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Abstract. In this paper, we characterize up to finitely many exceptions all the

solutions of the Diophantine equation x4 − q4 = pyr with r > 3 a fixed prime. When

r = 5, we show that there are no exceptions.

1. Introduction

Let r ≥ 3 be a fixed prime. Consider the Diophantine equation

x4 − q4 = pyr, (1)

in prime unknowns p, q and integer unknown x coprime to q. The case r = 3 has

been treated in [16]. Here, we present the following more general result.

Theorem 1. For every fixed prime r > 3, all but finitely many solutions

(x, y, p, q) of equation (1) with p and q primes and positive integer x coprime to q

are of the form

x = ar + 4br, q = |ar − 2r−3br|, pcr = a2r + 22r−6b2r, and y = 2abc (2)

for some integers a, b, and c.
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270 Aurélien Bajolet, Benjamin Dupuy, Florian Luca and Alain Togbé

Taking b = c = 1, Schinzel’s Hypothesis H [23], and, more generally, the

Bateman–Horn conjectures [2], imply that there should be infinitely many in-

tegers a such that ar − 2r−3 and a2r + 22r−6 are simultaneously prime numbers.

This is simply because the polynomials Xr − 2r−3 and X2r + 22r−6 are both

irreducible when r > 3 is prime and can represent simultaneously integers cop-

rime to all primes up to 2r. Hence, the Diophantine equation (1) should have

infinitely many solutions (x, y, p, q) satisfying the given primality and coprimality

conditions.

We also treat the particular case r = 5 which has been investigated in the

recent paper [22], where it was shown that it has no solutions under various

restrictions on the unknowns x, y, p and q. However, trying out some particular

values for (a, b, c) in the parametrization (2) with r = 5 such as (a, b, c) = (1, 1, 1),

(5, 3, 1), (73, 3, 1), we get some solutions like

54 − 34 = 17 · 25,
40974 − 21534 = 10710409 · 305,

20730725654 − 20730706214 = 4297625829704502433 · 4385. (3)

The following result shows that when r = 5 there are no exceptions to the

parametrization (2).

Theorem 2. When r = 5, all solutions of equation (1) are given by the

parametrization (2).

2. The proofs

We first prove Theorem 1 and then prove Theorem 2.

Proof of Theorem 1. If p = 2, then x and q are odd, therefore 16 | x4−q4.

Thus, y is even. We then get that

x+ εq = 2r−1ur
1, x− εq = 2ur

2, x2 + q2 = 2ur
3

for ε ∈ {±1}, some integers u1,u2,u3 with the last two odd such that 2u1u2u3 = y.

Eliminating x and q leads to equation

u2r
2 + 22r−4u2r

1 = ur
3, (4)

which has no nonzero integer solutions by Theorem 3 in [19]. So, from now on,

we assume that p is odd.
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If q = 2, then x is odd and we are led to either x2 + 4 = yr1, or x
2 − 4 = yr1.

Clearly, x ≥ 5. The first equation has no solutions by the results from [15], while

the second equation implies x− 2 = yr2 and x+ 2 = yr3 so that

4 = yr3 − yr2 = (y3 − y2)(y
r−1
3 + · · ·+ yr−1

2 ) > 3r−1 > 4,

where the last inequalities above follow because y2 < y3 are both odd positive

integers. This is a contradiction.

Assume next that q > 2 and that x is even. If p divides x2 + q2, it follows

that both relations x− q = yr1 and x+ q = yr2 hold with two odd integers y1 and

y2. Thus,

q =
1

2
(yr2 − yr1),

which together with the fact that q is prime implies that y2 − y1 = 2. Hence, we

can write y2 = u+ 1 and y1 = u− 1. Then

x =
1

2
((u+ 1)r + (u− 1)r), q =

1

2
((u+ 1)r − (u− 1)r), (5)

so

x2 + q2 =
1

2
((u+ 1)2r + (u− 1)2r) = (u2 + 1)

(
(u+ 1)2r + (u− 1)2r

(u+ 1)2 + (u− 1)2

)
. (6)

The two factors on the right above are either coprime, or their greatest common

divisor is r. In the second case, r exactly divides the second factor. Since x2+q2 =

pyr3, we get that either

u2 + 1 = yr4, (7)

or

u2 + 1 = rr−1yr4. (8)

The first case (7) appears either if p = r or if the two factors on the right–hand side

of (6) are coprime, and the second case appears in the remaining instance. The

equation (7) has no positive integer solutions (u, y4). Indeed, this is a particular

case of the Catalan equation and was solved by Lebesgue [14] more than 150

years ago. So, one only needs to look at equation (8). Since r ≥ 3, it follows from

known finiteness results concerning integer solutions to hyper-elliptic equations

(see [1], [3], [6]–[8], [18], [24]–[26], [30]), that equation (8) has only finitely many

integer solutions (u, y4).

Assume next that x is even but that p divides x2 − q2. Then x2 + q2 = yr1.

Factoring it in Z[i] leads to an equation of the form

x+ iq = (u+ iv)r,
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so

q =
1

2i
((u+ iv)r − (u− iv)r)).

Since q is prime and v divides the integer appearing in the right-hand side above,

we get that v = ±1 or ±q. In the latter case, we are lead to the rth term of the

Lucas sequence (un)n≥0 whose roots are α = u + iv and β = u − iv being equal

to ±1; that is, ur = ±1. This is impossible for r ≥ 5 by the results from [5].

In the former case, we have

x =
1

2
((u+ iv)r + (u− iv)r), q =

1

2i
((u+ iv)r − (u− iv)r)), v = ±1, (9)

so x is a monic polynomial of degree r in u and q is a polynomial of degree r− 1

in u. Since x2 − q2 = pyr2, it follows that

either x+ q = yr3, or x− q = yr3. (10)

However, both x+ q and x− q are monic polynomials of degree r in u, therefore

the above equations have only finitely many solutions (u, y3), which can be easily

computed using Runge’s method (see, for example, [13], [20], [21], [27], [31]).

Finally, assume that x is odd. Suppose first that x2 + q2 = 2yr1. A more

general equation was studied by Tengely [29], namely x2 + q2m = 2yr1. He

proved that this equation has only finitely many solutions if y1 is not a sum of

two consecutive squares. One can also factor the equation x2 + q2 = 2yr1 in Z[i]
to get

x =
1

2
((1 + i)(u+ iv)r + (1− i)(u− iv)r),

q =
1

2i
((1 + i)(u− iv)r − (1− i)(u+ iv)r), (11)

for some coprime nonzero integers u and v of different parities. Here, y = u2+v2.

The above expression for q is a homogeneous polynomial in (u, v) of degree r

without repeated roots which is a multiple of u+ v. Since q is prime, we get that

u+ v = ±1 or ±q. In the latter case, factoring out u+ v from the expression for

q we are left with

±2i =
(1 + i)(u− iv)r − (1− i)(u+ iv)r

u+ v
(12)

and the expression on the right–hand side of formula (12) is a homogeneous

polynomial of degree r − 1 ≥ 4 in (u, v) without multiple roots. Hence, equation

(12) is a Thue equation and therefore has only finitely many solutions.
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In the former case, we have that u+ v = ±1, so we may assume that both x

and q are polynomials in the variable u. Now

x2 − q2 = 2r−1pyr2, (13)

so we get that

x± q = δyr3, where δ ∈ {2, 2r−2}. (14)

The expressions x±q on the left hand side above are polynomials of degree r in u

with simple roots. Hence, we arrive to a collection of finitely many Diophantine

equations each having only finitely many integer solutions (u, y3).

Thus, aside from a total of finitely many possible solutions, we must have

that x and q are both odd and that p | x2 + q2. Consequently, for some integers

a and b we must have

{x− q, x+ q} = {2ar, 2r−2br}.

This leads to x = ar + 2r−3br, and q = |ar − 2r−2br|.
Writing c such that y = 2abc, we also get that 2pcr = x2 + q2 = 2(a2r +

22r−6b2r), so pcr = a2r + 22r−6b2r.

This leads to the desired conclusion and completes the proof of Theorem 1.

¤

Proof of Theorem 2. For the proof of Theorem 2, we go back to the

previous argument and we solve all resulting Diophantine equations. The cases

when p = 2 or q = 2 lead to no solutions in general, so we may assume that q > 2.

The first case is when p divides x2 + q2. Formulas (5) become

x =
1

2
((u+ 1)5 + (u− 1)5) = u5 + 10u3 + 5u;

q =
1

2
((u+ 1)5 − (u− 1)5) = 5u4 + 10u2 + 1. (15)

Since q is odd, it follows that u is even. Equation (8) leads, upon factoring it in

Z[i] and using the fact that the only units of Z[i] are ±1, ±i all of finite orders

dividing 4 which is coprime to 5, to the conclusion that

u± i = (7 + 24i)(a+ ib)5 (16)

for some integers a and b. Identifying imaginary parts above, we get

24a5 + 35a4b− 240a3b2 − 70a2b3 + 120ab4 + 7b5 = ±1. (17)
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The above Thue equations (17) have no integer solutions (a, b) as confirmed by

Kash [12].

We continue with the case when x is even and p divides x2 − q2. Then

following through the proof of Theorem 1 we get v = ±1 and formulae (9) become

x =
1

2
((u+ iv)5 + (u− iv)5) = u5 − 10u3 + 5u,

q = 5u4 − 10u2 + 1. (18)

Equations (10) lead to

u5 + 5εu4 − 10u3 − 10εu2 + 5u+ ε = y53 for some ε ∈ {±1}. (19)

We could either solve these equations by appealing to some general bounds from

the theory of Runge’s method as in [31], or we can simply argue from scratch as

follows. The above equation (19) can be rewritten as

y53 = (u+ ε)5 − 20u3 − 20εu2, (20)

therefore with u1 = u+ ε we get

|y53 − u5
1| ≤ 20|u|3 + 20|u|2 = 20|u|2(|u|+ 1).

If y3 and u1 have opposite signs, then the left–hand side above is > |u1|5 ≥
(|u| − 1)5. If y3 and u1 have the same sign, then the left–hand side above is

|y53 − u5
1| ≥ ||u1| − |y3||(|u1|4 + |u1|3|y3|+ |u1|2|y3|2 + |u1||y3|3 + |y3|3),

so it is either zero or > |u1|4 ≥ (|u| − 1)4. Suppose that it is zero. Then

y3 = u1 = u + ε and in equation (20) we get 20u3 + 20u2ε = 0; hence, either

u = 0, which is not allowed, or u = −ε, which in turn leads to y3 = 0, which is

not allowed either. If it is nonzero, then the above arguments show that

(|u| − 1)4 ≤ 20|u|2(|u|+ 1),

leading to

|u| ≤ 24. (21)

A short calculation shows that there are no solutions in this case.

We now deal with the case when x is odd and suppose that p divides x2− q2,

so x2 + q2 = 2yr1. The value of q from (11) is

q =
1

2i
((1+i)(u+iv)5−(1−i)(u−iv)5)) = (u+v)(u4+4u3v−14u2v2+4uv3+v4).
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Since q is prime, we get that either u+ v = ±1, or

u4 + 4u3v − 14u2v2 + 4uv3 + v4 = ±1. (22)

Equation (22) is a Thue equation which we solve with Kash. Tengely [28] also

solved this equation in Section 3.II. Its only solutions are (u, v) = ±(2, 1), ±(1, 2),

(±1, 0), (0,±1), which do not lead to a convenient solution to our equation (1)

with r = 5.

So, let us assume that u+ v = ±1. Let us make equations (14) explicit. Put

α = u+ iv and β = u− iv. Then

q =
1

2i
((1 + i)α5 − (1− i)β5), and x =

1

2
((1 + i)α5 + (1− i)β5).

Thus,

x+ q =
(1 + i)

2

(
1 +

1

i

)
α5 +

(1− i)

2

(
1− 1

i

)
β5 = α5 + β5, (23)

while

x− q =
(1 + i)

2

(
1− 1

i

)
α5 +

(1− i)

2

(
1 +

1

i

)
β5 = i(α5 − β5). (24)

Since

(x+ q)(x− q) = x2 − q2 = 24py52

holds with some divisor y2 of y (see (13)), and the greatest common divisor of

the two factors on the left above is 2, we get, using also relations (23) and (24),

that the following relations hold

α5 + β5 = δy53 , i(α5 − β5) = δ1y
5
4 , (25)

where (δ, δ1) = (2, 23p), (23, 2p), (2p, 23), or (23p, 2) and y3y4 = y2. Observe that

by replacing (u, v, y3, y4) by (v, u,−y4,−y3), which has the effect of replacing the

pair (α, β) by the pair (iβ,−iα), the first equation (25) above becomes the second

and viceversa. Thus, we may assume that p | δ1. We next take a closer look at

the first equation (25). It can be rewritten as

2u(u4 − 10u2v2 + 5v4) = δy53 , with δ ∈ {2, 23}.
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Since the last factor on the left is obviously odd, the greatest common divisor of

the factors 2u and u4 − 10u2v2 + 5v4 on the left is 1 or 5, and in the latter case

5 | u, therefore 5‖u4 − 10u2v2 + 5v4, it follows that

u4 − 10u2v2 + 5v4 = δ3y
5
5 ,

(δ3, u) ∈ {(1, u5
1), (1, 2

2u5
1), (5, 5

4u5
1), (5, 2

2 · 54u5
1)}. (26)

Now since u + v = ±1 it follows, up to replacing (u, v) by (−u,−v), if needed

(which has also the effect of changing the sign of u1), such that u + v = 1, that

equation (26) can also be rewritten as

4u4 − 20u2 + 20u− 5 = δ3y
5
5 ,

(δ3, u) ∈ {(1, u5
1), (1, 2

2u5
1), (5, 5

4u5
1), (5, 2

2 · 54u5
1)}. (27)

We first treat the case when u is even since this is easier and then we deal with

the case when u is odd.

Case 1. u is even.

The case when u = 22u5
1 leads to

1024u20
1 − 320u10

1 + 80u5
1 − 5 = y55 .

This is a Runge-type equation that can be solved by the usual steps like we did

for equation (19). We found no solution.

Case 2. u is odd.

We look first at the instance when u = 54u5
1. Here, δ = 2, so δ1 = 23p. We

now look at the second equation (25). Here, we get

v(v4 − 10u2v2 + 5u4) = δ1y
5
4 .

Since u is a multiple of 5, it follows that v is coprime to 5. If p does not divide v,

then the only possibility is v = 23v51 , and the relation u+ v = 1 leads to the Thue

equation

54u5
1 + 23v51 = 1. (28)

Reducing it modulo 5 it follows that 23v51 ≡ 1 (mod 5), so v1 ≡ 2 (mod 5). Thus,

v51 ≡ 25 (mod 52), and reducing now equation (28) modulo 52 we get 28 ≡ 1

(mod 52), which is false. Hence, we have no solutions in this case.

Thus, the only possibility is p | v, leading to

v4 − 10u2v2 + 5u4 = y56 ,
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which via the fact that u+ v = 1 leads to

4v4 − 20v2 + 20v − 5 = y56 .

This all was when u = 54u5
1. It turns out that when u = u5

1 (the remaining

possibility when δ3 is odd), one arrives at the exact same equation with the pair

(v, y6) being the pair (u, y5) (indeed, this is just equation (27) when δ3 = 1).

Thus, it remains to deal with the equation (27) when δ3 = 1 which we write

again as

4u4 − 20u2 + 20u− 5 = y55 . (29)

We follow the Bilu–Hanrot method [4] together with Baker’s method. We only

sketch the numerical details. First, we look at the number fields generated over

Q by some solution of the equation 4z4 − 20z2 + 20z − 5 = 0. The roots z of the

above equation are

z1 =

√
5 +

√
5− 2

√
5

2
, z2 =

√
5−

√
5− 2

√
5

2
, (30)

z3 =
−√

5 +
√
5 + 2

√
5

2
, z4 =

−√
5−

√
5 + 2

√
5

2
. (31)

We take α = z1 and β = z2. Using the automorphism τ of the decomposition

field of our polynomial given by

τ

(√
5− 2

√
5

)
= −

√
5− 2

√
5,

we note that β = τ(α). Hence, we have an (α, β)-symmetry. Thus, in the

notations from [4], we can work with the field K0 = Q(α, β)τ = Q(α + β, αβ) =

Q(
√
5 ), instead of the entire Q(α, β).
Next, we look for a complete system of admissible fields. Thus, we have to

compute the finite set M in the notation from [4]. We have found that |M | = 25,

which leads to 5 admissible fields up to isomorphism given by K0(µ
1/5 + µ−1/5),

with µ in the subset M ′ of M given by:

M ′ =
{
480352α3 − 564608α2 − 1737872α+ 2042881,

− 149310α3 + 175518α2 + 540204α− 635039,

46412α3 − 54560α2 − 167920α+ 197401,

4472α3 − 5248α2 − 16208α+ 19041,
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1164α3 − 1368α2 − 4212α+ 4951
}
.

We next computed the finite set Θ by looking for elements θ0 ∈ K such that

NK/K0
(θ0)OK0

= (α− β)
10 OK0

.

We obtained a set Θ with 132 elements.

We consider the function ϕ(w) given by

ϕ(w) = (w − β)

(
ζk

(
w − α

w − β

)1/5

− 1

)5

, w ∈ Z, (32)

for k ∈ {0, . . . , 4}. Using Section 4.3 of [4], any integer solution (u, y5) of equation

(29) leads to an equation of the type

ϕ(u)2 = θηb11 · · · ηb`` , (33)

where θ ∈ Θ, and {η1, . . . , η`} is a system of fundamental units of K. We put

B = max{|b1|, . . . , |b`|}. Then we get a Baker bound for the maximal absolute

value B of the exponents from equation (33) of 1.1 × 1031. Using Section 4.6

of [4], we reduce it to 65 after three reduction steps. Finally, enumerating every

possible case and testing the resulting numbers modulo every positive integer less

than X6 = 17816, we found after 12 hours, 11 minutes and 7 seconds that the

Diophantine equation (29) has no integer solutions (u, y5).

This completes the proof of Theorem 2. ¤

3. Comments

Similar remarks apply to the more general looking equation

x4 − q4 = psyr, (34)

where x and q are coprime integers, p, q and r ≥ 5 are primes, and s ≥ 0. Assume

first that s = 0. If r ≡ 1 (mod 4), then the above equation has no solutions by a

result from [10]. This is the case when r = 5. In general; i.e., even when r ≡ 3

(mod 4), the above equation can have only finitely many solutions (x, q, y) by a

result from [11]. Assume next that s > 0. Clearly, up to replacing y by ypbs/rc,
we may assume that 1 ≤ s < r. The case s = 1 has been treated, so let us deal

with the case s > 1. When p = 2, we get that x and q are both odd, therefore
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16 | x4 − q4. Thus, y is even if s < 4. This shows that up to writing y = 2y0 and

replacing y by y0, and s by s+r, if needed, we may assume that s ∈ {4, . . . , r+3}.
Writing

x+ εq = 2s−2ur
1, x− εq = 2ur

2, x2 + q2 = 2ur
3,

with integers u1, u2, u3 the last two odd, we are led to the equation (4) with the

exponent 2r−4 of 2 replaced by 2(s−3). This has no solution by the result from

[19]. Thus, we may assume that p is odd. Now one can follow through the proof

of Theorem 1, and get to the conclusion that the above equation has only finitely

many solutions except when

x= ar + 4br, q= |ar − 2r−3br|, pscr = a2r + 22r−6b2r, and y=2abc (35)

for some integers a, b, and c. We remark that it is likely that the parametrization

(35) has only finitely many solutions (x, y, q, a, b, c, p, r, s) with r ≥ 5 and s ≥ 2.

Indeed, let us look just at the equation

pscr = a2r + 22r−6b2r, (36)

and put H = max{|a|, |b|}. Since r > 2 and s ≥ 2, we get that

pc ≤ (pscr)
1/2

< 2rHr.

Recall that the abc-conjecture asserts that for every ε > 0 there exists a positive

constant Cε such that if a, b, c are nonzero coprime integers with a+ b = c, then

max{|a|, |b|, |c|} ≤ Cεrad(abc)
1+ε,

where for a nonzero integer m we write rad(m) =
∏

p|m p. Applying the abc-

conjecture to relation (36), we get

H2r ¿ε (abpc)
1+ε ≤ (2rHr+2)1+ε,

therefore

H2r/(r+2)−(1+ε) ¿ε 1.

Taking ε = 1/10, and noticing that 2r/(r+2) = 1+(r−2)/(r+2) ≥ 1+3/7 for all

r ≥ 5, we get that H23/70 ¿ 1, therefore H ¿ 1. Note that even r was variable

in the above argument. Thus, one may assume that a, b and c are fixed, and it

remains in (36) to determine when the members of the linearly recurrent sequence

of general term (a2/c)r+(1/64)(4b2/c)r are perfect powers. There are only finitely

many such instances and in practice they can be all effectively computed (see, for
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example, [25]). Thus, it seems that under the abc-conjecture, the equation (34)

should have only finitely many solutions (x, q, p, r, s) with s ≥ 2 whenever r is

fixed. Perhaps a more careful investigations of our arguments will show that in

fact the abc-conjecture leads to the conclusion that this equation can have only

finitely many solutions altogether for r ≥ 5 (i.e., when r is a variable as well), but

we did not attempt to look into this problem.
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[26] V. G. Sprindžuk, The arithmetic structure of integer polynomials and class numbers,
Trudy Mat. Inst. Steklov. 143 (1977), 152–174.

[27] Sz. Tengely, On the Diophantine equation F (x) = G(y), Acta Arithmetica 110 (2003),
185–200.

[28] Sz. Tengely, On the Diophantine equation x2 + a2 = 2yp, Indag. Math. New Series 15
(2004), 291–304.

[29] Sz. Tengely, On the Diophantine equation x2+q2m = 2yp, Acta Arithmetica 127 (2007),
71–86.

[30] P. M. Voutier, An upper bound for the size of integral solutions to Y m = f(X), J.
Number Theory 53(2) (1995), 247–271.



282 A. Bajolet, et al. : On the Diophantine equation x4 − q4 = pyr

[31] P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations, Acta
Arith. 62 (1992), 157–172, Correction to: A quantitative version of Runge’s theorem on
Diophantine equations, Acta Arith. 73 (1995), 397–398.
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