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A note on sum-product estimates

By ANTAL BALOG (Budapest)

Dedicated to Professors Kálmán Győry, Attila Pethő, János Pintz

and András Sárközy, on the occasion of their birthdays

Abstract. We prove that for any finite set A of positive real numbers one has

|AA+AA+AA+AA| ≥ 1

2
|A|2.

1. Introduction

Let A and B be finite sets of positive real numbers (denoted by R>0). The

sumset, productset, and quotientset are defined by

A+B = {a+ b : a ∈ A, b ∈ B},
AB = {ab : a ∈ A, b ∈ B},
B/A = {b/a : a ∈ A, b ∈ B}.

A famous result of Freiman [2] states, if A+A is small then A is arithmetic

progression like in some sense. Applying the same theorem for B = {log a : a ∈ A}
implies, if AA is small then A is geometric progression like. These two structures
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are rather different, A cannot be arithmetic and geometric progression like in

the same time. Erdős and Szemerédi [1] expressed this fact in a quantitative

conjecture: If A is a finite set of positive integers, ε > 0 is a fixed real number,

and |A| = n > n0(ε), then

max{|A+A|, |AA|} ≥ n2−ε.

Note that for the set A = {1, . . . , n}, obviously A + A = {2, . . . , 2n} and AA ⊂
{1, . . . , n2}, showing that the above conjecture, if true, is rather tight. Actu-

ally an interesting result of multiplicative number theory shows that n−ε cannot

be completely omitted, as with the above A one has |AA| ¿ n2 log−c n for an

explicitly given small positive c.

There are several results toward this conjecture. On one hand there is an

increasing chain of exponents in place of (but smaller than) 2−ε, on the other hand

the results are extended to other rings. The best exponent is due to Solymosi,

in [5] he proves: If A is a finite set of positive real numbers, and |A| = n, then

max{|A+A|, |AA|} ≥ n4/3

(4 log n)1/3
. (1)

Another manifestation of the same fact is that AA+AA should be always big.

Indeed, if a ∈ A then both aA+ aA and AA+ a2 are subsets of AA+AA, and at

least one of them should be big by the sum-product estimate. However, a slightly

different philosophy explains why AA+AA, or even AA+A should be big, namely

AA has a kind of multiplicative structure, therefore it cannot behave nicely in a

sum. In this short note we modify the method, developed by Solymosi in [5],

to derive results of this spirit. We are going to use only elementary arguments

of plane geometric flavor, higher dimensional generalizations may lead to further

interesting estimates.

2. Results

Let A,B ⊂ R>0 be finite sets of positive real numbers. We define the repre-

sentation function

R(q) = RB/A(q) = #

{
(a, b) ∈ A×B : q =

b

a

}
.

The essential step in Solymosi’s work is to estimate the 2nd moment of R(q) by

means of sumsets, more precisely
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Lemma 1 (Solymosi [5], Lemma 2.3). Let A,B ⊂ R>0 be finite sets. We

have ∑
q

R(q)2 ≤ 2 log(|A| |B|) |A+A| |B +B|.

Note that Lemma 2.3 of [5] deals with the special case A = B only, which

is sufficient for our purposes, however, Remark 2.3 of the same paper extends

the lemma to the above result. (1) follows from here with an application of the

Cauchy–Schwarz inequality. Using the same argument we rewrite this statement

to a form, more suitable for our application. Indeed one has

(|A| |B|)2 =

(∑
q

R(q)

)2

≤ |B/A|
∑
q

R(q)2,

and Lemma 1 implies

|A|2|B|2
2 log(|A| |B|) ≤ |B/A| |A+A| |B +B|. (2)

As is pointed out earlier, one cannot remove the log factor completely from (1),

however, it is possible from (2). Li and Shen proved in [4] that

Lemma 2 (Li and Shen [4], Theorem 1). Let A ⊂ R>0 be a finite set. We

have
1

4
|A|4 ≤ |A/A| |A+A|2.

In the next paragraph we estimate the 1st and the 0th moments of R(q) to

get the following results.

Theorem 1. Let A,B,C ⊂ R>0 be finite sets. We have

|A| |B| =
∑
q

R(q) ≤ |AC +A| |BC +B|
|C| .

Theorem 2. Let A,B,C,D ⊂ R>0 be finite sets. We have

|B/A| =
∑

R(q)6=0

1 ≤ |AC +AD| |BC +BD|
|C| |D| .

Taking A = B = C into Theorem 1 we get

Corollary 1. Let A ⊂ R>0 be a finite set. We have

|A|3/2 ≤ |AA+A|.



286 Antal Balog

This result in the more general form |A| |B| |C| ¿ |AB + C|2 was earlier

proved using incidence geometry, see the book of Tao and Vu [6].

Taking A = B and C = D = A+A into Theorem 2 we get

|A/A| |A+A|2 ≤ |A(A+A) +A(A+A)|2, (3)

and estimating the left hand side of (3) with Lemma 2 we get

Corollary 2. Let A ⊂ R>0 be a finite set. We have

1

2
|A|2 ≤ |A(A+A) +A(A+A)|.

A(A + A) + A(A + A) is a six variable expression with sums and products

having a very favorable lower bound. This suggests that using similar simple

arguments may lead to a similar lower bound to AA+AA+AA. Unfortunately we

are not able to find that argument. A weaker inequality, namely |AA+AA+AA| ≥
|AA+A(A+A)| À |A|7/4 can be derived either from incidence geometry, see [6],

or from our Lemma 2 and Theorems 1, 2. Similarly, putting the straightforward

relation A(A+A) +A(A+A) ⊂ AA+AA+AA+AA into Corollary 2 one gets

that

Corollary 3. Let A ⊂ R>0 be a finite set. We have

1

2
|A|2 ≤ |AA+AA+AA+AA|.

If A = {1, . . . , n}, as in a previous example, then AA + AA + AA + AA ⊂
{4, . . . , 4n2} showing that Corollary 2 and 3 are rather tight. It is possible, and

conceivable that this time a more elegant inequality is also true.

Conjecture. Let A ⊂ R>0 be a finite subset. We have

|AA+A| ≥ |A|2.

Note added at July 23, 2011. Very recentlyAlex Iosevich, Oliver Roche-

Newton, and Misha Rudnev [3] got close to this Conjecture by proving

|AA+AA| À |A|2
log |A| .

This result surpasses Corollary 3 in almost all aspects. They, however, use a

different, more involved argument. The author thanks to the referee for drawing

his attention to this work in progress.
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3. Moments of R(q)

The initial steps coincide in the proof of Theorem 1 and Theorem 2. We

arrange the quotients q for which R(q) 6= 0 by increasing order, that is B/A =

{q1 < q2 < · · · < qm}, where m = |B/A|. Consider A×B, the vectors (a, b) with

first coordinate from A and second coordinate from B in the Euclidean plane.

They are inside the first quadrant. The line y = qjx covers exactly R(qj) of

them, and the union of all such lines for j = 1, . . . ,m covers the whole of A×B.

We refer to the half line y = qjx, x > 0 simply as the ray Rj . In each of these

rays Rj we fix one point of A×B, say the one closest to the origin, and we denote

by (aj , bj). For example, the ray Rm contains exactly one point of A×B, namely

(am, bm), where am is the smallest element of A, and bm is the largest element

of B, that is R(qm) = 1.

Now we concentrate on the proof of Theorem 1. Pick a vector (a, b) ∈ A×B

on the ray Rj and another vector (aj+1c, bj+1c) ∈ AC × BC on the next ray

Rj+1. There are R(qj) choices of the first and |C| choices of the second pick.

Observe that their sum (aj+1c + a, bj+1c + b) is inside the sector defined by the

two rays, indeed one can quickly check that

qj =
b

a
<

bj+1c+ b

aj+1c+ a
<

bj+1

aj+1
= qj+1.

The vector (u, v) = (aj+1c+ a, bj+1c+ b) is an element of (AC +A)× (BC +B),

and (u, v) determines the two initial vectors, as is clear from the parallelogram

rule of adding vectors. Alternatively, one can see this in a more formal way.

Observe that (u, v) is a sum of a vector (a, b) on the ray Rj and another vector

(aj+1c, bj+1c) on the ray Rj+1 iff

a =
qj+1 − v

qj+1 − qj
, b = qj

qj+1 − v

qj+1 − qj
, and c =

1

aj+1

v − qju

qj+1 − qj
.

This yields the next inequality.

|C|R(qj) ≤ #
{
(u, v) ∈ (AC +A)× (BC +B) : qj <

v

u
< qj+1

}
.

As for different j-s these sectors are disjoint, we have

|C|
m−1∑

j=1

R(qj) ≤ #
{
(u, v) ∈ (AC +A)× (BC +B) : q1 <

v

u
< qm

}
. (4)

To prove Theorem 1 we have to find |C| = |C|R(qm) more elements of (AC +

A) × (BC + B). We list them, they are (u, v) = (amc + am, bmc + bm) for all
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c ∈ C. They are all different and as v/u = bm/am, they also differ from all (u, v)

in (4). This proves Theorem 1 since

|C|
m∑

j=1

R(qj) = |C|+ |C|
m−1∑

j=1

R(qj) ≤ |(AC +A)× (BC +B)|.

Next we prove Theorem 2, which is rather similar. Pick a vector (ajc, bjc) ∈
AC × BC on the ray Rj and another vector (aj+1d, bj+1d) ∈ AD × BD on the

next ray Rj+1. There are |C| choices of the first and |D| choices of the second

pick. Observe that their sum (ajc+aj+1d, bjc+bj+1d) is inside the sector defined

by the two rays, indeed one can quickly check that

qj =
bj
aj

<
bjc+ bj+1d

ajc+ aj+1d
<

bj+1

aj+1
= qj+1.

The vector (u, v) = (ajc + aj+1d, bjc + bj+1d) is an element of (AC + AD) ×
(BC + BD), and (u, v) determines the two initial vectors, as is clear from the

parallelogram rule of adding vectors. This yields the next inequality.

|C| |D| ≤ #
{
(u, v) ∈ (AC +AD)× (BC +BD) : qj <

v

u
< qj+1

}
.

For different j-s these sectors are disjoint, so we have

|C| |D|
m−1∑

j=1

1 ≤ #
{
(u, v) ∈ (AC +AD)× (BC +BD) : q1 <

v

u
< qm

}
. (5)

To prove Theorem 2 we have to find |C| |D| more elements of (AC+AD)×(BC+

BD). We list them. Let c0 be the smallest element of C and d0 be the largest

element of D respectively. Consider the vectors (u, v) = (amc0+amd, bmc+bmd0)

for all c ∈ C and d ∈ D. They are all different and as v/u = bm(c+ d0)/am(c0 +

d) ≥ bm/cm, they also differ from all (u, v) in (5). This proves Theorem 2 since

|C| |D|
m∑

j=1

1 = |C| |D|+ |C| |D|
m−1∑

j=1

1 ≤ |(AC +AD)× (BC +BD)|.
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