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A superelliptic equation involving alternating sums of powers

By MICHAEL A. BENNETT (Vancouver)

Dedicated to Kálmán Győry on the occasion of his 70th birthday

Abstract. In this short note, we solve completely the Diophantine equation

1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k = −yn,

for 3 ≤ k ≤ 6. This may be viewed as a “character-twisted” analogue of a classic equation

of Schaffer (in which context, it was previously considered by Dilcher). In our proof,

we appeal primarily to techniques based upon the modularity of Galois representations

and, in particular, to a combination of these ideas with suitable local information.

1. Introduction

In the study of Diophantine equations, there exists an interesting, and som-

etimes subtle, distinction between the effective and the explicit. As a case in

point, given a polynomial f(x) ∈ Z[x], with, say, three distinct simple complex

roots, the superelliptic equation

f(x) = yn

has, effectively, at most finitely many solutions in integers x, y and variable n ≥ 2,

via work of Schinzel and Tijdeman [8] using lower bounds for linear forms in

logarithms. Here, we count the solutions with yn = 0 or ±1 only once. On the
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other hand, there are really very few situations where such equations can be

completely solved, essentially all corresponding to polynomials f(x) with factors

over Z[x] of very small degree (typically, at most three). As a case study, consider

the equation

1k + 2k + · · ·+ xk = yn. (1.1)

Here, the left-hand-side can be expressed as a polynomial fk(x) of degree k+1 in

Q[x], where the denominators of the corresponding coefficients are well behaved.

The presence of linear factors x(x+1) in fk(x) makes it possible (see [2]) to solve

equation (1.1) completely when, say, k ≤ 11. The techniques of [2], while not

strictly speaking “algorithmic”, do provide a method for explicitly solving (1.1)

for any k of moderate size.

We have, in general, no analogous approach for the apparently similar equa-

tion

1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k = −yn, (1.2)

effectively solved by Dilcher [5]. If we set

gk(x) = 1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k,

then gk(x) is related (see [5]) to the classical Euler polynomials via the identity

gk(x) = −2k−1Ek(2x+ 1/2).

Work of Brillhart [4] therefore classifies the rational and repeated roots of the

polynomials gk(x); in the following table, we list the first few values of gk(x):

k gk(x) k gk(x)

1 −2x 4 −16x2(8x2 − 3)

2 −8x2 5 −2x(16x2 − 5)2

3 −2x(16x2 − 3) 6 −8x2(256x4 − 240x2 + 75)

It is worth noting that, at least for k ≥ 6, there are no gk(x) known to possess

an irreducible quadratic factor.

In this paper, we will show that it is still possible to solve equation (1.2), at

least for small values of k; we prove the following

Theorem 1.1. Let k ∈ {3, 4, 5, 6}. If there exist positive integers x, y and

n ≥ 2 satisfying (1.2), then

(k, x, y, n) = (5, 2 t2, 2 t (64t4 − 5), 2),

for t a positive integer.
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We would like to emphasize that, in contrast to the work of Győry, Pintér

and the author [2] on equation (1.1), we are genuinely unable to treat values of

k ≥ 7. For the cases k ∈ {3, 4, 5}, our approach is a simple appeal to known results

on ternary Diophantine equations, together with some machinery for solving cubic

Thue inequalities. The novelty of our approach, we must confess, is limited to the

case k = 6. Here, we apply local information at the primes 2 and 7, together with

techniques based upon associating Frey–Hellegouarch curves to modular forms,

to conclude that (1.2) has no solutions in nonzero integers. These ideas have

applications to more general superelliptic equations, but we will not explore them

here.

2. Proof of Theorem 1.1 : the cases k = 3, 4 and 5

We begin with the straightforward cases, treating each value of k ∈ {3, 4, 5}
in turn.

2.1. k = 3. Let us suppose first that k = 3 and write d = gcd(x, 16x2 − 3), so

that d ∈ {1, 3}. We thus have

x = 2n−1 dn−1 an and 16x2 − 3 = d bn,

for positive integers a and b (whereby, from considering the latter equation mo-

dulo 8, we may suppose that n is an odd prime). If d = 3, writing c = 2n+13n−2an,

we have bn +1 = 3c2. This immediately contradicts Theorem 1.1 of [3], provided

n ≥ 4. If n = 3, we have

4(12a2)3 − b3 = 1,

whereby the inequality ∣∣x3 − 2y3
∣∣ ≥

√
|x|, (2.1)

valid for all integers x and y (see Theorem 6.1 of [1]), implies 24a2 ≤ 4, and so

a = 0.

If, on the other hand, we have d = 1, then

bn − 22n+2a2n = −3.

For n ≥ 5 prime, this contradicts work of Kraus [6], since it implies the existence

of a weight 2 cuspidal newform of level 6. If n = 3, we may again appeal to

inequality (2.1) to conclude as desired.
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2.2. k = 4. Next, we turn our attention to the case k = 4, setting

d = gcd(16x2, 8x2 − 3) ∈ {1, 3},
so that

16x2 = 22ndn−1an and 8x2 − 3 = d bn,

for positive integers a and b. The latter equation is insoluble modulo 8 if n = 2;

we thus suppose that n is an odd prime (so that a = a21 is a perfect square). If

d = 3, then for c = 2n−13(n−3)/2an1 we have bn + 1 = 6c2. Again, Theorem 1.1

of [3] implies that n = 3. We thus have 12 (2a)3 − b3 = 1 and hence
∣∣∣∣

3
√
12− b

2a

∣∣∣∣ <
1

3 · 122/3 (2a)3 .

Combining this with the inequality
∣∣∣∣

3
√
12− b

2a

∣∣∣∣ > 0.28 (2a)−2.95,

valid for all positive integers a and b (see Corollary 1.2 of [1]) implies that a = 0,

a contradiction.

If k = 4 and d = 1, then

bn − 2n−1an = −3.

As previously, we appeal to [6] for n ≥ 5 prime (where the implied newforms are

now at levels 3 or 6), or to inequality (2.1), if n = 3.

2.3. k = 5. To begin, let us observe that if n = 2, we have that necessarily 2x is

a square, say x = 2t2 for t a positive integer. We thus obtain the infinite family

of solutions referenced in Theorem 1.1. For the remainder of this subsection, let

us suppose that n is either an odd prime, or that n = 4. Writing

d = gcd(x, 16x2 − 5) ∈ {1, 5},

there exist positive integers a and b for which

2x = dn−22nan and (16x2 − 5)2 = d2bn,

whence either n = 4 or we can find b1 such that b = b21. In the first case, we

have 16x2 − 5 = db2, a contradiction modulo 4. In the second, if d = 5, we have

bn1 +1 = 5c2, for c = 2n+15n−3an and so Theorem 1.1 of [3] again suffices to treat

n ≥ 5. If n = 3, then 1280 a6 − 1 = b31, whereby
∣∣∣∣

3
√
20− b1

4a2

∣∣∣∣ <
1

3 · 202/3 64 a6 .
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In conjunction with the inequality

∣∣∣∣
3
√
20− p

q

∣∣∣∣ > 0.01 q−2.23,

valid for all positive integers p and q (again see Corollary 1.2 of [1]), we obtain

that a = 1, a contradiction. If, however, d = 1, then

bn1 − 22n+2a2n = −5.

The techniques of [6] allow us to conclude as desired for n ≥ 5 prime (since there

do not exist cuspidal newforms of weight 2 and level 10), while inequality (2.1)

does likewise, in case n = 3

3. Proof of Theorem 1.1 : the case k = 6

We now complete the proof of Theorem 1.1 by treating the case k = 6. Notice

that g6(x) is always divisible by 2 to an odd exponent, whereby we may assume,

without loss of generality, that n is an odd prime. Set

d = gcd(8x2, 256x4 − 240x2 + 75) ∈ {1, 3, 25, 75}.

There thus exist positive integers a and b for which

8x2 = 2n 3ν3(d)(n−1) 5ν5(d)(n−2)/2 an and 256x4 − 240x2 + 75 = d bn,

where νp(d) denotes the largest power of p dividing d. Writing d d1 = 75, the

second equation becomes

3ν3(d)c2 + d1 = 4bn, (3.1)

where

c = 2n+2 · 3ν3(d)(n−2) · 5ν5(d)(n−3)/2 · an − 15 · 3−ν3(d) · 5−ν5(d)/2.

Suppose first that n ≥ 7 is prime. Following [3], we define a Frey–Hellegouarch

curve

E : Y 2 = X3 + 3ν3(d) cX2 + 3ν3(d) bnX.

Notice that, for each choice of d, we have

b ≡ −c ≡ −3ν3(d) mod 4.
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Combining Lemmata 2.1 and 3.3 of [3] thus implies that the canonical representa-

tion ρEn of Gal(Q/Q) on the n-torsion points of E arises from a weight 2, cuspidal

newform f of trivial Nebentypus character and level

N = 22 · 31+ν3(d) · 51−ν5(d)/2.

For d = 1 or d = 25, the absence of nonzero cuspforms at levels 60 and 12,

respectively, therefore completes the proof of Theorem 1.1, in case n ≥ 7 is prime.

If d = 75, equation (3.1) has, via Theorem 1.2 of [3], no solutions in integers c > 1.

The primary novelty in this paper lies in our treatment of the remaining case,

when d = 3. Here, equation (3.1) becomes

3c2 + 25 = 4bn (3.2)

and ρEn arises from a weight 2, cuspidal newform f of level 180. Since this space

is one-dimensional, corresponding to an elliptic curve E1/Q of conductor 180, it

follows that, for each prime p coprime to 30n, we have

ap(E) ≡ ap(E1) mod n, (3.3)

if p fails to divide b, while

ap(E1) ≡ ±(p+ 1) mod n, (3.4)

if p | b.
We will apply these congruences with p = 7 – the choice of prime here is, as

we shall see, far from arbitrary. For our purposes, it is crucial that a7(E1) = 2.

Note that from (3.2), the value of a7(E) is completely determined by the residue

class of c modulo 7. If c ≡ ±1 mod 7, then 7 | b and so (3.4) implies that

n ≤ 5. Otherwise, we have a7(E) = 0 (if c ≡ 0,±3 mod 7) or a7(E) = ±4 (if

c ≡ ±2 mod 7). In each case, a7(E) 6= a7(E1) and appealing to (3.3) leads to

the conclusion that n ≤ 5.

It remains, then, to treat the exponents n = 3 and 5. In the first case,

solutions to (3.1) correspond to integral points on elliptic curves of the shape

E : Y 2 = X3 − 24 · 31+2ν3(d) · 52−ν5(d).

Standard computational packages (e.g. Magma) for finding such points on fixed

models of elliptic curves may thus be applied to show that there are no integer

points on E, if d = 1 or 3, and, if d = 25, only the points (X,Y ) = (4,±4) and

(28,±148), corresponding to (b, c) = (1,±1) and (7,±37) in equation (3.1). None

of these have, as required in this case, c ≡ −3 mod 32. If d = 75, we find the

points (X,Y ) = (12,±36), corresponding to c = ±1, again a contradiction.
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Finally, let us suppose that n = 5. In case d = 1, the fact that x2 = 4a5

implies that a = a21 for some integer a1, and so x2 ≡ ±4 mod 25, whereby

b5 ≡ −4± 10 mod 25,

a contradiction. For d ∈ {3, 25, 75}, we note that solutions to (3.1) imply the

existence of integral points on hyperelliptic curves of the shape

C : Y 2 = X5 − 28 · 31+4ν3(d) · 52−ν5(d).

In case d = 3, since the Jacobian Jac(C) is readily shown to have rank 0 over Q,
a relatively easy application of Chabauty techniques implies that no such points

exist. If d = 25 or 75, we can argue similarly, or note that, since the curves C

have defining equations of the shape Y 2 = X5 − 2α3β and Theorem 5.1 of Mul-

holland [7] provides all solutions to equations of these types, we may conclude

that (X,Y ) = (4,±16), if d = 25, and that (X,Y ) = (12,±432), if d = 75. In

each case, these correspond to c = ±1. This contradiction finishes the proof of

Theorem 1.1.

4. Concluding remarks

What we have really proved in our treatment of equation (3.2) is the follo-

wing:

Theorem 4.1. The Diophantine equation

3c2 + 25 = 4bn

has no solutions in coprime integers b and c with c ≡ ±3 mod 8, and integer

n ≥ 2.

One can probably solve this equation completely, without restriction upon c,

though not through a simple application of techniques based solely upon the

modularity of Galois representations. Indeed, for c ≡ ±1 mod 8, after suitable

level lowering, one is led to consider modular forms of level 360 rather than 180.

At the former level, there are five forms, each one-dimensional, three of which

resist easy elimination. Our argument based upon analysis of Fourier coefficients

at p = 7 fails in such a case, since one of these forms corresponds to an elliptic

curve E1/Q with a7(E1) = −4.
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[2] M. A. Bennett, K. Győry and Á. Pintér, On the Diophantine equation 1k + 2k + . . .
+xk = yn, Compositio Math. 140 (2004), 1417–1431.

[3] M. A. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations
and modular forms, Canad. J. Math. 56 (2004), 23–54.

[4] J. Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew. Math. 234 (1969),
45–64.

[5] K. Dilcher, On a diophantine equation involving quadratic characters, Compositio Math.
57 (1986), 383–403.

[6] A. Kraus, Majorations effectives pour l’équation de Fermat généralisée, Canad. J. Math.
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