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Abstract. Since their introduction by Rényi more than fifty years ago, the in-

vestigation of expansions in noninteger bases led to a number of deep and unexpected

results. Some of them led to the necessity to study expansions in integer bases on an

enlarged alphabet containing the base itself as a possible digit. We show in the present

paper how certain recent theorems change in this framework.

1. Introduction

Beginning with Rényi [20] many works have been devoted to expansions of

the form

x =

∞∑

i=1

ci
qi

(1.1)

in arbitrary real bases q > 1 with integer digits satisfying 0 ≤ ci < q. It is easy to

see that a real number x has an expansion if and only if it belongs to the closed

interval

Jq :=

[
0,

dqe − 1

q − 1

]
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where dqe stands for the upper integer part of q.1

The case of integer bases is of course well-known: Jq = [0, 1] and the expan-

sion of every x ∈ [0, 1] is unique, except if x = m/qn for some positive integers

m and n. These exceptional numbers x have exactly two expansions: a finite

one ending with 0∞ and an infinite one ending with (q − 1)∞. In particular, the

set Uq of numbers x having a unique expansion is a nonclosed set of Hausdorff

dimension one, having full Lebesgue measure in Jq.

For noninteger bases the situation is radically different. The set Uq has

Hausdorff dimension strictly smaller than one and hence zero Lebesgue measure,

but it is still an uncountable set. Furthermore, Uq is closed for almost all values

of q, the exceptional bases forming a Cantor set of Hausdorff dimension one but

of zero Lebesgue measure. Moreover, the set B of bases for which Uq is a Cantor

set has both interior and exterior points, i.e., both B and (1,∞) \ B contain

nondegenerate intervals. In cases where Uq is not closed, Uq \ Uq is a countably

infinite set, each x ∈ Uq \ Uq has countably many expansions, all of which are

explicitly known. We refer to [2], [3], [4], [10], [11], [12], [13], [14], [17] for details.

Sometimes more elegant results are obtained by considering expansions (1.1)

with integer digits satisfying 0 ≤ ci ≤ q (the two definitions differ only for integer

bases q). Then Jq is replaced by

J∗
q :=

[
0,

bqc
q − 1

]

where bqc denotes the lower integer part of q as introduced above. The purpose

of this work is to investigate the modified univoque sets U∗
q for integer bases by

using this extended alphabet. It turns out that their stucture is different from

the usual case.

As we will see, the cases q = 2 and q > 2 are quite different.

Throughout this paper, the index set for all sequences is the set of positive

integers: (ci) = (ci)
∞
i=1, (αi) = (αi)

∞
i=1, and so on. Hence we will often omit the

indication of the index set.

2. Review of univoque bases

In this section we recall some results from [14]–[16]. Given a real number

q > 1 we consider expansions in base q on the alphabet {0, . . . , dqe − 1}, i.e.

1If q is not integer, then its lower and upper integer parts are by definition the consecutive

integers satisfying the inequalities bqc < q < dqe. If q is integer, then we define bqc = dqe := q.
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equalities of the form

x =
c1
q

+
c2
q2

+ . . . (2.1)

with integer digits satisfying 0 ≤ ci < q. A real number x has at least one

expansion if and only if

0 ≤ x ≤ dqe − 1

q − 1
.

We say that q is a univoque base if x = 1 has only one expansion in base q.

The integer bases are univoque, but there exist other univoque bases too. In

order to characterize them, it is convenient to introduce a particular expansion

(αi) = (αi)
∞
i=1 of x = 1 in each fixed base q > 1 by the following algorithm: if αn

has already been defined for some n ≥ 1 (no hypothesis if n = 0), then let αn+1

be the biggest nonnegative integer satisfying

α1

q
+ · · ·+ αn+1

qn+1
< 1.

It is called the quasi-greedy expansion of 1 in base q.

Remark 2.1. The sequence (αi) always has the following two properties:

(a) α1 = dqe − 1 is the biggest element of the alphabet;

(b) we have (αn+i) ≤ (αi) for all n in the lexicographic sense.

In the following theorem and in the sequel we define the conjugate of a digit

ci by ci := α1 − ci.

Theorem 2.2 ([15, Theorem 3.1]). A base q > 1 is univoque if and only if

the following lexicographic inequalities are satisfied:

(αn+i) < (αi) whenever αn < α1;

(αn+i) < (αi) whenever αn > 0.

For example, the periodical sequence (ci)
∞
i=1 := 1(10)∞ is the unique expan-

sion of x = 1 in the base defined by the equality (2.1).

The sequence (αi) also allows us to characterize the closure U of the set U
of univoque bases:

Theorem 2.3 ([16, Theorem 2.4]). A base q > 1 belongs to U if and only if

(αn+i) < (αi) whenever αn > 0.
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Comparing the above two theorems it is natural to investigate also the set

V of bases q for which the second lexicographic inequality is satisfied only in the

weaker sense:

(αn+i) ≤ (αi) whenever αn > 0.

The topological properties of these sets are summarized in the following re-

sult:

Theorem 2.4 ([16, Theorem 2.5, 2.6]).

(a) We have U ⊂ U ⊂ V = V. All these sets have zero Lebesgue measure and

Hausdorff dimension one.

(b) U \ U is a countable dense set in U and therefore U is a Cantor set.

(c) V is a closed set and V \ U is a discrete set, dense in V.
(d) The set of expansions of x = 1 is countably infinite in each base q ∈ V \ U .

Remarks 2.5.

(a) The smallest element of V is the golden ratio.

(b) U has a smallest element: the now so-called Komornik–Loreti constant is a

transcendental number, its approximate value is 1.787.

Example 2.6. If the base q is an integer, then the quasi-greedy expansion of

x = 1 is given by αi = q − 1 for all i. It follows from Theorem 2.2 that q ∈ U .

3. Review of unique expansions

In this section we recall some results from [4]. Given a real number q > 1 we

consider again expansions in base q on the alphabet {0, . . . , dqe − 1}, i.e. equalities
of the form

x =
c1
q

+
c2
q2

+ . . . (3.1)

with integer digits satisfying 0 ≤ ci < q. We denote by Uq the set of real numbers

x which have only one expansion in base q. For example, 1 ∈ Uq if and only if

q ∈ U .
Using the sequence (αi) introduced in the preceding section, the following

characterization of Uq is an easy corollary of a classical theorem of Parry [18]:

Theorem 3.1 ([4, Theorem 1.1 (ii)]). Given a base q > 1 and an expansion

(3.1), we have x ∈ Uq if and only if the following two lexicographic conditions are

satisfied:

(cn+i) < (αi) whenever cn < α1;
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(cn+i) < (αi) whenever cn > 0.

The set Uq is closed for almost every base q with respect to the Lebesgue

measure. More precisely and rather surprisingly, Uq is closed if and only if q /∈ U .
In order to get a complete picture we define the quasi-greedy expansion of every

real number

0 < x ≤ dqe − 1

q − 1

in base q by the following algorithm: if an(x) has already been defined for some

n ≥ 1 (no hypothesis if n = 0), then let an+1(x) be the biggest nonnegative

integer satisfying
a1(x)

q
+ · · ·+ an+1(x)

qn+1
< x.

Furthermore, it is convenient to set (ai(x)) := 0∞ if x = 0.

Remark 3.2. All quasi-greedy expansions satisfy the condition

(an+i(x)) ≤ (αi) whenever an(x) < α1.

Next, analogously to the preceding section, we write x ∈ Vq if

(an+i(x)) ≤ (αi) whenever an(x) > 0.

Similarly to Theorem 2.4 (a) we have always Uq ⊂ Uq ⊂ Vq = Vq. However,

the finer picture depends on the given value of q. The following results were given

in [4, Theorems 1.3, 1.4, 1.5] and in the remarks following their statements.

Theorem 3.3.

(a) If q ∈ U , then Uq = Vq and Vq \ Uq is a countable dense set in Vq.

(b) If q ∈ V \ U , then Uq is closed: Uq = Uq, and Vq \ Uq is a discrete set, dense

in Vq.

(c) If q ∈ (1,∞) \ V, then the sets Uq and Vq are closed and equal: Uq = Uq =

Vq = Vq.

We have, moreover, the following result concerning the number of expansions

of any x ∈ Vq:

Theorem 3.4.

(a) If q ∈ U , then each x ∈ Vq \ Uq has exactly two expansions.

(b) If q ∈ V \ U , then the set of expansions of each x ∈ Vq \ Uq is countably

infinite.
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Since the integer bases are univoque, we have the following:

Corollary 3.5. Let q ≥ 2 be an integer. Then

(a) Uq = Vq = [0, 1], and Vq \ Uq is a countable dense set in Vq;

(b) each x ∈ Vq \ Uq has exactly two expansions.

The corollary follows at once from the well-known fact that all numbers

x ∈ [0, 1] belong to Uq except countably many rational numbers 0 < x < 1 of the

form x = m
qn with positive integers m and n, for which there are two expansions

ending with 0∞ and (q − 1)∞, respectively.

In the following two sections we investigate what happens with this corollary

if we consider the expansions over the enlarged alphabet {0, . . . , q}.

4. Unique expansions in integer bases with enlarged alphabets

Fix an integer q ≥ 2 and consider the expansions

x =
c1
q

+
c2
q2

+ . . .

on the alphabet {0, 1, . . . , q}. In order to have an expansion, now x has to belong

to the interval

J∗
q :=

[
0,

q

q − 1

]
.

Conversely, each x ∈ J∗
q has at least one expansion, given for example the follo-

wing modification of the quasi-greedy expansion (ai(x)) of the preceding section.

The quasi-greedy expansion of x = 0 is by definition 0∞. If x > 0 and if an(x) has

already been defined for some n ≥ 1 (no hypothesis if n = 0), then let an+1(x)

be the biggest element of {0, 1, . . . , q} satisfying the inequality

a1(x)

q
+ · · ·+ an+1(x)

qn+1
< x.

Remark 4.1. As a special case of a more general result in [1], all quasi-greedy

expansions satisfy the condition

(an+i(x)) ≤ (q − 1)∞ whenever an(x) < q,

and conversely, every infinite sequence (ci) satisfying the condition

(cn+i) ≤ (q − 1)∞ whenever cn < q

is the quasi-greedy expansion of a suitable real number x.
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Let us denote by U∗
q the set of numbers x ∈ J∗

q having a unique expansion

in base q with digits belonging to the enlarged alphabet {0, 1, . . . , q}. Instead of

Theorem 3.1 we have the following theorem (see also [19]):

Theorem 4.2. We have x ∈ U∗
q if and only if the following two lexicographic

conditions are satisfied:

(cn+i) < (q − 1)∞ whenever cn < q;

(q − cn+i) < (q − 1)∞ whenever cn > 0.

Proof. If (cn+i) ≥ (q − 1)∞ for some cn < q, then another expansion of x

is given by (di) where di = ci for all i < n, dn = cn+1, and (dn+i) is an arbitrary

expansion of

y := qn
(
x− c1

q
− · · · − cn−1

qn−1
− cn + 1

qn

)
.

Such an expansion exists because

y = qn

(( ∞∑

i=n+1

ci
qi

)
− 1

qn

)
=

( ∞∑

i=1

cn+i

qi

)
− 1 ∈ J∗

q ;

the crucial inequality y ≥ 0 follows from the condition (cn+i) ≥ (q−1)∞. Indeed,

if (cn+i) = (q − 1)∞, then we have

y =
q − 1

q − 1
− 1 = 0;

otherwise there is a first digit cn+m = q and then

y ≥
(

m∑

i=1

cn+i

qi

)
− 1 = 0.

Similarly, if (q − cn+i) ≥ (q − 1)∞ for some cn > 0, then another expansion

of x is given by (di) where di = ci for all i < n, dn = cn − 1, and (dn+i) is an

arbitrary expansion of

z := qn
(
x− c1

q
− · · · − cn−1

qn−1
− cn − 1

qn

)
.

Such an expansion exists because

z = qn

(( ∞∑

i=n+1

ci
qi

)
+

1

qn

)
=

( ∞∑

i=1

cn+i

qi

)
+ 1 ∈ J∗

q ;
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the crucial inequality z ≤ q
q−1 follows from the condition (q − cn+i) ≥ (q − 1)∞.

Indeed, if (q − cn+i) = (q − 1)∞, then we have

z =
1

q − 1
+ 1 =

q

q − 1
;

otherwise there is a first digit cn+m = 0 and then

z ≤
(

m−1∑

i=1

1

qi

)
+

( ∞∑

i=m+1

q

qi

)
+ 1 =

( ∞∑

i=1

1

qi

)
+ 1 =

1

q − 1
+ 1 =

q

q − 1
.

Now assume that both lexicographic conditions are satisfied and let (di) be

an arbitrary sequence on the alphabet {0, . . . , q}. We claim that if (di) 6= (ci),

then ∞∑

i=1

di
qi

6=
∞∑

i=1

ci
qi
.

To prove this we consider the first index n at which the sequences differ: di = ci
for all i < n but dn 6= cn.

If dn > cn, then cn < q. It follows from our first lexicographic assumption

that if cn < q for some n, then ci < q for all i > n too. Since, moreover, the

equality (cn+i) = (q − 1)∞ is also excluded, it follows that

∞∑

i=1

ci
qi

<

(
n∑

i=1

ci
qi

)
+

( ∞∑

i=n+1

q − 1

qi

)
=

c1
q

+ · · ·+ cn−1

qn−1
+

cn + 1

qn
≤

∞∑

i=1

di
qi
.

If dn < cn, then cn > 0. It follows from our second lexicographic assumption

that if cn > 0 for some n, then ci > 0 for all i > n too. Since, moreover, the

equality (q − cn+i) = (q − 1)∞, i.e., (cn+i) = 1∞ is also excluded, it follows that

∞∑

i=1

ci
qi

>

(
n∑

i=1

ci
qi

)
+

( ∞∑

i=n+1

1

qi

)

=
c1
q

+ · · ·+ cn−1

qn−1
+

cn − 1

qn
+

( ∞∑

i=n+1

q

qi

)
≥

∞∑

i=1

di
qi
. ¤

Remarks 4.3.

(a) Since the sequence (q − 1)∞ does not satisfy the first condition (we have

equalities instead of strict inequalities), the expansion of x = 1 is not unique

in base q any more if we use the enlarged alphabet {0, 1, . . . , q} instead of

the earlier digit set {0, 1, . . . , q − 1}. Indeed, it is straightforward to check

that x = 1 has for example the different expansions

q − 1

q
+

q − 1

q2
+

q − 1

q3
+ · · · = q

q
+

0

q2
+

0

q3
+ . . . .
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(b) The list of all expansions of x = 1 in integer bases for the enlarged alphabet

has been determined in [16]:

– in base q = 2 the expansions of x = 1 are 1∞ and the sequences

1n20∞ and 1n02∞, n = 0, 1, . . . ;

– in bases q = 3, 4, . . . the expansions of x = 1 are (q − 1)∞ and the

sequences

(q − 1)nq0∞, n = 0, 1, . . . .

Now, analogously to the preceding section, we write x ∈ V∗
q if, using the

notation (ai(x)) for the quasi-greedy expansion of x,

(q − an+i(x)) ≤ (q − 1)∞ whenever an(x) > 0

or equivalently

(an+i(x)) ≥ 1∞ whenever an(x) > 0.

In the next two sections we clarify the structure of these new sets U∗
q and

V∗
q . As we will see, the cases q = 2 and q ≥ 3 are rather different.

It will be convenient to use in the sequel the following notations: we denote

by U ′∗
q (resp. by V ′∗

q ) the set of quasi-greedy expansions of the numbers of U∗
q

(resp. of V∗
q ) on the alphabet {0, . . . , q}. It follows from Theorem 4.2 and from

the definition of V∗
q that a sequence (ci) on the alphabet {0, . . . , q} belongs to U ′∗

q

if and only if

(cn+i) < (q − 1)∞ whenever cn < q (4.1)

and

(cn+i) > 1∞ whenever cn > 0, (4.2)

and it belongs to V ′∗
q if and only if

(cn+i) ≤ (q − 1)∞ whenever cn < q (4.3)

and

(cn+i) ≥ 1∞ whenever cn > 0. (4.4)

5. Unique expansions in base q = 2 with digits 0, 1, 2

If we add the new digit 2 in base q = 2, then we have the following variant

of Corollary 3.5:

Proposition 5.1. We consider the expansions in base q = 2 on the alphabet

{0, 1, 2}.
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(a) We have

U∗
2 = {0, 2} and V∗

2 = {0, 1, 2} ∪ {
2−N , 2− 2−N : N = 1, 2, . . .

}
.

Hence both U∗
2 and V∗

2 are countable closed sets, and V∗
2 \ U∗

2 is a countable

discrete set, dense in V∗
2 .

(b) The set of expansions of each x ∈ V∗
2 \ U∗

2 is countably infinite.

The following proof will also provide the lists of all expansions in part (b).

Proof.

(a) By definition (see (4.3)–(4.4)) V ′∗
2 consists of the sequences (ci) on the

alphabet {0, 1, 2} satisfying

(cn+i) ≤ 1∞ whenever cn < 2

and

(cn+i) ≥ 1∞ whenever cn > 0.

Hence if (ci) ∈ V ′∗
2 , then each 1 digit is followed by another 1 digit, and (ci) cannot

contain both 0 and 2 digits. This leaves us only the possibilities 0∞, 1∞, 2∞,

0N1∞ (N = 1, 2, . . . ) and 2N1∞ (N = 1, 2, . . . ), and a direct inspection shows

that they belong to V ′∗
2 indeed. Hence

V∗
2 = {0, 2} ∪ {

2−N , 2− 2−N : N = 0, 1, . . .
}

which is equivalent to the first statement on V∗
2 .

It is clear that 0, 2 ∈ U∗
2 . The other elements of V∗

2 are not univoque. Indeed,

for any fixed N = 0, 1, . . . , two different expansions of 2−N and of 2 − 2−N are

given by the equalities
1

2N
=

1

2N+1
+

1

2N+2
+ . . .

and

2

2
+ · · ·+ 2

2N−1
+

1

2N
+

2

2N+1
+

2

2N+2
+ . . .

=
2

2
+ · · ·+ 2

2N−1
+

2

2N
+

1

2N+1
+

1

2N+2
+ . . . .

Hence U∗
2 = {0, 2}.

The rest of part (a) readily follows from these explicit descriptions.

(b) We recall from Remark 4.3 (b) that the list of all expansions of x = 1 is

given by 1∞ and the sequences

1n20∞ and 1n02∞, n = 0, 1, . . . .
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Now fix a positive integer N . Every expansion (ci) of x = 2−N must begin with

c1 = · · · = cN−1 = 0 and cN ∈ {0, 1}. If cN = 1, then we have necessarily ci = 0

for all i 6= N . Otherwise cN+1, cN+2, . . . is an expansion of x = 1. Using the list

of expansions of x = 1 we conclude that the list of all expansions of x = 2−N is

given by 0N−110∞, 0N1∞ and the sequences

0N1n20∞ and 0N1n02∞, n = 0, 1, . . . .

Furthermore, (ci) is an expansion of 2 − 2−N if and only if (2 − ci) is an

expansion of 2−N . Using this correspondence we conclude from the preceding

result that the list of all expansions of x = 2− 2−N is given by 2N−112∞, 2N1∞

and the sequences

2N1n02∞ and 2N1n20∞, n = 0, 1, . . . .

In particular, the set of expansions of each x ∈ V∗
2 \ U∗

2 is countably infinite. ¤

6. Unique expansions in bases q = 3, 4, . . . with digits 0, 1, . . . , q

For q = 3, 4, . . . we have the following variant of Corollary 3.5 for the enlarged

digit set {0, 1, . . . , q}. We recall that a Cantor set is a nonempty set having neither

interior, nor isolated points.

Theorem 6.1. Let q ≥ 3 be an integer and consider the expansions in base

q on the alphabet {0, 1, . . . , q}.
(a) U∗

q = V∗
q is a Cantor set, and V∗

q \ U∗
q is a countable dense set in V∗

q .

(b) The set of expansions of each x ∈ V∗
q \ U∗

q is countably infinite.

(c) Both U∗
q and V∗

q have Hausdorff dimension log(q−1)
log q and hence zero Lebesgue

measure.

Remarks 6.2.

(a) The results differ very much from Corollary 3.5. Indeed, for the original digit

set {0, 1, . . . , q − 1}
– Uq = Vq = [0, 1] is not a Cantor set because it has interior points;

– Uq and Vq have full Lebesgue measure and Hausdorff dimension one;

– each x ∈ Vq \ Uq has exactly two expansions.

(b) The proof of the theorem will also provide the lists of all expansions in part

(b) of the theorem.



262 Martine Baatz and Vilmos Komornik

Lemma 6.3.

(a) V ′∗
q consists of 0∞, q∞ and of the sequences on the alphabet {1, . . . , q − 1}

preceded by 0n or qn for some nonnegative integer n.

(b) U ′∗
q consists of the elements of V ′∗

q which do not end with 1∞ or (q − 1)∞.

(c) V ′∗
q \ U ′∗

q consists of the elements of V ′∗
q which end with 1∞ or (q − 1)∞.

Proof. (a) If a sequence (ci) on the alphabet {0, 1, . . . , q} belongs to V ′∗
q ,

then it follows from (4.3)–(4.4) that

• after a nonzero digit we never have a zero digit;

• after a digit different from q we never have a digit q.

This leaves only the candidates 0∞, q∞ and 0ncn+1cn+2 . . . and qncn+1cn+2 . . .

with n = 0, 1, . . . and 0 < ci < q for all i > n. Conversely, all these sequences

satisfy (4.3)–(4.4), so that they belong to V ′∗
q indeed.

(b) The comparison of conditions (4.1)–(4.2) and (4.3)–(4.4) shows that U ′∗
q ⊂

V ′∗
q . The assertion now follows from part (a) and from conditions (4.1)–(4.2).

(c) This follows from parts (a) and (b). ¤

Proof of Theorem 6.1. (a) In order to prove that V∗
q is closed we show

that J∗
q \ V∗

q is open. Since V∗
q is symmetric with respect to the midpoint of J∗

q

by its definition, it is sufficient to find for each x ∈ J∗
q \ V∗

q a point y < x such

that (y, x]∩V∗
q = ∅. So fix x ∈ J∗

q \V∗
q arbitrarily and let (ai) be its quasi-greedy

expansion. Since x /∈ V∗
q , there exists n such that an > 0 and (an+i) < 1∞. Fix

m > n such that am = 0 and set

y :=

m∑

i=1

ai
qi
.

Since (ai) is an infinite sequence, we have y < x, and the quasi-greedy expansion

of every z ∈ (y, x] begins with a1 . . . am. Hence (an+i(z)) < 1∞ and therefore

z /∈ V∗
q .

It follows from Lemma 6.3 that U∗
q ⊂ V∗

q and that V∗
q \ U∗

q is countably

infinite.

Next we show that both U∗
q and V∗

q \ U∗
q are dense in V∗

q . Given (ci) ∈ V ′∗
q

and

x :=

∞∑

i=1

ci
qi

∈ V∗
q

arbitrarily, it follows from Lemma 6.3 that the formulae

xk :=
c1
q

+ · · ·+ ck
qk

+
1

qk+1
+

q − 1

qk+2
+

1

qk+3
+

q − 1

qk+4
+ . . . ,
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yk :=
c1
q

+ · · ·+ ck
qk

+
1

qk+1
+

1

qk+2
+

1

qk+3
+

1

qk+4
+ . . .

and

zk :=
c1
q

+ · · ·+ ck
qk

+
q − 1

qk+1
+

q − 1

qk+2
+

q − 1

qk+3
+

q − 1

qk+4
+ . . .

define three sequences (xk) ∈ U∗
q and (yk), (zk) ∈ V∗

q \ U∗
q converging to x. This

shows that both U∗
q and V∗

q \ U∗
q are dense in V∗

q .

It follows also from this proof that V∗
q \ U∗

q has no isolated points. Indeed, if

x ∈ V∗
q \ U∗

q , then (ci) ends either with 1∞ or (q − 1)∞. In the first case zk 6= x

for all k, while in the second case yk 6= x for all k. Hence its closure V∗
q has no

isolated points either.

For the Cantor property it remains to prove that V∗
q has no interior points.

Consider an element (ci) of V ′∗
q for which 1 ≤ ci ≤ q − 1 for all i > n. If we

insert between ck and ck+1 a zero digit, then for every k > n we obtain the quasi-

greedy expansion of a number xk (by Remark 4.1) which does not belong to V∗
q

by Lemma 6.3 (a). Since

xk → x :=
c1
q

+
c2
q2

+ · · · ∈ V∗
q ,

this shows that x is not an interior point of V∗
q . We have thus shown that the

interior of V∗
q is a subset of

{
0, q

q−1

}
. If one of these two points would belong to

the interior of V∗
q , then it would be an isolated point of V∗

q , which we have already

excluded. Hence V∗
q has no interior points.

(b) Let (ci) ∈ V ′∗
q \ U ′∗

q be the quasi-greedy expansion of some x ∈ V∗
q \ U∗

q .

Then by Lemma 6.3 (c) there exist two integers m ≥ k ≥ 0 such that 0 < ci < q

for i = k + 1, . . . ,m, and that the remaining digits satisfy one of the following

four conditions:

ci = 0 for all i ≤ k and ci = q − 1 for all i > m;

ci = q for all i ≤ k and ci = q − 1 for all i > m;

ci = 0 for all i ≤ k and ci = 1 for all i > m;

ci = q for all i ≤ k and ci = 1 for all i > m.

By taking the minimal possible value of m we may also assume that in case m > 1

we have cm 6= cm+1.

First we consider the cases where cm+1 = q − 1. Let (di) be an arbitrary

sequence on the alphabet {0, 1, . . . , q}. Using the equality

q − 1

q
+

q − 1

q2
+ · · · = 1
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we see that
d1
q

+
d2
q2

+ · · · = x

can only happen if di = ci for all i < m, and dm ∈ {cm, cm + 1}. Indeed:
• if di = ci for all i < n and dn < cn for some n ≤ m, then

d1
q

+
d2
q2

+ . . . ≤ c1
q

+ · · ·+ cn−1

qn−1
+

cn − 1

qn
+

q − 1

qn+1
+

q − 1

qn+2
+ . . .

=
c1
q

+ · · ·+ cn−1

qn−1
+

cn
qn

< x;

• if di = ci for all i < n and dn > cn for some n < m, then

d1
q

+
d2
q2

+ . . . ≥ c1
q

+ · · ·+ cn−1

qn−1
+

cn + 1

qn

=
c1
q

+ · · ·+ cn
qn

+
q − 1

qn+1
+

q − 1

qn+2
+ . . .

>
c1
q

+ · · ·+ cm
qm

+
q − 1

qm+1
+

q − 1

qm+2
+ . . .

= x;

• if di = ci for all i < m and dm ≥ cm + 1, then

d1
q

+
d2
q2

+ . . . ≥ c1
q

+ · · ·+ cm−1

qm−1
+

cm + 1

qn

=
c1
q

+ · · ·+ cm
qm

+
q − 1

qm+1
+

q − 1

qm+2
+ . . .

= x,

with equality only if dm = cm + 1 and di = 0 for all i > m. This is only

possible if cm < q.

Apart from this last one, all the other expansions (di) of x start with c1, . . . , cm,

so that
dm+1

qm+1
+

dm+2

qm+2
+ · · · = cm+1

qm+1
+

cm+2

qm+2
+ . . .

whence
dm+1

q
+

dm+2

q2
+ · · · = q − 1

q
+

q − 1

q2
+ · · · = 1.

Using Remark 4.3 (b) we conclude that the list of expansions of x is as follows:

• c1 . . . cm(q − 1)∞;
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• c1 . . . cm(q − 1)nq0∞, n = 0, 1, . . . ;

• c1 . . . cm−1(cm + 1)0∞ if cm < q.

Since V∗
q is symmetric with respect to its midpoint and since (ci) is an ex-

pansion of x if and only if (q − ci) is an expansion of the reflection of x, the case

cm+1 = 1 follows from the preceding one. We conclude that the list of expansions

of x is now as follows:

• c1 . . . cm1∞;

• c1 . . . cm1n0q∞, n = 0, 1, . . . ;

• c1 . . . cm−1(cm − 1)q∞ if cm < q.

In particular,we have proved that the set of expansions of each x ∈ V∗
q \ U∗

q

is countably infinite.

(c) Since V ′∗
q \U ′∗

q is countable, U∗
q and V∗

q have the same Hausdorff dimension.

Since V∗
q is the union of the two points 0, q

q−1 and of countably many sets, each

of which is similar to the set

Z :=

{ ∞∑

i=1

ci
qi

: ci ∈ {1, . . . , q − 1} , i = 1, 2, . . .

}
,

we have dimH U∗
q = dimH V∗

q = dimH Z.

Let us compute the similarity dimension s of Z. Since Z is the attractor of

the iterated function system defined by

fk(x) :=
k + x

q
, x ∈ Z, k = 1, . . . , q − 1,

we have (q − 1)q−s = 1 whence s = log(q−1)
log q .

The images fk(Z) have disjoint closures. Indeed, if k < n, then

sup fk(Z) =
k

q
+

1

q

∞∑

i=1

q − 1

qi
=

k + 1

q

and

inf fn(Z) =
n

q
+

1

q

∞∑

i=1

1

qi
=

n

q
+

1

q(q − 1)
,

so that

inf fn(Z)− sup fk(Z) =
n− k − 1

q
+

1

q(q − 1)
≥ 1

q(q − 1)
> 0.

Since Moran’s open set condition is thus satisfied, the Hausdorff dimension of Z
is equal to its similarity dimension, so that

dimH U∗
q = dimH V∗

q = dimH Z =
log(q − 1)

log q
.

As sets of Hausdorff dimension < 1, all these sets have zero Lebesgue measure. ¤
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