposition 2.3, the Finsler space FN of the indicatrix-homo-

geneous type is obtained from the Riemannian space RN by means of the parallel

deformation.
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Since also the transitivity of covariant derivative holds, namely Dnt
i = 0 (see

(2.33)), and gkh = Cm
k Cn

hamn (see (2.21)), we should conclude that in the Fins-

ler space FN of the indicatrix-homogeneous type the metrical angle-preserving

connection is the C-export of the metrical linear Riemannian connection (1.2)

applied conventionally in the background Riemannian space RN .

In Section 4 we perform the attentive comparison between the commuta-

tors of the involved Finsler covariant derivative D and the commutators of the

underlined Riemannian covariant derivative ∇, assuming H = const. By this

method, we derive the associated curvature tensor ρk
n
ij . The skew-symmetry

ρmnij = −ρnmij = −ρmnji holds. The covariant derivative Dl of the tensor ful-

fills the cyclic identity, completely similar to the Riemannian case in which the

cyclic identity is valid for the derivative ∇lak
n
ij of the Riemannian curvature ten-

sor ak
n
ij . The tensor M

n
ij = −ykρk

n
ij proves to be transitive to the Riemannian

tensor −thah
t
ij , namely the equality Mn

ij = −ynt t
hah

t
ij holds. The very ten-

sor ρk
n
ij is not transitive to the Riemannian precursor ah

m
ij , instead the more

general equality (4.19) is obtained. The difference between the curvature tensor

ρk
n
ij and the transitive term ynmah

m
ijt

h
k is proportional to (1−H). The square

ρknijρknij of the tensor is the sum (4.23) which is the FN -extension of the Rie-

mannian term aknijaknij . The difference ρknijρknij − aknijaknij is proportional

to (H−2 − 1).

In Section 5 we develop an explicit and attractive particular case, namely we

present the explicit example (5.9) of the transformations possessing the studied

properties, specializing the Finsler space to be the FS-space. The latter space

is endowed with the Finsler metric function F which is constructed from a Rie-

mannian metric function S =
√
aij(x)yiyj and an 1-form b = bi(x)y

i according

to the functional dependence

F (x, y) = Φ (x; b, S, y) , (1.21)

where Φ is a sufficiently smooth scalar function. In step-by-step way, we de-

rive the coefficients Nm
i specified by (2.30), obtaining the explicit representation

(5.31)–(5.32). It proves that the suitability of the transformation (5.9) imposes

the severe restriction on the Finsler metric function, namely the function must be

of the Finsleroid type (described in [7]). In the restricted case which implies in-

dependence of the function Φ (x; b, S, y) of x, assuming also that the Riemannian

norm of the 1-form b is a constant, the obtained coefficients Nm
i straightfor-

wardly entail the vanishing set DnF = Dnyj = Dngij = 0 together with the

angle preservation (1.11). The tm which enter the transformation (5.9) are linear

combinations of the unit vectors lm and mm (see (5.35) and (5.36)).

In Conclusions, Section 6, we emphasize several important ideas.
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2. Initial observations

Below, any dimension N ≥ 3 is allowable.

Let M be an N -dimensional C∞ differentiable manifold, TxM denote the

tangent space to M at a point x ∈ M , and y ∈ TxM\0 mean tangent vectors.

Suppose we are given on the tangent bundle TM a Riemannian metric S. Denote

by RN = (M,S) the obtained N -dimensional Riemannian space. Let additionally

a Finsler metric function F be introduced on this TM , yielding a Finsler space

FN = (M,F ). We shall study the Finsler space FN specified according to the

following definition.

Input Definition. The Finsler space FN under consideration is the defor-

mated Riemannian space RN :

FN = C · RN , (2.1)

specified by the condition that in each tangent space TxM the metric tensor

g{x}(y) produced by the Finsler metric is conformal to the Euclidean metric tensor

entailed by the Riemannian metric of the spaceRN . It is assumed that the applied

C-transformations do not influence any point x ∈ M of the base manifold M and

that they are invertible. It is also natural to require that the C-transformations

send unit vectors to unit vectors:

IF {x} = C · S{x}. (2.2)

Additionally, we subject the C-transformations to the condition of positive ho-

mogeneity with respect to tangent vectors y, denoting the degree of homogene-

ity by H. If f(x, y) is the involved conformal multiplier, then from the equa-

lity g{x}(y) = f(x, y)u{x}(y) we obtain the tensor u{x}(y) which possesses the

property: if we construct from the tensor u{x}(y) the Riemannian curvature ten-

sor R̃{x}(y) regarding yi as variables, we arrive at the vanishing R̃{x}(y) = 0.

Finally, the dependence of the multiplier f on the variable y is assumed to be

presented by the power of the Finsler metric function, such that

g{x}(y) = p2u{x}(y), p = c1(x) (F (x, y))
a(x)

,

1 > a(x) > 0, c1(x) > 0. (2.3)

Let the C-transformation (2.1) be assigned locally by means of the differen-

tiable functions

ȳm = ȳm(x, y), (2.4)



Finsler angle-preserving connection in dimensions N ≥ 3 189

subject to the required homogeneity

ȳm(x, ky) = kH ȳm(x, y), k > 0, ∀y. (2.5)

This entails the identity

ȳmk yk = Hȳm, (2.6)

where ȳmk = ∂ȳm/∂yk. Fulfilling (2.1) means locally

gmn(x, y) = cij(x, ȳ)ȳ
i
mȳjn, cij(x, ȳ) = (p(x, y))

2
aij(x). (2.7)

On every punctured tangent space TxM \ 0, the Finsler metric function F is

assumed to be positive, and also positively homogeneous of degree 1: F (x, ky) =

kF (x, y), k > 0, ∀y. The entailed Finslerian metric tensor is positively homogene-

ous of degree 0. Therefore, to comply the representation (2.7) with the stipulation

(2.3), we must put

H = 1− a.

The existence of the Finsler spaces under study is explained by the following

proposition.

Proposition 2.1. A Finsler space is of the claimed type FN if and only

if the indicatrix of the Finsler space is a space of constant curvature. Denoting

the indicatrix curvature value by CInd., the equality CInd. ≡ H2 is obtained. The

relevant conformal multiplier is given by p2 with p = (1/H)F 1−H .

Proof. Constructing from the tensor uij(x, y)=gij(x, y)/(c1(x)(F (x, y))
a(x)

)

the Riemannian curvature tensor R̃n
h
ij by regarding yi as variables, simple stra-

ightforward evaluations (which are presented in Appendix A in [10]) lead to the

equality

F 2R̃n
m

ij = Sn
m

ij − a(2− a)(hnjh
m
i − hnih

m
j ),

where hnj = gnj − (1/F 2)ynyj and Sn
m

ij = − (
Ch

niC
m

hj − Ch
njC

m
hi

)
F 2. The

tensor Sn
m

ij describes the curvature of indicatrix. It is known that the indicatrix

is a space of constant curvature if and only if the tensor fulfills the equality

Sn
m

ij = C(hnjh
m
i − hnih

m
j ) with the factor C which is independent of y, in

which case CInd. = 1−C (see Section 5.8 in [1]). Since the vanishing R̃n
m

ij = 0 is

equivalent to the equality Sn
m

ij = C(hnjh
m
i − hnih

m
j ) with C = a(2− a), we get

CInd. = (1−a)2 = H2. Also, contracting the gmn by ymyn and noting the involved

homogeneity, we get the equality (F (x, y))
2
= (H(x))

2
(p(x, y))

2
(S(x, ȳ))

2
(see

(2.6) and (2.7)), so that

p(x, y) =
1

H(x)

F (x, y)

S(x, ȳ)
.
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Therefore, to obey the indicatrix correspondence (2.2), we should put c1 = 1/H

in (2.3), which enables us to have the equality S(x, ȳ) = (F (x, y))
H

indicated in

(1.8). Proposition 2.1 is valid. ¤

The proposition is of the local meaning in both the base manifold and the

tangent space. The value CInd. may vary from point to point of the manifold M ,

so that in general H = H(x). We take CInd. > 0. Extension of the proposition to

negative value of CInd. would be a straightforward task.

Our consideration is based essentially on the notion of indicatrix and, the-

refore, the conclusions obtained can be addressed to the dimensions N ≥ 3 exc-

luding the two-dimensional case N = 2. The notion of indicatrix is unapplicable

to two-dimensional Finsler spaces. Instead, in the latter case of spaces the the-

ory displays the structural role of the so-called “main scalar” and a possibility

to measure the angle by means of the arc-length of the indicatrix. This handy

possibility can be exploited to propose the angle-preserving connection explicitly

for arbitrary two-dimensional Finsler metric function, at least on the local level of

consideration [9]. In Finsler spaces of dimensions N ≥ 3 the situation is cardinally

more complicated. Although the basic principles can still be outlined to define

the angle-preserving connection, the required connection coefficients can in gene-

ral be introduced in only implicit way. Under these circumstances, it is urgent to

“do the start-up” aimed to single out the particular classes of Finsler spaces in

which the respective connection coefficients can be proposed in an explicit way.

Clearly, the knowledge of such coefficients is to be preceded by the knowledge of

the involved two-vector angle. Since in the Finsler spaces characterized by the

condition that the indicatrix is of constant curvature the angle appears explicitly

(see (1.7)), such spaces are attractive cases to investigate with utmost attention

in any dimension N ≥ 3.

Denote by

yi = yi(x, t), tn ≡ ȳn, (2.8)

the inverse transformation, so that

yi(x, kt) = k1/Hyi(x, t), k > 0,∀t,
and

yint
n =

1

H
yi, (2.9)

where yin = ∂yi/∂tn. The inverse to (2.7) reads:

gkhy
k
myhn = cmn. (2.10)



Finsler angle-preserving connection in dimensions N ≥ 3 191

The following useful relations can readily be arrived at:

ymymn =
F 2

HS2
tn ≡ 1

H
F 2(1−H)tn, tn = anht

h, (2.11)

and ymymnlt
l
j+gmjy

m
n = 2

(
H−1 − 1

)
F−2Hyjtn+(1/H)F 2(1−H)anht

h
j , where t

l
j =

ȳlj and ymnl = ∂ymn /∂yl. Alternatively,

tht
h
n =

HS2

F 2
yn ≡ HF 2(H−1)yn (2.12)

and

tht
h
nuy

u
i + ahit

h
n = 2(H − 1)F−2tiyn +HF 2(H−1)gnuy

u
i , (2.13)

where thnu = ∂thn/∂y
u. We may also write

tht
h
ni = H(1−H)F 2(H−1)(gni − 2lnli). (2.14)

From (2.10) it follows that gnmymi = p2tjnaij .

Differentiating (2.7) with respect to yk yields the following representation for

the tensor Cmnk = (1/2)∂gmn/∂y
k:

2Cmnk = (1−H)
2

F
lkgmn + p2(timkt

j
n + timtjnk)aij . (2.15)

Contracting this tensor by yn results in the equality

p2timkt
jaij =

(
1

H
− 1

)
(hkm − lklm), (2.16)

where the vanishing Cmnky
n = 0 and the homogeneity identity (2.6) have been

taken into account. Symmetry of the tensor Cmnk demands

(1−H)
2

F
(lkgmn − lmgkn) + p2(timtjnk − tikt

j
nm)aij = 0, (2.17)

so that we may alternatively write

Cmnk = (1−H)
1

F
(lkgmn + lngmk − lmgnk) + p2timtjnkaij . (2.18)

Contracting the last tensor by gnk yields

FCm = −(N − 2)(1−H)lm + Fgnkp2tinkt
j
maij . (2.19)
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The space FN is obtainable from the Riemannian space RN by means of the

deformation which, owing to (2.7), can be presented by the conformal deformation

tensor

Ci
m := pȳim, (2.20)

so that

gmn = Ci
mCj

naij . (2.21)

The zero-degree homogeneity

Ci
m(x, ky) = Ci

m(x, y), k > 0, ∀y, (2.22)

holds, together with

Ci
m(x, y)ym = (F (x, y))

1−H
ȳi. (2.23)

The indicatrix correspondence (2.2) is a direct implication of the equality

(1.8). We may apply the transformation (1.1) to the unit vectors:

l = C · L : li = yi(x, L); L = C−1 · l : Li = ti(x, l), (2.24)

where li = yi/F (x, y) and Li = ti/S(x, t) are components of the respective Fins-

lerian and Riemannian unit vectors, which possess the properties F (x, l) = 1 and

S(x, L) = 1. We have Lm = tm(x, l). On the other hand, from (2.7) it just follows

that

gmn(x, l) =
1

H2
aij(x)t

i
m(x, l)tjn(x, l), (2.25)

so that under the transformation (2.24) we have

gmn(x, l)dl
mdln =

1

H2
aij(x)dL

idLj . (2.26)

Note. The deformation performed by the formulas (2.20) and (2.21) is un-

holonomic, in the sense that

∂Ci
m

∂yn
− ∂Ci

n

∂ym
6= 0.

The vanishing appears if only the factor p = F 1−H/H is independent of the

vectors y, that is, when H = 1 (which is the Riemannian case proper). Regarding

the y-dependence, the tensor Ci
m is homogeneous of degree zero, in accordance

with (2.22). If we divide the tensor by p, we obtain from (2.20) the tensor ȳim
which is the derivative tensor, namely ȳim = ∂ȳi/∂ym. However, such a property

cannot be addressed to the tensor Ci
m. It is the reason why we start with the
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stipulation that the underlined transformation (which is downloaded locally by

the formulas (2.4)–(2.7)) be homogeneous of the degree H with respect to the

variable y. By proceeding in this way, it proves possible to come to the conformal

representation (2.26) of gmn(x, l)dl
mdln which is of the key significance to obtain

the angle and the connection coefficients.

No support vector enters the right-hand part of (2.26). Therefore, any two

nonzero tangent vectors y1, y2 ∈ TxM in a fixed tangent space TxM form the

FN -space angle

α{x}(y1, y2) =
1

H(x)
arccosλ, (2.27)

where the scalar

λ =
amn(x)t

m
1 tn2

S1S2
, with tm1 = tm(x, y1) and tm2 = tm(x, y2), (2.28)

is of the entire Riemannian meaning in the space RN ; the notation

S1 =
√
amn(x)tm1 tn1 , S2 =

√
amn(x)tm2 tn2 has been used.

From (2.28) it follows that

∂λ

∂xi
=

amn,it
m
1 tn2

S1S2
+

1

S1S2
amn

(
∂tm1
∂xi

tn2 + tm1
∂tn2
∂xi

)

−1

2
λ

[
1

S1S1

(
amn,it

m
1 tn1 + 2amn

∂tm1
∂xi

tn1

)
+

1

S2S2

(
amn,it

m
2 tn2 + 2amn

∂tm2
∂xi

tn2

)]
,

where amn,i = ∂amn/∂x
i, and

∂λ

∂yk1
=

[
amnt

n
2

S1S2
− amnt

n
1

S1S1
λ

]
tm1k,

∂λ

∂yk2
=

[
amnt

n
1

S2S1
− amnt

n
2

S2S2
λ

]
tm2k.

Let the coefficients Nk
i be subjected to the equation

diλ = 0, (2.29)

where di is the operator (1.12). Using the above representation of the derivatives

of λ, it proves possible to establish the validity of the following proposition.

Proposition 2.2. When diF = 0 and H = const, the equation (2.29) can

be solved for the coefficients Nm
n, yielding

Nm
n = −ymi

(
∂ti

∂xn
+ aiknt

k

)
. (2.30)
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See Appendix B in [10].

In (2.30), the aikn = aikn(x) are the Christoffel symbols

aikn =
1

2
aih

(∂ahk
∂xn

+
∂ahn
∂xk

− ∂akn
∂xh

)
(2.31)

of the Riemannian space RN .

Note. When H = const, from (2.27) it just follows that the angle α{x}(y1, y2)
fulfills the vanishing which is completely similar to (2.29), namely the vanishing

(1.11) claimed in Section 1.

With the covariant derivative

Dnt
i := dnt

i + aiknt
k (2.32)

the representation (2.30) can be interpreted as the manifestation of the transitivity

Dnt
i = 0 (2.33)

of the connection under the transformation (2.1).

By differentiating (2.32) with respect to ym we may conclude that the cova-

riant derivative

Dnt
i
m := dnt

i
m −Dh

nmtih + ainlt
l
m, Dh

nm = −Nh
nm, (2.34)

vanishes identically:

Dnt
i
m = 0. (2.35)

Since ynk t
k
j = δnj , the previous identity can be transformed to

dRiem
i ynk +Dn

isy
s
k − ahiky

n
h = 0, (2.36)

which can be interpreted as the covatiant derivative vanishing:

Diy
n
k = 0. (2.37)

This formula entails

Diy
n = 0 (2.38)

(because of (2.33)), where

Diy
n := dRiem

i yn +Dn
isy

s. (2.39)
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Here, yn mean the functions yn(x, t) introduced by (2.8).

We have used the Riemannian operator

dRiem
i =

∂

∂xi
+ Lk

i
∂

∂tk
, Lk

i = −akiht
h (2.40)

(cf. (1.3)).

Since Dn
isy

s = −Nn
i, from (2.38)–(2.39) we may conclude that the repres-

entation

Nn
i = dRiem

i yn ≡ ∂yn(x, t)

∂xi
+ ynhL

h
i (2.41)

is valid which is alternative to (2.30).

Owing to the equalities p = (1/H)F 1−H , Dny
m
k = 0, and (2.20), we are

entitled to formulate the following proposition.

Proposition 2.3. When diF = 0 and H = const, the deformation tensor

(2.20) is parallel

DnC
m
k = 0, (2.42)

where

DnC
m
k = dnC

m
k −Dh

nkC
m
h + amnlC

l
k. (2.43)

The coefficients Nk
i(x, y) can also be obtained by means of the transitivity

map

{Nk
i} = C · {Lk

i}. (2.44)

Indeed, with an arbitrary differentiable scalar w(x, y), we can apply the transfor-

mation {yi = yi(x, t), tn ≡ ȳn} indicated in (2.8) and consider the C-transform

W (x, t) = w(x, y), which entails
∂W

∂tn
= ykn

∂w

∂yk
, (2.45)

thereafter postulating that the C-transformation is covariantly transitive, namely(
∂

∂xi
+Nk

i(x, y)
∂

∂yk

)
w(x, y) =

(
∂

∂xi
+ Lk

i(x, t)
∂

∂tk

)
W (x, t). (2.46)

Since the field w is arbitrary, the last equality is fulfilled if and only if

Nk
i = dRiem

i yk ≡ ∂yk(x, t)

∂xi
+ ykhL

h
i. (2.47)

This is the representation which is required to realize the map (2.44). We have

again arrived at the coefficients (2.41).

With the knowledge of the coefficients Nk
i(x, y), we can use the formulas

(2.34) and (2.35) to express the Finslerian connection coefficients Dh
nm through

the Riemannian Christoffel symbols ainl. Thus we have induced the connection

in the Finsler space FN from the metrical linear Riemannian connection (1.2)

meaningful in the background Riemannian space RN .
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3. Properties of connection coefficients

The derivative coefficients (1.13) can straightforwardly be evaluated from

(2.30). We obtain explicitly

Nk
mn = −ykslt

l
nT

s
m − yksT

s
n,m with T s

m =
∂ts

∂xm
+ asmht

h,

T s
n,m =

∂tsn
∂xm

+ asmht
h
n, (3.1)

which entails the contractions

ykN
k
mn = −

(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n − glny

l
s

)
T s
m

− F 2

HS2
tsT

s
n,m (3.2)

and

ykN
k
mn + glnN

l
m = −

(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n

)
T s
m

− F 2

HS2
tsT

s
n,m,

together with

ykN
k
mni + gkiN

k
mn + glnN

l
mi + 2ClniN

l
m

= −
(

1

H
− 1

)
2F−2H

[
(gni − 2Hlnli)ts + (ynaslt

l
i + yiaslt

l
n)
]
T s
m

− 1

H
F 2(1−H)asht

h
niT

s
m

−
(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n

)
T s
i,m

−
(
2

(
1

H
− 1

)
F−2Hyits +

1

H
F 2(1−H)asht

h
i

)
T s
n,m

− 1

H
F 2(1−H)ts

(
∂tsni
∂xm

+ asmht
h
ni

)
.

The attentive calculation of the entered terms (carried out in Appendix C in [10])

leads to the following remarkable result.

Proposition 3.1. If the coefficients Nk
m are taking according to (2.30)

and the vanishing dmF = 0 is implied, then the vanishing ykN
k
mnj = 0 holds

identically.
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In performing involved calculation it is necessary to note that in view of

(2.11) and (2.30), we can write

dmF =
∂F

∂xm
+Nk

n
∂F

∂yk
=

∂F

∂xm
+Nk

nlk =
∂F

∂xm
− 1

FH
F 2(1−H)tsT

s
m

so that, because of dmF = 0, the equality

∂F

∂xm
=

1

FH
F 2(1−H)tsT

s
m (3.3)

is valid.

It is also possible to evaluate the covariant derivative DmCk
nj (see (1.17)),

using the equality dmghn = −N t
mhgtn −N t

mngth entailed by the metricity (see

(1.14)). This way leads to the following result.

Proposition 3.2. The representation Nk
mnj = −DmCk

nj is valid, whene-

ver dmF = 0 and H = const.

Proof of this proposition can be arrived at during a long chain of straight-

forward substitutions (see Appendix D in [10]).

4. Entailed curvature tensor

Throughout the present section we assume that H = const.

Given a tensor wn
k = wn

k(x, y) of the tensorial type (1,1), commuting the

covariant derivative

Diw
n
k := diw

n
k +Dn

ihw
h
k −Dh

ikw
n
h (4.1)

yields straightforwardly the equality

(DiDj −DjDi)w
n
k = Mh

ijShw
n
k − ρk

h
ijw

n
h + ρh

n
ijw

h
k (4.2)

with the curvature tensor

ρk
n
ij = diD

n
jk − djD

n
ik +Dm

jkD
n
im −Dm

ikD
n
jm −Mh

ijC
n
hk (4.3)

and the tensor

Mn
ij := diN

n
j − djN

n
i ≡ ∂Nn

j

∂xi
− ∂Nn

i

∂xj
−Nh

iD
n
jh +Nh

jD
n
ih. (4.4)



198 G. S. Asanov

The definition

Shw
n
k :=

∂wn
k

∂yh
+ Cn

hsw
s
k − Cm

hkw
n
m (4.5)

was introduced which has the meaning of the covariant derivative in the tangent

space supported by the point x ∈ M . In particular,

Shgnk :=
∂gnk
∂yh

− Cm
hngmk − Cm

hkgnm = 0. (4.6)

The choice Dk
in = −Nk

in is implied (cf. (1.18)) and we may use the equality

N j
i = −Dj

iky
k.

By applying the commutation rule (4.2) to the particular choices

{F, yn, yk, gnk} and noting the vanishing {DiF = Diy
n = Diyk = Dignk = 0}, we

obtain the relations

ynM
n
ij = 0, ykρk

n
ij = −Mn

ij , ynρk
n
ij = Mkij , ρmnij = −ρnmij , (4.7)

where Mkij = gnkM
n
ij and ρmnij = gnlρm

l
ij .

The curvature tensor obeys also the cyclic identity

Dlρk
n
ij +Djρk

n
li +Diρk

n
jl = 0, (4.8)

where

Dlρk
n
ij = dlρk

n
ij +Dn

ltρk
t
ij −Dt

lkρt
n
ij − asliρk

n
sj − asljρk

n
is. (4.9)

Let us realize the action of the C-transformation (2.1) on tensors by the help

of the transitivity rule, that is,

{wn
m(x, y)} = C · {Wn

m(x, t)} : wn
m = ynh t

j
mWh

j , (4.10)

where Wn
m is a tensor of type (1,1). The metrical linear connection RL intro-

duced by (1.2) may be used to define the covariant derivative ∇ in RN according

to the conventional rule:

∇iW
n
m =

∂Wn
m

∂xi
+ Lk

i
∂Wn

m

∂tk
+ Ln

hiW
h
m − Lh

miW
n
h, (4.11)

where Lk
i = −thLk

hi and Ln
hi = anhi. It follows that ∇iS = 0, ∇iy

j = 0, and

∇iamn = 0.

Due to the nullifications Diy
n
h = 0 and Dit

j = 0 see (2.37) and (2.33)), we

have the transitivity property

Diw
n
m = ynh t

j
m∇iW

h
j (4.12)
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for the covariant derivatives.

In the commutator

[∇i∇j −∇j∇i]W
n
k = −ymam

h
ij
∂Wn

k

∂yh
− ak

h
ijW

n
h + ah

n
ijW

h
k (4.13)

the associated Riemannian curvature tensor is constructed in the conventional

way

an
i
km =

∂ainm
∂xk

− ∂aink
∂xm

+ aunmaiuk − aunka
i
um. (4.14)

With the ordinary Riemannian covariant derivative

∇kah
t
ij =

∂ah
t
ij

∂xk
+ atkuah

u
ij − aukhau

t
ij − aukiah

t
uj − aukjah

t
iu, (4.15)

the cyclic identity

∇kam
n
ij +∇jam

n
ki +∇iam

n
jk = 0 (4.16)

holds.

Under these conditions, by comparing the Finslerian commutator (4.2) with

the Riemannian precursor (4.13), we obtain

Mn
ij = −ynt t

hah
t
ij (4.17)

and ρk
n
ij =

(
ynh t

h
km − Cn

mk

)
Mm

ij+ynmah
m

ijt
h
k . Inserting here the tensor Cn

mk

taken from (2.15), noting the vanishing lmMm
ij = 0 (see (4.7)), using the equality

gnmymi = p2tjnaij (ensued from (2.10)), and applying the skew-symmetry relation

(2.17), we obtain after short simplifications the representation

ρknij = −(1−H)
1

F
(lkMnij − lnMkij) + p2ahlijt

h
kt

l
n, (4.18)

where ahlij = alrah
r
ij , which entails

ρk
n
ij = −(1−H)

1

F
(lkδ

n
m − lngmk)M

m
ij + ynmah

m
ijt

h
k . (4.19)

The totally contravariant representation ρknij = gpkamianjρp
n
mn reads

ρknij = −(1−H)
1

F
(lkMnij − lnMkij) +

1

p2
ykhy

n
r a

hrij , (4.20)

where ahrij = ahlamianjal
r
mn and Mmij = ahianjMm

hn.



200 G. S. Asanov

Similarly, we can conclude from (4.17) that the tensor Mnij = gnmMm
ij

reads

Mnij = −p2thtmn ahmij . (4.21)

Squaring yields

MnijMnij = p2tlal
nijthahnij . (4.22)

From the representation (4.19) it follows directly that the cyclic identity (4.8)

is a direct consequence of the Riemannian cyclic identity (4.16), for DlF = Dllk =

Dlt
h
k = Dlp = Dlt

m = 0.

Using the representations (4.18) and (4.20), we can square the ρ-tensor, ob-

taining

ρknijρknij = aknijaknij +
2

S2

(
1

H2
− 1

)
tlal

nijthahnij . (4.23)

Because of the transitivity (4.12), from (4.17) it follows that

DlM
n
ij = −ynt t

h∇lah
t
ij (4.24)

and from (4.19) we can conclude that

Dlρk
n
ij = (1−H)

1

F
(lkδ

n
m − lngmk)y

m
t th∇lah

t
ij + ynmthk∇lah

m
ij . (4.25)

5. FS-space example of the space FN

Let us also assume that the manifold M admits a non-vanishing 1-form

b = b(x, y) of the unit norm ‖b‖Riemannian = 1. With respect to natural local coor-

dinates xi we have the local representations b = bi(x)y
i and aij(x)bi(x)bj(x) = 1.

The reciprocity ainanj = δij is assumed, where δij stands for the Kronecker

symbol. The covariant index of the vector bi will be raised by means of the

Riemannian rule bi = aijbj , which inverse reads bi = aijb
j .

We may conveniently use the scalar

q :=
√
aijyiyj − b2. (5.1)

With the variable

w =
q

b
, b > 0, (5.2)

we obtain
∂w

∂yi
=

qei
b2

, ei = −bi +
b

q2
vi, yiei = 0, (5.3)
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where vi = aijy
j − bbi, so that yivi = q2 and bivi = 0.

The Finsler metric function F of the FS-space is specified by (1.21). When

b > 0, we can conveniently use the generating metric function V = V (x,w) to

have the representation

F = bV (x,w). (5.4)

The unit vector lm = ∂F/∂ym is given by lm = bmV + (w2/τ)V em, where

τ =
wV

V ′ , V ′ =
∂V

∂w
. (5.5)

It follows that bmlm = V
(
1− (w2/τ)

)
.

We say that the FS-space is special, if ∂V/∂xn = 0, that is when

V = V (w). (5.6)

Taking two differentiable scalars C = C(x), C1 = C1(x), C > 0, C > |C1|,
we construct the scalars

H =
√
C2 − (C1)2, k̆ =

√
C − C1

C + C1
. (5.7)

Let a positive function µ = µ(x, y) be introduced according to
√
µ = (H/2k̆)

[
1+

k̆2 + (1− k̆2) cos %
]
, where % = %(x, y) is an input scalar. We can write

√
µ = C + C1 cos %. (5.8)

Consider the transformation tm = tm(x, y) with

tm =

[
im sin %+

1

2k̆
[1− k̆2 + (1 + k̆2) cos %]bm

]
H√
µ
FH , (5.9)

where im = (ym − bbm)/q. We have bmim = 0, amni
min = 1, amny

min = q, and

b∗ = (C1 + C cos %)
1√
µ
S, (5.10)

where S =
√
amntmtn and b∗ = tmbm.

The functions (5.9) obviously fulfill the H-degree homogeneity condition

(2.5). The validity of the equality S = FH (see (1.8)) can readily be verified.

The property tm(x, b(x)) ∼ bm(x) holds.
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The following useful equalities can readily be obtained:

cos % = − (1− k̆2)S − (1 + k̆2)b∗

(1 + k̆2)S − (1− k̆2)b∗
,

√
µ =

2Hk̆S

(1 + k̆2)S − (1− k̆2)b∗
,

cos % = −
√
µ

2Hk̆S
[(1− k̆2)S − (1 + k̆2)b∗],

sin2 % = 4k̆2
S2 − (b∗)2[

(1 + k̆2)S − (1− k̆2)b∗
]2 ,

together with
sin2 %

µ
=

1

H2

S2 − (b∗)2

S2
. (5.11)

With these observations, from (5.9) we find that the derivative coefficients

tmk = ∂tm/∂yk can be given by

1

H

√
µtmk =

[
cos %im − 1

2k̆
(1 + k̆2) sin %bm

]
%′
w

b
ekF

H

+ sin %
∂im

∂yk
FH +

[√
µ
1

F
lk +

1

2k̆
(1− k̆2) sin % %′

w

b
ek

]
tm. (5.12)

We can straightforwardly evaluate the contraction amnt
m
k tnh, which leads to

the expression which is a linear combination of gkh, ekeh, lklh, and eklh + ehlk.

To obtain the conformal result, we must achieve cancelation of the terms lklh,

which proves possible if and only if the function µ is taken to be

µ =
1

w2
τ sin2 %, (5.13)

and define the ρ by means of the equation

∂%

∂w
=

1

w

√
τ − w(τ ′ − w)

τ
sin %, (5.14)

where τ ′ = ∂τ/∂w. In so doing, we obtain the representation of the form (2.7)

after required evaluation (which was presented in detail in [10]).

Therefore, the following assertion is valid.

Proposition 5.1. With choosing the function µ to be given by (5.13) and

subjecting the function % to the equation (5.14), the transformation tm = tm(x, y)

introduced by (5.9) fulfills the input stipulations (2.1)–(2.3).
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Under these conditions, evaluation of the coefficients Nm
i leads to the follo-

wing proposition.

Proposition 5.2. If in the special case of the FS-space the transformation

(5.9) obeys (2.1)–(2.3), then the coefficients (2.30) can explicitly be given by

means of the representation

Nm
i =

1

H

1

q
(yh∇ibh)m

m − 1

H

√
B −H2q2 βm

i

− (yh∇ibh)b
m + b∇ib

m − amihy
h, (5.15)

with

mm =
w√

τ − w(τ ′ − w)

[
ym − B

q2
(ym − bbm)

]
(5.16)

and

βm
i = ∇ib

m − 1

q2
(yh∇ibh) (y

m − bbm) , B = b2τ, (5.17)

whenever H = const.

The following proposition is valid.

Proposition 5.3. The transformation (5.9) fulfills (2.1)–(2.3) iff

τ = C̆2 + 2C̆
√
1−H2 w + w2. (5.18)

It follows that τ − w(τ ′ − w) = C̆2. In these formulas, C̆ is an integration

scalar C̆ = C̆(x). It can readily be seen that when |C̆| 6= 1, the entailed Finsler

metric function F can vanish at various values of tangent vectors y. To agree

with the condition that F vanishes only at zero-vectors y = 0, we admit strictly

the particular values C̆ = 1 and C̆ = −1. In this case we can write the above τ

as follows:

τ = 1 + gw + w2, −2 < g < 2. (5.19)

Generally, the g may depend on x. We obtain

B −H2q2 =

(
b+

1

2
gq

)2

. (5.20)

The function τ given by (5.19) represents the FFPD
g -Finsleroid space descri-

bed in [7]. To comply with the representations used in [7], we should replace the

notation H by the notation h:

h =

√
1− g2

4
. (5.21)
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The g plays the role of the characteristic parameter. The FFPD
g -Finsleroid metric

function K can be given as it follows:

K =
√
B J, with J = e−

1
2 gχ, (5.22)

where

χ =
1

h

(
− arctan

G

2
+ arctan

L

hb

)
, if b ≥ 0;

χ =
1

h

(
π − arctan

G

2
+ arctan

L

hb

)
, if b ≤ 0, (5.23)

with the function L = q + (g/2)b fulfilling the identity L2 + h2b2 = B, with B

issuing from (5.20):

B = b2 + gbq + q2; (5.24)

G = g/h. The definition range 0 ≤ χ ≤ π/h is of value to describe all the tangent

space. The normalization in (5.23) is such that χ
∣∣
y=b

= 0. The quantity χ can

conveniently be written as

χ =
1

h
f (5.25)

with the function

f = arccos
A(x, y)√
B(x, y)

, A = b+
1

2
gq, (5.26)

ranging as follows:

0 ≤ f ≤ π. (5.27)

The function K is the solution for the equation (5.19).

The Finsleroid-axis vector bi relates to the value f = 0, and the opposed

vector −bi relates to the value f = π: f = 0 ∼ y = b; f = π ∼ y = −b. The

normalization is such that K(x, b(x)) = 1 (notice that q = 0 at yi = bi). The

positive (not absolute) homogeneity holds: K(x, γy) = γK(x, y) for any γ > 0

and all admissible (x, y).

The entailed components yi = (1/2)∂K2/∂yi, gij = (1/2)∂2K2/∂yi∂yj , and

Ai = K∂ ln(
√
det(gij))/∂y

i can readily found, yielding

yi =(aijy
j + gqbi)J

2, det(gij)=

(
K2

B

)N

det(aij)> 0, AiAi =
N2g2

4
. (5.28)

The vector (5.16) reduces to

mm = w

[
ym − B

q2
(ym − bbm)

]
≡ Cm

√
gkhCkCh

.
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Under these conditions, we obtain the FFPD
g -Finsleroid space

FFPD
g := {M ; aij(x); bi(x); g(x); K(x, y)}. (5.29)

Within any tangent space TxM , the metric function K(x, y) produces the

FFPD
g -Finsleroid FFPD

g; {x} := {y ∈ FFPD
g; {x} : y ∈ TxM,K(x, y) ≤ 1}, which is

an extension of the Euclidean unit ball. The FFPD
g -Indicatrix IFPD

g; {x} ⊂ TxM

is the boundary of the FFPD
g -Finsleroid, that is,

IFPD
g {x} := {y ∈ IFPD

g {x} : y ∈ TxM,K(x, y) = 1}. (5.30)

The scalar g(x) is called the Finsleroid charge. The 1-form b = bi(x)y
i is called

the Finsleroid-axis 1-form.

In this case, with the tensor

Hmj := gmj − lmlj −mmmj , (5.31)

the coefficients (5.15) take on the form

Nm
i = −lm

∂K

∂xi
+

[(
b− 1

h

(
b+

g

2
q
))

HmjK
2

B

+

(
1

hq
− b2 + q2

qB

)
Kmmyj

]
∇ibj − hm

t atijy
j , (5.32)

where hm
t = δmt − lmlt (see [10]).

In the dimension N = 2 we would have Hmj = 0.

Regarding regularity of the global y-dependence, it should be noted that the

FFPD
g -Finsleroid metric function K given by the formulas (5.21)–(5.25) involves

the scalar q =
√
rmnymyn with rmn = amn − bmbn. Since the 1-form b is of the

unit norm ‖b‖ = 1, the scalar q is zero when y = b or y = −b, that is, in the

directions of the north pole or the south pole of the Finsleroid. The derivatives

of K may involve the fraction 1/q which gives rise to the pole singularities when

q = 0. This just happens in the right-hand part of the representation (5.32) for

the coefficients Nm
i.

Therefore, we may apply the coefficients on but the b-slit tangent bundle

TbM := TM \ 0 \ b \ −b (obtained by deleting out in TM \ 0 all the directions

which point along, or oppose, the directions given rise to by the 1-form b), on

which the coefficients Nm
i, as well as the function K, are smooth of the class C∞

regarding the y-dependence. On the punctured tangent bundle TM \0, the metric
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function K is smooth globally of the class C2 and not of the class C3 regarding

the y-dependence. With the function (5.19) the equation (5.14) can readily be

solved, leading to the conclusion the the transformation angle ρ entered (5.9) is

given by the function f which was indicated in (5.25)–(5.26), so that

ρ = f ≡ − h

2N
√
1− h2

ln

(
det(gij)

det(amn)

)
. (5.33)

We obtain sin % = hq/
√
B and cos % = (b + (1/2)gq)/

√
B. The function (5.13)

becomes the constant, namely µ = h2, so that from (5.8) we may conclude that

C1 = 0. The transformation (5.9) reduces to

tm =

[
h(ym − bbm) +

(
b+

1

2
gq

)
bm

]
Kh

√
B
. (5.34)

Thus we have

Proposition 5.4. In the FFPD
g -Finsleroid space the transformation (5.34)

fulfills the stipulations (2.1)–(2.3). When h = const, the coefficients (2.30) of the

angle-preserving connection can explicitly be given by means of the representation

(5.31)–(5.32).

The tm of (5.34) is equivalent to the ζm of (6.26) of [7]. The coefficients

(5.32) are equivalent to (6.62) of [7]. Therefore, with the substitution ζm = tm all

the relations among curvature tensors which were established in [7] are applicable

to the approach developed in the present section,

With respect to the unit vectors {lm,mm}, (5.34) is the linear expansion

tm = (T1l
m + T2m

m)
K2

B

Kh−1

√
B

, (5.35)

where

T1 = −(1− h)q2 +B +
1

2
gq(b+ gq), T2 =

(
(1− h)b+

1

2
gq

)
q. (5.36)

6. Conclusions

In the two-dimensional approach, N = 2, the general representation for the

coefficients Nm
i = Nm

i(x, y) entailing the property of preservation of two-vector

angle can be indicated locally for arbitrary sufficiently smooth Finsler metric func-

tion [8], [9]. Such a general possibility can doubtfully be meet in the dimensions

N ≥ 3, for in these dimensions the two-vector is of complicated nature except for

rare particular cases. However, the lucky cases are just proposed by the Finsler
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spaces which can be characterized by the constancy of the indicatrix curvature.

The respective two-vector angle is explicit, namely is given by the simple formu-

las (1.7) and (2.27)–(2.28). In each tangent space, the indicatrix curvature value

CInd. = H2 is obtained and the relevant conformal multiplier is given by p2 with

p = (1/H)F 1−H . The H plays also the role of the homogeneity degree of the

involved transformation to the Riemannian space.

In the indicatrix-homogeneous case, the required connection coefficients are

presented by the pair {N j
i, D

j
ik}, where Dj

ik = −∂N j
i/∂y

k. The equality

N j
i = −Dj

iky
k holds.

In the Riemannian geometry the two-vector angle is αRiem
{x} (y1, y2) =

amn(x)y
m
1 yn2 /S1S2, where S1 =

√
amn(x)ym1 yn1 and S2 =

√
amn(x)ym2 yn2 . Start-

ing with the fundamental property of the metrical linear Riemannian connection

that the Riemannian angle is preserving under the parallel displacements of the

involved vectors, which in terms of our notation can be written as

dRiem
i αRiem

{x} (y1, y2) = 0, y1, y2 ∈ TxM,

with

dRiem
i =

∂

∂xi
+ Lk

i(x, y1)
∂

∂yk1
+ Lk

i(x, y2)
∂

∂yk2
,

where Lk
i(x, y1) = −akij(x)y

j
1, L

k
i(x, y2) = −akij(x)y

j
2, and akij are the Rie-

mannian Christoffel symbols fulfilling the Riemannian Levi–Civita connection,

the important question can be set forth: Can we have the similar vanishing

in the Finsler space? It proves that the respective extension of the Riemann-

ian equation dRiem
i αRiem = 0 to the equation diα = 0 applicable to the Finsler

space under consideration can straightforwardly be solved giving the required

coefficients N j
i indicated in (2.30). They admit the remarkable alternative rep-

resentation Nn
i = dRiem

i yn (see (1.20)). In this way we obtain the connection

{N j
i, D

j
ik} which is metrical and simultaneously angle-preserving. The key va-

nishing ykN
k
mnj = 0 holds fine.

Remarkably, the Finsler connection presented by this pair {N j
i, D

j
ik} is

the image of the metrical linear Riemannian connection under the desired trans-

formations. When going from the considered Finsler space to the underlined

Riemannian space, the covariant derivative behaves transitively and the non-

linear deformation which materializes the transformation is parallel. In particu-

lar, the Riemannian vanishing dRiem
m S = 0 just entails the Finslerian counterpart

dmF = 0.

Also, the involved coefficients Nm
i fulfill the representation

Nk
mnj = −DmCk

nj (see Proposition 3.2). Just the same representation is valid
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in the two-dimensional Finsler spaces (see (2.14) in [8], [9]). Is the equation

∂2Nk
m

∂yn∂yj
= −DmCk

nj

meaningful in other (in any?) Finsler spaces to find the coefficients Nk
m required

to preserve the two-vector angle? The question is addressed to readers.

The curvature tensor ρk
n
ij has been explicated from commutators of ari-

sen covariant derivatives which is attractive to develop in future the theory of

curvature for the Finsler space FN .

For the FS-space specialized by (1.21) we have got at our disposal the simple

example of the parallel deformation transformation, namely proposing by (5.9),

which entails the coefficients Nm
i possessing the property of angle preservation.

The coefficients are given by the explicit representation (5.15)–(5.17), which ad-

mits the alternative form (5.31)–(5.32). The space proves to be of the Finsleroid

type, with the Finsleroid characteristic parameter g manifesting the meaning:

h =
√
1− (g2/4) is the homogeneity degree (denoted above by H) of the under-

lined transformations.

The Finsleroid metric function K when considered on the b-slit tangent

bundle TbM := TM \ 0 \ b \ −b is smooth of the class C∞ regarding the glo-

bal y-dependence. The same regularity property is valid for the coefficients Nm
i

given by (5.32).
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[3] L. Kozma and L. Tamássy, Finsler geometry without line elements faced to applications,
Rep. Math. Phys. 51 (2003), 233–250.
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[5] Z. L. Szabó, All regular Landsberg metrics are Berwald, Ann. Glob. Anal. Geom. 34
(2008), 381–386.
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