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Abstract. Let f be an arithmetical function. The matrix [f [i, j]]n×n given by the

value of f in least common multiple of [i, j], f
(
[i, j]

)
as its i, j entry is called the least

common multiple (LCM) matrix. We consider the generalization of this matrix where

the elements are in the form f
(
n, [i, j]

)
and f

(
n, i, j, [i, j]

)
.

1. Introduction

The classical Smith determinant was introduced in 1875 by H. J. S. Smith

[12] who also proved that

det[(i, j)]n×n =

∣∣∣∣∣∣∣∣∣

(1, 1) (1, 2) . . . (1, n)

(2, 1) (2, 2) . . . (2, n)

. . . . . . . . . . . .

(n, 1) (n, 2) . . . (n, n)

∣∣∣∣∣∣∣∣∣
= ϕ(1)ϕ(2) . . . ϕ(n), (1)

where (i, j) represents the greatest common divisor of i and j, and ϕ(n) denotes

the Euler totient function.
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The GCD matrix with respect to f is

[f(i, j)]n×n =




f((1, 1)) f((1, 2)) . . . f((1, n))

f((2, 1)) f((2, 2)) . . . f((2, n))

. . . . . . . . . . . .

f((n, 1)) f((n, 2)) . . . f((n, n))


 .

There are quite a few generalized forms of GCD matrices, which can be found in

several references [1], [3], [7], [8], [11].

H. J. S. Smith [12] also evaluated the determinant of

[
[i, j]

]
n×n

=




[1, 1] [1, 2] . . . [1, n]

[2, 1] [2, 2] . . . [2, n]

. . . . . . . . . . . .

[n, 1] [n, 2] . . . [n, n]


 ,

and proved that

det
[
[i, j]

]
n×n

= (n!)2g(1)g(2) . . . g(n) =

N∏

k=1

ϕ(k)
∏

p|k
(−p).

where g(n) = 1
n

∑
d|n dµ(d), µ(n) being the classical Möbius function.

The structure of an LCM matrix
[
[i, j]

]
n×n

is the following (I. Korkee, P. Ha-

ukkanen [10]) [
[i, j]

]
n×n

= AAT

where A = [aij ]n×n,

aij =





√
g(j), if j | i

0, if j - i
.

The LCM matrix with respect to f is

[f [i, j]]n×n =




f([1, 1]) f([1, 2]) . . . f([1, n])

f([2, 1]) f([2, 2]) . . . f([2, n])

. . . . . . . . . . . .

f([n, 1]) f([n, 2]) . . . f([n, n])


 .

Results concerning LCM matrices appear in papers S. Beslin [2], K. Bourque,

S. Ligh [4], W. Feng, S. Hong, J. Zhao [6] P. Haukkanen, J. Wang and

J. Sillanpää [7].
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In this paper we study matrices which have as variables the least common

multiple and the indices

[
f(n, [i, j])

]
n×n

=




f(n, [1, 1]) f(n, [1, 2]) . . . f(n, [1, n])

f(n, [2, 1]) f(n, [2, 2]) . . . f(n, [2, n])

. . . . . . . . . . . .

f(n, [n, 1]) f(n, [n, 2]) . . . f(n, [n, n])




and the more general form matrices

[
f(n, i, j, [i, j])

]
n×n

=




f(n, 1, 1, [1, 1]) f(n, 1, 2, [1, 2]) . . . f(n, 1, n, [1, n])

f(n, 2, 1, [2, 1]) f(n, 2, 2, [2, 2]) . . . f(n, 2, n, [2, n])

. . . . . . . . . . . .

f(n, n, 1, [n, 1]) f(n, n, 2, [n, 2]) . . . f(n, n, n, [n, n])




2. Generalized LCM matrices

Theorem 2.1. For a given totally multiplicative arithmetical function g(n)

let

f(n, [i, j]) = g([i, j])
∑

k≤ n
[i,j]

g(k).

Then [
f(n, [i, j])

]
n×n

= CT
n diag

(
g(1), g(2), . . . , g(n)

)
Cn, (2)

where Cn = [cij ]n×n

cij =




1, if j | i
0, if j - i

.

For a determinant we have

det
[
f(n, [i, j])

]
n×n

= g(1)g(2) . . . g(n). (3)

Proof. After multiplication, the general element of A = (aij)n×n,

A = CT
n diag

(
g(1), g(2), . . . , g(n)

)
Cn

is

aij =

n∑

k=1

ckig(k)ckj =
∑

i|k
j|k
k≤n

g(k) =
∑

[i,j]|k
k≤n

g(k) =
∑

l≤ n
[i,j]

g
(
[i, j]l

)
.
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Because g(n) is totally multiplicative

aij = g
(
[i, j]

) ∑

`≤ n
[i,j]

g(`) = f
(
[i, j]

)
.

If we calculate the determinant of both parts of (2) we have (3). ¤

Particular cases

Example 1. If g(n) = 1, then

f
(
n, [i, j]

)
=

⌊
n

[i, j]

⌋
,

where bxc denotes the integer part of x.

From Theorem 2.1 we have
[⌊

n

[i, j]

⌋]

n×n

= CT
n diag

(
1, 1, . . . , 1

)
Cn, det

[⌊
n

[i, j]

⌋]

n×n

= 1.

Example 2. If g(n) = n, then

f
(
n, [i, j]

)
=

⌊
n

[i,j]

⌋ ⌊
n

[i,j] + 1
⌋

2
.

The decomposition of generalized LCM matrix is

[
f(n, [i, j])

]
n×n

= CT
n diag

(
1, 2, . . . , n

)
Cn,

and the determinant

det
[
f(n, [i, j])

]
n×n

= n!.

Example 3. If g(n) = (−1)Ω(n) is a Liouville function, then

f
(
n, [i, j]

)
= (−1)Ω

(
[i,j]

) ∑

k≤ n
[i,j]

(−1)Ω(k)

and

[
f(n, [i, j])

]
n×n

= CT
n diag

(
1, −1, . . . , (−1)Ω(n)

)
Cn,

det
[
f(n, [i, j])

]
n×n

= (−1)
∑n

k=1 Ω(k).

We remark that matrices related to the greatest integer function appeared

in [9], [5].
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Theorem 2.2. For a given totally multiplicative function g let

f(n, i, j, [i, j]) =
∑

k≤n

g(k)− g(i)
∑

l≤n
i

g(l)− g(j)
∑

l≤n
j

g(l) + g([i, j])
∑

k≤ n
[i,j]

g(k).

Then [
f(n, i, j, [i, j])

]
n×n

= DT
n diag[g(1), g(2), . . . , g(n)]Dn,

whereDn = [dij ]n×n,

dij =




1, if j - i

0, if j | i
.

Proof. After multiplication the general element of the matrix

A = [aij ]n×n = DT
n diag[g(1), g(2), . . . , g(n)]Dn

is

aij =
∑

i-k
j-k
k≤n

g(k) =
∑

k≤n

g(k)−
∑

i|k
g(k)−

∑

j|k
g(k) +

∑

i|k
j|k
k≤n

g(k)

=
∑

k≤n

g(k)−
∑

il≤n

g(il)−
∑

jl≤n

g(jl) +
∑

[i,j]|k
k≤n

g(k)

The total multiplicativity of g implies,

aij =
∑

k≤n

g(k)− g(i)
∑

l≤n
i

g(l)− g(j)
∑

l≤n
j

g(l) + g([i, j])
∑

k≤ n
[i,j]

g(k)

= f(n, i, j, [i, j]). ¤

Particular cases

Example 4. If g(n) = 1, then

f
(
n, i, j, [i, j]

)
= τ(n)− τ

(⌊n
i

⌋)
− τ

(⌊
n

j

⌋)
+

⌊
n

[i, j]

⌋
,

where τ(n) =
∑

d|n
1. By Theorem 2.2

[
f

(
n, i, j,

⌊
n

[i, j]

⌋)]

n×n

= DT
n diag

(
1, 1, . . . , 1

)
Dn.
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Example 5. If g(n) = n, then

f
(
n, i, j, [i, j]

)
= σ(n)− σ

(⌊n
i

⌋)
− σ

(⌊
n

j

⌋)
+

⌊
n

[i,j]

⌋ ⌊
n

[i,j] + 1
⌋

2
,

where σ(n) =
∑

d|n
d.

The general form of a generalized LCM matrix is

[
f(n, i, j, [i, j])

]
n×n

= DT
n diag

(
1, 2, . . . , n

)
Dn.

Example 6. If g(n) = (−1)Ω(n) is the Liouville function then

f
(
n, i, j, [i, j]

)
=

∑

k≤n

(−1)Ω(k) − (−1)Ω(i)
∑

l≤n
i

(−1)Ω(l) − (−1)Ω(j)
∑

l≤n
j

(−1)Ω(l)g

+ (−1)Ω
(
[i,j]

) ∑

k≤ n
[i,j]

(−1)Ω(k)

and [
f(n, i, j, [i, j]

]
n×n

= DT
n diag

(
1,−1, . . . , (−1)Ω(n)

)
Dn.

Remark 2.1. Due to the fact that the first line of the matrix[f(n, i, j, [i, j])]n×n

contains only 0-s, the determinant of the matrix will always be 0.
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