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Abstract. We give an overview on recent results concerning additive unit repre-

sentations. Furthermore the solutions of some open questions are included. We focus

on rings of integers in number fields and in function fields of one variable over perfect

fields. The central problem is whether and how certain rings are (additively) generated

by their units. In the final section we deal with matrix rings over quaternions and over

Dedekind domains. Our point of view is number-theoretic whereas we do not discuss

the general algebraic background.

1. The unit sum number

In 1954, Zelinsky [44] proved that every endomorphism of a vector space V

over a division ring D is a sum of two automorphisms, except if D = Z/2Z
and dimV = 1. This was motivated by investigations of Dieudonné on Galois

theory of simple and semisimple rings [7] and was probably the first result about

the additive unit structure of a ring.

Using the terminology of Vámos [41], we say that an element r of a ring R

(with unity 1, not necessarily commutative) is k-good if r is a sum of exactly k
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units of R. If every element of R has this property then we call R k-good. By

Zelinsky’s result, the endomorphism ring of a vector space with more than two

elements is 2-good. Clearly, if R is k-good then it is also l-good for every integer

l > k. Indeed, we can write any element of R as

r = (r − (l − k) · 1) + (l − k) · 1,

and expressing r − (l − k) · 1 as a sum of k units gives a representation of r as a

sum of l units.

Goldsmith, Pabst and Scott [20] defined the unit sum number u(R) of

a ring R to be the minimal integer k such that R is k-good, if such an integer

exists. If R is not k-good for any k then we put u(R) := ω if every element of R

is a sum of units, and u(R) := ∞ if not. We use the convention k < ω < ∞ for

all integers k.

Clearly, u(R) ≤ ω if and only if R is generated by its units. Here are some

examples from [20] and [41]:

• u(Z) = ω,

• u(R[X1, . . . , Xn]) = ∞, for any commutative ring R with identity 1 6= 0,

• u(K) = 2, for any field K with more than 2 elements, and

• u(Z/2Z) = ω.

Goldsmith, Pabst and Scott [20] were mainly interested in endomorp-

hism rings of modules. For example, they proved independently from Zelinsky

that the endomorphism ring of a vector space with more than two elements has

unit sum number 2, though they mentioned that this result can hardly be new.

Henriksen [24] proved that the ring Mn(R) of n× n-matrices (n ≥ 2) over

any ring R is 3-good.

Herwig and Ziegler [25] proved that for every integer n ≥ 2 there exists

a factorial domain R such that every element of R is a sum of at most n units,

but there is an element of R that can not be expressed as a sum of at most n− 1

units.

The introductory section of [41] contains a historical overview on the subject

with some references. We also mention the publications [14], [26], [36], as well as

the survey article [38] by Srivastava. Furthermore, we refer to various recent

articles such as [1], [19], [30], [31]. They are of a rather algebraic flavour, whereas

we are more interested in number-theoretic aspects.

In the following sections, we are going to focus on rings of (S−)integers in

global fields.
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2. Rings of integers and other integral domains

The central result regarding rings of integers in number fields, or more ge-

nerally, rings of S-integers in global fields (S 6= ∅ finite), is that they are not

k-good for any k, thus their unit sum number is ω or ∞. This was first proved

by Ashrafi and Vámos [3] for rings of integers of quadratic and complex cubic

number fields, and of cyclotomic number fields generated by a primitive 2n-th root

of unity. They conjectured, however, that it holds true for the rings of integers

of all algebraic number fields. The proof of an even stronger version of this was

given by Jarden and Narkiewicz [28] for a much more general class of rings:

Theorem 1 ([28, Theorem 1]). If R is a finitely generated integral domain

of zero characteristic then there is no integer n such that every element of R is a

sum of at most n units.

In particular, we have u(R) ≥ ω, for any ring R of integers of an algebraic

number field.

This theorem is an immediate consequence of the following lemma, which

Jarden and Narkiewicz proved by means of Evertse and Győry’s [11] bound on

the number of solutions of S-unit equations combined with van der Waerden’s

theorem [43] on arithmetic progressions.

Lemma 2 ([28, Lemma 4]). If R is a finitely generated integral domain of

zero characteristic and n ≥ 1 is an integer then there exists a constant An(R)

such that every arithmetic progression in R having more than An(R) elements

contains an element which is not a sum of n units.

Lemma 2 is a special case of a theorem independently found by Hajdu [23].

Hajdu’s result provides a bound for the length of arithmetic progressions in linear

combinations of elements from a finitely generated multiplicative subgroup of a

field of zero characteristic. Here the linear combinations are of fixed length and

only a given finite set of coefficient-tuples is allowed. Hajdu used his result to

negatively answer the following question by Pohst: Is it true that every prime can

be written in the form 2u ± 3v, with non-negative integers u, v?

Using results by Mason [33], [34] on S-unit equations in function fields,

Frei [16] proved a partial function field analogue of Theorem 1. It holds in zero

characteristic as well as in positive characteristic.

Theorem 3. Let R be the ring of S-integers of an algebraic function field

in one variable over a perfect field, where S 6= ∅ is a finite set of places. Then,

for each positive integer n, there exists an element of R that can not be written

as a sum of at most n units of R. In particular, we have u(R) ≥ ω.
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We will later discuss criteria which show that in the number field case as well

as in the function field case, both possibilities u(R) = ω and u(R) = ∞ occur.

3. The qualitative problem

Jarden and Narkiewicz [28] formulated three problems concerning unit

sum representations: the qualitative problem, the extension problem and the

quantitative problem. In this section we discuss the first one.

Problem A ([28, Problem A]). Give a criterion for an algebraic extension

K of the rationals to have the property that its ring of integers R has unit sum

number u(R) ≤ ω.

Jarden and Narkiewicz provided some examples of infinite extensions of Q
with u(R) ≤ ω: By the Kronecker–Weber theorem, the maximal abelian extension

of Q has this property. Further examples are the fields of all algebraic numbers

and all real algebraic numbers.

Criteria are known for algebraic number fields of small degree. Here, the only

possibilities for u(R) are ω and ∞, by Theorem 1. For quadratic number fields,

Belcher [4], and later Ashrafi and Vámos [3], proved the following result:

Theorem 4 ([4, Lemma 1][3, Theorems 7, 8]). Let K = Q(
√
d ), d ∈ Z

squarefree, be a quadratic number field with ring of integers R. Then u(R) = ω

if and only if

1. d ∈ {−1,−3}, or
2. d > 0, d 6≡ 1 mod 4, and d+ 1 or d− 1 is a perfect square, or

3. d > 0, d ≡ 1 mod 4, and d+ 4 or d− 4 is a perfect square.

A similar result for pure cubic fields was found by Tichy and Ziegler [40].

Theorem 5 ([40, Theorem 2]). Let d be a cubefree integer and R the ring

of integers of the purely cubic field K = Q( 3
√
d ). Then u(R) = ω if and only if

1. d is squarefree, d 6≡ ±1 mod 9, and d+ 1 or d− 1 is a perfect cube, or

2. d = 28.

Filipin, Tichy and Ziegler used similar methods to handle pure quartic comp-

lex fields K = Q( 4
√
d ). Their criterion [12, Theorem 1.1] states that u(R) = ω if

and only if d is contained in one of six explicitly given sets.

As a first guess, one could hope to get information about the unit sum number

of the ring of integers of a number field K by comparing the regulator and the
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discriminant of K. In personal communication with the authors, Martin Widmer

pointed out the following sufficient criterion for the simple case of complex cubic

fields:

Proposition 6 (Widmer). If R is the ring of integers of a complex cubic

number field K then u(R) = ω whenever the inequality

|∆K | > (e
3
4RK + e−

3
4RK )4 (1)

holds. Here, ∆K is the discriminant, RK is the regulator of K, and e denotes

Euler’s constant.

Proof. Regard K as a subfield of the reals, and let η > 1 be a fundamental

unit, so RK = log η. Since K contains no roots of unity except ±1, the ring of

integers R is generated by its units if and only if R = Z[η]. By the standard

embedding K → R × C ' R3, we can regard R and Z[η] as lattices in R3 and

compare their determinants. Let η′ = x + iy be one of the non-real conjugates

of η. We get u(R) = ω if and only if

2−1
√
|∆K | =

∣∣∣∣∣∣∣
det



1 η η2

1 x x2 − y2

0 y 2xy




∣∣∣∣∣∣∣
.

Since the right-hand side of the above equality is always a multiple of the left-hand

side, we have u(R) = ω if and only if

√
|∆K | >

∣∣∣∣∣∣∣
det



1 η η2

1 x x2 − y2

0 y 2xy




∣∣∣∣∣∣∣
.

Clearly, η−1 = η′η′ = x2 + y2, whence |x|, |y| ≤ η−1/2. With this in mind, a

simple computation shows that the right-hand side of the above inequality is at

most η−3/2 + 2 + η3/2, so (1) implies that u(R) = ω. ¤

To see that condition (1) is satisfied in infinitely many cases, we consider the

complex cubic fields KN = Q(αN ), where αN is a root of the polynomial

fN = X3 +NX + 1, (2)

with a positive integer N such that 4N3+27 is squarefree. By [8], infinitely many

such N exist. We may assume that αN ∈ R. From (2), we get

N2

N3 + 1
< −αN =

1

α2
N +N

< 1/N.
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Since −1/αN is a unit of the ring of integers of KN , and N < −1/αN < N+1/N2,

we have RK ≤ log(N + 1/N2). The discriminant −4N3 − 27 of fN is squarefree

by hypothesis, so |∆K | = 4N3 + 27. Now we see by a simple computation that

(1) holds.

In the function field case, Frei [16] investigated quadratic extensions of ra-

tional global function fields F over K (denoted by F/K).

Theorem 7 ([16, Theorem 2]). Let K be a finite field, and F a quadratic

extension field of the rational function field K(x) over K. Denote the integral

closure of K[x] in F by R. Then the following two statements are equivalent.

1. u(R) = ω

2. The function field F/K has full constant field K and genus 0, and the infinite

place of K(x) splits into two places of F/K.

This criterion can also be phrased in terms of an element generating F over

K(x). If, for example, K is the full constant field of F and of odd characteristic

then we can write F = K(x, y), where y2 = f(x) for some separable polynomial

f ∈ K[x]\K. Then we get u(R) = ω if and only if f is of degree 2 and its leading

coefficient is a square in K ([16, Corollary 1]).

Theorem 7 holds in fact for arbitrary perfect base fields K. An alternative

proof given at the end of [16] implies the following stronger version:

Theorem 8. Let F/K be an algebraic function field in one variable over a

perfect field K. Let S be a set of two places of F/K of degree one, and denote by

R the ring of S-integers of F/K. Then u(R) = ω if and only if F/K is rational.

All of the rings R investigated above have in common that their unit groups

are of rank at most one. As of now, there are no known nontrivial criteria for

families of number fields (or function fields) whose rings of integers have unit

groups of higher rank. We consider it an important direction to find such criteria.

Pethő and Ziegler investigated a modified version of Problem A, where

one asks whether a ring of integers has a power basis consisting of units [46], [35].

For example, Ziegler proved the following:

Theorem 9 ([46, Theorem 1]). Let m > 1 be an integer which is not a

square. Then the order Z[ 4
√
m ] admits a power basis consisting of units if and

only if m = a4 ± 1, for some integer a.

Since analogous results are already known for negative m [47] and for the

rings Z[ d
√
m ], d < 4 [4], [40], Theorem 9 motivates the following conjecture:
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Conjecture ([46, Conjecture 1]). Let d ≥ 2 be an integer and m ∈ Z \ {0},
and assume that d

√
m is an algebraic number of degree d. Then Z[ d

√
m ] admits a

power basis consisting of units if and only if m = ad ± 1, for some integer a.

For rings R with u(R) = ω, Ashrafi [2] investigated the stronger property

that every element of R can be written as a sum of k units for all sufficiently large

integers k. Ashrafi proved that this is the case if and only if R does not have

a factor ring isomorphic to Z/2Z, and applied this result to rings of integers of

quadratic and complex cubic number fields.

Let R be an order in a quadratic number field. Ziegler [45] found various

results about representations of elements of R as sums of S-units in R, where S

is a finite set of places containing all Archimedean places.

Another variant of Problem A asks for representations of algebraic integers

as sums of distinct units. Jacobson [27] proved that in the rings of integers of

the number fields Q(
√
2 ) and Q(

√
5 ), every element is a sum of distinct units. His

conjecture that these are the only quadratic number fields with that property was

proved by Śliwa [37]. Belcher [4], [5] investigated cubic and quartic number

fields. A recent article by Thuswaldner and Ziegler [39] puts these results

into a more general framework: they apply methods from the theory of arithmetic

dynamical systems to additive unit representations.

4. The extension problem

Now we turn to the second problem posed by Jarden and Narkiewicz [28].

Problem B ([28, Problem B]). Is it true that each number field has a finite

extension L such that the ring of integers of L is generated by its units?

If K is an abelian number field, that is, K is a Galois extension of Q with

abelian Galois group, then we know by the Kronecker–Weber theorem that K is

contained in a cyclotomic number field Q(ζ), where ζ is a primitive root of unity.

The ring of integers of Q(ζ) is Z[ζ], which is obviously generated by its units.

Problem B was completely solved by Frei [15]:

Theorem 10 ([15, Theorem 1]). For any number field K, there exists a

number field L containing K, such that the ring of integers of L is generated by

its units.

The proof relies on finding elements of the ring of integers of K with certain

properties via asymptotic counting arguments, and then using these properties
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to generate easily manageable quadratic extensions of K in which those elements

are sums of units of the respective rings of integers. The field L is then taken as

the compositum of all these quadratic extensions.

Prior to this, with an easier but conceptually similar argument, Frei [17]

answered the function field version of Problem B:

Theorem 11 ([17, Theorem 2]). Let F/K be an algebraic function field over

a perfect field K, and R the ring of S-integers of F , for some finite set S 6= ∅ of

places. Then there exists a finite extension field F ′ of F such that the integral

closure of R in F ′ is generated by its units.

5. The quantitative problem

In this section we discuss the quantitative problem of Jarden and Nar-

kiewicz [28].

Problem C ([28, Problem C]). Let K be an algebraic number field. Obtain

an asymptotical formula for the number Nk(x) of positive rational integers n ≤ x

which are sums of at most k units of the ring of integers of K.

As Jarden and Narkiewicz noticed, Lemma 2 and Szemerédi’s theorem (see

[22]) imply that

lim
x→∞

Nk(x)

x
= 0,

for any fixed k. Aside from this, the problem to find an asymptotic formula still

remains open. An upper bound follows from the theorem below, discussing a

related question studied by Filipin, Fuchs, Tichy, and Ziegler [12], [13], [18].

We state here the most general result [18].

Let R be the ring of S-integers of a number field K, where S is a finite set

of places containing all Archimedean places. Two S-integers α, β are associated,

if there exists a unit ε of R such that α = βε. For any α ∈ R, we write

N(α) :=
∏

ν∈S

|α|ν .

Here the absolute values are normalised in such a way that the product formula

holds.

Fuchs, Tichy and Ziegler investigated the counting function uK,S(n, x), which

denotes the number of all classes [α] of associated elements α of R with N(α) ≤ x
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such that α can be written as a sum

α =

n∑

i=1

εi,

where the εi are units of R and no subsum of ε1 + · · · + εn vanishes. The proof

uses ideas of Everest [9], see also Everest and Shparlinski [10].

Theorem 12. [18, Theorem 1] Let ε > 0. Then

uK,S(n, x) =
cn−1,s

n!

(
ωK(log x)s

RegK,S

)n−1

+ o((log x)(n−1)s−1+ε),

as x → ∞. Here, ωK is the number of roots of unity of K, RegK,S is the S-

regulator of K, and s = |S|−1. The constant cn,s is the volume of the polyhedron

{(x11, . . . , xns) ∈ Rns : g(x11, . . . , xns) < 1},
with

g(x11, . . . , xns) =

s∑

i=1

max{0, x1i, . . . , xni}+
{
0,−

s∑

i=1

x1i, . . . ,−
s∑

i=1

xni

}
.

The values of the constant cn,s are known in special cases from [18]:

n

s 1 2 3 4 5

1 2 3 4 5 6

2 3 15/4 7/2 45/16

3 10/3 7/3 55/54

4 35/12 275/32

5 21/10

Furthermore, cn,1 = n+ 1 and c1,s =
1
s!

(
2s
s

)
.

In the following we calculate the constant cn,s for n > 1 and s = 2. This

constant is the volume of the polyhedron

V = {(x, y) ∈ Rn × Rn : g(x, y) < 1} ,
with

g(x, y) = max
i

{0, xi}+max
i

{0, yi}+max
i

{0,−xi − yi} ,

where x = (x1, . . . , xn), y = (y1, . . . , yn).

For any K, L, M ∈ {1, . . . , n} we consider the sets

VK,L,M =
{
(x, y) ∈ R2n : xi ≤ xK , yi ≤ yL, xM + yM ≤ xi + yi, g(x, y) < 1

}
.
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Clearly the union of these sets is V and the intersection of any two of them has

volume zero. Thus

cn,2 =

n∑

K=1

n∑

L=1

n∑

M=1

IK,L,M ,

where IK,L,M is the volume of VK,L,M . For the values of IK,L,M we distinguish

three cases:

(i) K,L,M are pairwise distinct;

(ii) exactly two of the indices K,L,M are equal;

(iii) K = L = M .

The third case is simple. Since xi ≤ xK , yi ≤ yK implies xi + yi ≤ xK + yK we

obtain xi + yi = xK + yK . Thus VK,K,K has volume zero.

We only have to consider the remaining cases (i) and (ii). Clearly,

cn,2 = n(n− 1)(n− 2)I1,2,3 + 3n(n− 1)I1,1,2.

5.i. Calculation of I1,2,3. This case can only happen if n ≥ 3. The inequalities

x3+y3 ≤ xi+yi give us lower bounds for xi and yi and we always have the upper

bounds xi ≤ x1 and yi ≤ y2. Hence we have

x3 + y3 − xi ≤ yi ≤ y2
and

xi ≤ x1.

Note that

g(x, y) = max {0, x1}+max {0, y2}+max {0,−x3 − y3} .

We integrate with respect to the yi’s, i 6= 2, 3 and obtain

I1,2,3 =

∫
· · ·

∫

x3+y3−xi≤yi≤y2

xi≤x1, g(x,y)<1

dxdy =

∫
· · ·

∫

x3+y3≤x2+y2
x3+y3−y2≤xi≤x1

y3≤y2, g(x,y)<1

∏

j 6=2,3

(y2 − x3 − y3 + xj)dxdy2dy3.

Next we integrate over the xi’s, i 6= 1, 2, 3 and obtain

I1,2,3 =

∫
· · ·

∫

x2,x3≤x1, y3≤y2
x3+y3≤x2+y2

g(x,y)<1

1

2n−3
(y2 − x3 − y3 + x1)

2n−5
dx1dx2dx3dy2dy3.

For the values of g(x, y) we consider the following cases depending on the

signs of x1, y2 and −x3 − y3:
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r x1 y2 −x3 − y3 g(x, y)

1 ≥ 0 < 0 < 0 x1

2 < 0 ≥ 0 < 0 y2
3 < 0 < 0 ≥ 0 −x3 − y3
4 ≥ 0 ≥ 0 < 0 x1 + y2
5 ≥ 0 < 0 ≥ 0 x1 − x3 − y3
6 < 0 ≥ 0 ≥ 0 y2 − x3 − y3
7 ≥ 0 ≥ 0 ≥ 0 x1 + y2 − x3 − y3

According to the table we split the integral into seven parts:

I1,2,3 =

7∑
r=1

I
(r)
1,2,3.

One can calculate these integrals with the help of a computer algebra system.

We just give the final expressions:

I
(1)
1,2,3 = I

(2)
1,2,3 = I

(3)
1,2,3 =

2

n(2n− 1)(n− 1)2n
,

I
(4)
1,2,3 = I

(5)
1,2,3 = I

(6)
1,2,3 =

2

n(n− 1)2n
,

I
(7)
1,2,3 =

2

n2n
.

In conclusion we have

I1,2,3 =
2(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

5.ii. Calculation of I1,1,2. We proceed in the same way as in the previous case.

We have the same bounds

x2 + y2 − xi ≤ yi ≤ y1
and

xi ≤ x1.

We integrate first with respect to the yi’s and then with respect to the xi’s,

i 6= 1, 2, and obtain

I1,1,2 =

∫
· · ·

∫

x2+y2−y1≤xi≤x1

y2≤y1, g(x,y)<1

∏

j 6=1,2

(y1 − x2 − y2 + xj)dxdy1dy2

=

∫
· · ·

∫

x2≤x1, y2≤y1

g(x,y)<1

1

2n−2
(y1 − x2 − y2 + x1)

2n−4
dx1dx2dy1dy2.
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Proceeding as in the previous section we again split the integral into seven parts

I
(r)
1,1,2, r = 1, . . . , 7, and obtain:

I
(1)
1,1,2 = I

(2)
1,1,2 = I

(3)
1,1,2 =

1

n(2n− 1)(n− 1)2n
,

I
(4)
1,1,2 = I

(5)
1,1,2 = I

(6)
1,1,2 =

1

n(n− 1)2n
,

I
(7)
1,1,2 =

1

n2n
.

Hence

I1,1,2 =
(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

Conclusion. The value of cn,2 is

(n+ 1)(2n+ 1)

2n
.

Remark. The computation of cn,s for s > 2 seems to be more difficult and

might be considered later.

6. Matrix rings

In this final section we discuss unit sum representations in certain matrix

rings.

Let R be any ring with 1 (not necessarily commutative). We say that two

elements a, b ∈ R are equivalent (a ∼ b) if there exist two units u, v ∈ R× such

that b = uav. Vámos [41, Lemma 1] already noticed the following simple fact.

Lemma 13. Let R be a ring and a, b ∈ R. If a ∼ b then, for all k ≥ 1, a is

k-good if and only if b is k-good.

We consider the ring Mn(R) of n×n matrices, with n ≥ 2, over an arbitrary

ring R with 1. As usual GLn(R) denotes the group of units of Mn(R).

For a ∈ R the matrix En(a, i, j), i, j ∈ {1, . . . , n}, i 6= j, is the n × n

matrix with 1 entries on the main diagonal, a as the entry at position (i, j) and

0 elsewhere. We call this kind of matrices elementary matrices and denote by

En(R) the subgroup of GLn(R) generated by elementary matrices, permutation

matrices and −I, where I is the identity matrix of Mn(R).

Let us consider a more specific kind of k-goodness introduced by Vámos [41].
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Definition. A square matrix of size n over R is strongly k-good if it can be

written as a sum of k elements of En(R). The ring Mn(R) is strongly k-good if

every element is strongly k-good.

The following lemma is Lemma 1 from [24] and Lemma 5 from [41].

Lemma 14. Let R be a ring and n ≥ 2. Then any diagonal matrix in Mn(R)

is strongly 2-good.

A ring R is called an elementary divisor ring (see [29]) if every matrix in

Mn(R), n ≥ 2, can be diagonalised. Lemma 14 implies that, in this case, Mn(R)

is 2-good. In particular, if any matrix in Mn(R) can be diagonalised using only

matrices in En(R) then Mn(R) is strongly 2-good.

The following remark can be deduced without much effort from the proof of

Lemma 14 that is given in [41].

Remark. If R is an elementary divisor ring and 1 6= −1 then every element

of Mn(R), n ≥ 2, has a representation as a sum of two distinct units and this

representation is never unique.

As we have already mentioned, Henriksen [24] proved that Mn(R), where R

is any ring, is 3-good. Henriksen’s result was generalised by Vámos [41] to arbit-

rary dimension:

Theorem 15 ([41, Theorem 11]). Let R be a ring and let F be a free

R-module of rank α, where α ≥ 2 is a cardinal number. Then the ring of endo-

morphisms E of F is 3-good.

If α is finite and R is 2-good or an elementary divisor ring then E is 2-good.

If R is any one of the rings Z[X], K[X,Y ], K〈X,Y 〉, where K is a field, then

u(E) = 3. Here K〈X,Y 〉 is the free associative algebra generated by X, Y over K.

To prove that a matrix ring over a certain ring has unit sum number 3, Vámos

used the following proposition.

Proposition 16 ([41, Proposition 10]). Let R be a ring, n ≥ 2 an integer and

let L = Ra1+· · ·+Ran be the left ideal generated by the elements a1, . . . , an ∈ R.

Let A be the n × n matrix whose entries are all zero except for the first column

which is (a1, . . . , an)
T
. Suppose that

1. L cannot be generated by fewer than n elements, and

2. zero is the only 2-good element in L.

Then A is not 2-good.
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We now apply Lemma 14 to a special case. Let R be a ring and suppose

there exists a function

f : R \ {0} → Z≥0,

with the following property: for every a, b ∈ R, b 6= 0, there exist q1, q2, r1, r2 ∈ R

such that
a = q1b+ r1, where r1 = 0 or f(r1) < f(b),

a = bq2 + r2, where r2 = 0 or f(r2) < f(b).

Then we say that R has left and right Euclidean division.

The next theorem is a generalisation of the well known fact that every square

matrix over a Euclidean domain is diagonalisable. The proof strictly follows the

line of the one in the commutative case (see Section 3.5 of [21]) hence it is omitted.

Theorem 17. Let R be a ring with left and right Euclidean division and let

n ≥ 2. For every A ∈ Mn(R) there exist two matrices U, V ∈ En(R) such that

UAV = D,

where D is a diagonal matrix.

Corollary. Let R be a ring with left and right Euclidean division and let

n ≥ 2. Then Mn(R) is strongly 2-good.

We apply the previous result to the special case of quaternions. Consider the

quaternion algebra

Q =
{
a+ bi+ cj + dk : a, b, c, d ∈ Q, i2 = −1, j2 = −1, k = ij = −ji

}

with the usual addition and multiplication.

Definition. The ring of Hurwitz quaternions is the subring H of Q defined

by

H =

{
a+ bi+ cj + dk ∈ Q : a, b, c, d ∈ Z or a, b, c, d ∈ Z+

1

2

}
.

For basic properties of Q and H see [6, Chapter 5].

In Q, the ring of Hurwitz quaternions plays a similar role as maximal orders

in number fields.

The units of H are the 24 elements ±1, ±i, ±j, ±k and (±1± i± j ± k)/2,

so u(H) = ω.

It is well known that H has left and right Euclidean division. Therefore, we

get the following corollary.

Corollary. For n ≥ 2, Mn(H) is strongly 2-good.
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Finally, we consider matrix rings over Dedekind domains.

Let R be a ring and A an r × c matrix. The type of A is the pair (r, c) and

the size of A is max(r, c). Let A1 and A2 be matrices of type (r1, c1) and (r2, c2),

respectively. The block diagonal sum of A1 and A2 is the block diagonal matrix

diag(A1, A2) =

[
A1 0

0 A2

]
,

of type (r1 + r2, c1 + c2). A matrix of positive size is indecomposable if it is not

equivalent to the block diagonal sum of two matrices of positive size.

In 1972 Levy [32] proved that, for a Dedekind domain R, the class number,

when it is finite, is an upper bound to the number of rows and columns in every

indecomposable matrix over R. Vámos and Wiegand [42] generalised Levy’s

result to Prüfer domains (under some technical conditions) and applied it to the

unit sum problem.

Theorem 18 ([42, Theorem 4.7]). Let R be a Dedekind domain with finite

class number h. For every n ≥ 2h, Mn(R) is 2-good.

Unfortunately we do not know a criterion. The only sufficient condition we

know for a matrix not to be 2-good is given by Proposition 16. For rings R

of algebraic integers this proposition is of limited use. Since ideals in Dedekind

domains need at most 2 generators, condition 1 of Proposition 16 can be fulfilled

only for n = 2. Concerning condition 2, it is not hard to see that, if the unit

group is infinite, there is a nonzero sum of two units in every nonzero ideal in

a ring of algebraic integers. Therefore we can apply Proposition 16 only to the

non-PID complex quadratic case.

Corollary ([42, Example 4.11]). Let R be the ring of integers of Q(
√−d ),

where d > 0 is squarefree and R has class number h > 1. Then u(M2(R)) = 3

and u(Mn(R)) = 2 for every integer n ≥ 2h.

We conclude by formulating two interesting problems from [42].

I. With the hypotheses of the previous corollary, what is the value of u(Mn(R))

for 3 ≤ n < 2h?

II. If R is any ring of algebraic integers with class number h, what is the value

of u(Mn(R)) for 2 ≤ n < 2h?

We consider these questions to be important since an answer could link the

class number of R with the unit sum number of Mn(R).
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[37] J. Śliwa, Sums of distinct units, Bull. Acad. Pol. Sci. 22 (1974), 11–13.

[38] A. K. Srivastava, A survey of rings generated by units, Ann. Fac. Sci. Toulouse Math.
(6) 19 (2010), 203–213.

[39] J. Thuswaldner and V. Ziegler, On linear combinations of units with bounded coeffici-
ents, Mathematika 57(2) (2011), 247–262.

[40] R. F. Tichy and V. Ziegler, Units generating the ring of integers of complex cubic fields,
Colloq. Math. 109(1) (2007), 71–83.

[41] P. Vámos, 2-good rings, Q. J. Math. 56(3) (2005), 417–430.
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