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q-series: dimension estimates, linear independence

By PETER BUNDSCHUH (Köln) and KEIJO VÄÄNÄNEN (Oulu)

To Kálmán Győry, Attila Pethő, János Pintz, András Sárközy:

Ad multos annos!

Abstract. Entire transcendental solutions f of functional equations f(qmz) =

R0(z)f(z) + R1(z) with polynomial coefficients R0, R1 are arithmetically studied. The

purpose of this note is to report on recent progress on lower bounds for the dimension

of the K-vector space generated by 1 and the values of these f and their derivatives

at m successive powers of q, where K is Q or an imaginary quadratic number field. In

favorable circumstances, linear independence can be obtained, even in a quantitative

form.

1. Introduction and main result

The aim of this note is to report on generalizations of earlier linear indepen-

dence results on the values of entire functions f satisfying a functional equation

of the form

f(qmz) = R0(z)f(z) +R1(z), (1)

where m ∈ N := {1, 2, . . . }, R0, R1 ∈ K[z] and q ∈ K, K denoting always either Q
or an imaginary quadratic number field. It was shown in [9] that f can be linearly

expressed by 1 and certain basic hypergeometric series. In [7] and [9], estimates for

the dimension of the K-vector space spanned by 1 and the f(αq−µ), 0 ≤ µ < m,

with α ∈ K× were proved and, in [17] the corresponding dimension estimate in
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the case m = 1 was obtained for 1 and the f (κ)(α), 0 ≤ κ < k. Note also that a

p-adic analogue of [9] is established in [10].

The main result of the present note is the following statement.

Theorem 1. Assume that q ∈ K with |q| > 1 is the quotient u/v of non-

zero u, v ∈ OK , the ring of integers of K, and let η := (log |v|)/(log |u|). Suppose
that f is an entire transcendental solution of the functional equation (1) with

R0, R1 ∈ K[z], degR0 =: ` ∈ N, with f(0) = 1 if R1(0) = 0 and R0(0) ∈ q−N

if R1(0) 6= 0. Let α ∈ K× satisfy the conditions R0(αq
−j) 6= 0 for any integer

j ≥ m. Then the following dimension estimate holds

dimK

{
K +

k−1∑
κ=0

m−1∑
µ=0

Kf (κ)(αq−µ)

}
≥ (1− η)C(k, `,m),

where

C(k, `,m) :=
km((km+ 1)2 − k`m) +

√
∆

2k`m(km+ 2 + 6π−2(k − 1)m))
(2)

with

∆ := k2m2((km+ 1)2 − k`m)2 + 4k`m(km+ 1)2(km+ 2 + 6π−2(k − 1)m).

Note that one may tacitly always suppose that u, v have only units from OK

as common divisors. Namely, otherwise the corresponding quotient η′, say, would
satisfy 1 − η > 1 − η′ and the dimension estimate would become unnecessarily

worse.

After some minor calculation, one sees that expression (2) can be bounded

below by

C(k, `,m) >
km

`(1 + 6π−2(1− 1/k))
− 1. (3)

Moreover, it should be pointed out that the choice k = 1 and η = 0 (⇔ q ∈
OK) gives the Main Theorem in [9], whereas, in the case m = 1, Theorem 1 yields

improvements on Töpfer’s Theorems 1, 2 and 3 in [17].

The last remark for the moment refers to a closed form of the entire solu-

tion of (1) under the conditions of Theorem 1. Namely, iterating this functional

equation, it is easily seen that any solution f of (1) satisfies also equation1

f(z) = f(zq−Jm)

J∏

j=1

R0(zq
−jm) +

J∑

j=1

R1(zq
−jm)

j−1∏

i=1

R0(zq
−im) (4)

1As usual, empty products and sums have always to be interpreted as 1 or 0, respectively.
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for any J ∈ N0 := N ∪ {0}. By the assumptions of Theorem 1, one can write

R0(z) = q−tP (zqm) with P ∈ K[z], P (0) = 1, t ∈ N0, where t = 0 if and only if

R1(0) = 0. Letting J → ∞, (4) leads to

f(z) =

∞∏

j=0

P (zq−jm) +

∞∑

j=0

R1(zq
−(j+1)m)

j−1∏

i=0

P (zq−im)

if R1(0) = 0, whereas in case R1(0) 6= 0 to

f(z) =

∞∑

j=0

R1(zq
−(j+1)m)q−jt

j−1∏

i=0

P (zq−im).

At the beginning of the next section, some explicit examples of functions of

the type f discussed here will follow. These functions appeared here and there

in irrationality investigations during the last fifteen years, and the main aim of

the section is to apply Theorem 1 to these special functions, and to compare the

results with the preceding ones. In the third section, the particular case R1 = 0

of equation (1) will be studied in more detail: In this case, linear independence

assertions can be obtained under suitable additional conditions, even in a quan-

titative form. The last section will be devoted to a short sketch of the rather

technical proof of Theorems 1 and 2 which will appear in full elsewhere.

2. Some ‘irrationality’ questions

Suppose P ∈ K[z] with P (0) = 1 and deg P = ` ∈ N, and let m ∈ N. Then

define the infinite product

f0,m(z) :=

∞∏

j=0

P (zq−jm), (5)

and, for h ∈ N, the infinite series

fh,m(z) :=

∞∑

j=0

q−hmj

j−1∏

i=0

P (zq−im). (6)

All these functions are entire and satisfy the functional equation (1) with R0(z) =

q−hmP (zqm), R1(z) = 1− δh,0 for every h ∈ N0, δ denoting Kronecker’s symbol.

By an easy degree consideration, it follows from (1) that none of the fh,m can be

a polynomial.
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Taking, in particular, P (z) = 1 + z, the infinite product f0,1 in (5) becomes

the so-called q-exponential function

Eq(z) :=

∞∏

j=0

(1 + zq−j), (7)

one of the most prominent q-functions. On Eq, Lototsky [12] proved already

in 1943 that, for every α ∈ K× with −α /∈ qN0 , one has Eq(α) /∈ K. Whereas

P (z) = 1 + az with a ∈ K× gives nothing really new, it is obvious that f0,1
provides interesting new objects for irrationality investigations if degP = ` ≥ 2.

But already in the smallest case ` = 2, hence P (z) = 1 + a1z + a2z
2 with

a1, a2 ∈ K×, one feels serious difficulties. Namely, generalizing work of Zhou

and Lubinsky [23], one of the present authors [5] could demonstrate f0,1(1) /∈ K

if q ∈ OK satisfies the ‘natural’ conditions P (q−j) 6= 0 for any j ∈ N0 but additi-

onally the ‘technical’ condition |q| > q0(a1, a2), where the dependence on a1, a2
is effective. Alternatively one obtained an exclusion result of the type that not

both of the numbers f0,1(1), f0,1(−1) are in K if q ∈ OK with |q| > 1 satisfies

P (q−j)P (−q−j) 6= 0 for any j as above. Notice that, in spite of the paper [20],

the problem f0,1(1) /∈ K if q ∈ OK satisfies only the ‘natural’ conditions remains

open.

Whereas the method used in [23] and [20] arose from explicit formulae for

multivariate Padé approximants, the proofs of [5] rest on Newton’s interpolation

series. The reader may ask what happens when applying Theorem 1 to the

problem of getting Lototsky-type analogues for products over polynomials P of

degree ` (≥ 2). So, assume q ∈ OK (⇔ η = 0), |q| > 1, and P (q−j) 6= 0 for any

j ∈ N0 which, by R0(αq
−j) = q−hmP (αqm−j), just ensures the hypotheses on α

in Theorem 1 if choosing α = 1. Applying Theorem 1 with k = 1,m = 1, the

following inequality

dimK K +Kf0,1(1) ≥ C(1, `, 1) (8)

is obtained. Here C(1, 1, 1) = (3 +
√
57 )/6 = 1.758 . . . yields f0,1(1) /∈ K, an

equivalent version of Lototsky’s result. The fact C(1, 2, 1) = 1 is particularly

annoying since it means that inequality (8) just fails to give f0,1(1) /∈ K for

` = 2. Since C(1, `, 1) is strictly decreasing, inequality (8) does not yield an

‘irrationality’ assertion for ` ≥ 3 either. Even worse: As the following result

shows, doubts about the validity of a Lototsky-type analogue for products over

higher degree polynomials are advisable.

Proposition 1. With q ∈ K, |q| > 1, let P (z) denote the polynomial (1+z)

(1 − qz2) of degree 3. Then the ‘natural’ conditions P (q−j) 6= 0 for any j ∈ N0
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are satisfied but, for the corresponding f0,1 from (5), one has f0,1(1) ∈ K. In

fact, f0,1(1) = P (1) = 2(1− q) holds.

Proof. A glance at Aufgabe 19 on p. 3 of [15] shows the Eulerian identity

∞∏

j=1

(1 + q−j) =

∞∏

j=1

(1− q1−2j)−1

for any q ∈ C with |q| > 1, and this is equivalent to
∏∞

j=1 P (q−j) = 1, whence

the assertion. ¤

Feeling the difficulties, alluded to above, to get definite ‘irrationality’ results

on f0,1 from (5) if P ∈ K[z] with P (0) = 1 satisfies degP ≥ 2, several authors

proved exclusion results of the subsequent type which will turn out to be simple

corollaries to Theorem 1.

Proposition 2. Let q ∈ OK , |q| > 1, and assume that P ∈ K[z] with

degP = ` ≥ 2 satisfies P (0) = 1, P (q−j) 6= 0 for any j ∈ N0. If h,m ∈ N0,

m ≥ 2(`− 1), then at least one among the numbers

fh,m(1), fh,m(q−1), . . . , fh,m(q−(m−1)) (9)

does not belong to K.

Proof. Notice first that m ≥ 2(`− 1) implies

m+
1

m
> 2(`− 1). (10)

Application of Theorem 1 with q ∈ OK (hence η = 0), α = 1, k = 1 leads to

dimK

{
K +

m−1∑
µ=0

Kf(q−µ)

}
≥ m

(
(m+ 1)2 − `m

)
+
√
∆0

2`m(m+ 2)
. (11)

with ∆0 := m2
(
(m + 1)2 − `m

)2
+ 4`m(m + 1)2(m + 2). Here a careful but

elementary calculation shows that the right-hand side of (11) is greater than 1 if

and only if (10) holds, whence the claim of the proposition. ¤

Under the stronger hypotheses q ∈ N, q > 1, P ∈ Q+[z] (fairly implying

P (q−j) 6= 0 for any j ∈ N0), P (0) = 1, and m ≥ `2 − 2, Zhou [22] proved via

Padé approximations that, in case h = 0, at least one among the real numbers (9)

is irrational. By simply applying his old analytic ‘irrationality’ criterion [4] based
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on Newton’s interpolation series, the first-named author [6] sharpened Zhou’s

result to m ≥ `(` − 1) under the assumptions of Proposition 2 on q and P . The

results there concern the ‘product’ case h = 0 as well as the ‘series’ case h = 1

from (6). Again for h = 1 and polynomials P of degree 2, the corresponding result

under the hypothesis m ≥ 2 is due to Zhou [21], who comments briefly (p. 439)

on the incomplete proof in [3] of the irrationality of f1,1(1) if q ∈ N, q > 1, and

P ∈ Q+[z] with P (0) = 1 has degree 2.

To conclude this section, it should be also noted that Choi and Zhou [11]

proved a lower bound for

dimQ

{
Q+

m−1∑
µ=0

Qf(q−µ)

}

similar to (11) if q ∈ Q, q > 1, P ∈ Q+[z], P (0) = 1, degP = ` ≥ 2. In the

particular case q ∈ N, their bound becomes non-trivial (i.e., greater than 1) only

for m ≥ max(2, (`2 − 2 + `
√
`2 − 4 )/2). Here the lower bound for m is again

quadratic in `, in contrast to the corresponding inequality of Proposition 2.

3. The homogeneous case

In the homogeneous case R1 = 0 of the functional equation (1), one can get

a better lower bound for the dimension of a slightly smaller K-vector space than

the one from Theorem 1.

Theorem 2. If the assumptions of Theorem 1 are valid and, moreover,

R1 = 0 holds, then one has the dimension estimate

dimK

{ k−1∑
κ=0

m−1∑
µ=0

Kf (κ)(αq−µ)

}
≥ (1− η)C̃(k, `,m),

where

C̃(k, `,m) =
k2m− k`+

√
(k2m− k`)2 + 4k`(k + 6π−2(k − 1))

2`(k + 6π−2(k − 1))
. (12)

Note that, in the case m = 1, Theorem 2 improves the homogeneous parts of

Theorems 1 and 2 in [17]. Note also that one can obtain for C̃(k, `,m) the same

lower bound

C̃(k, `,m) >
km

`(1 + 6π−2(1− 1/k))
− 1 (13)
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as for C(k, `,m) in (3).

Since C̃(2, 1, 1) = 1.339 . . . , by (12), one can deduce from Theorem 2 that

Eq(α), E
′
q(α) are linearly independent over K if q ∈ OK , |q| > 1, α ∈ K×,

−α /∈ qN0 . Defining the q-logarithmic function Lq as the logarithmic derivative

of the q-exponential function Eq from (7), i.e., as

Lq(z) :=

∞∑

j=0

1

qj + z
,

then the before-mentioned result means Lq(α) /∈ K if q and α satisfy the above

conditions. Clearly, in the special case K = Q, this is just Borwein’s [2] famous

result.

Here it is remarkable to take a step more. Namely, by C(2, 1, 1) = 2.005 . . . ,

one can deduce from Theorem 1 even that 1, Eq(α), E
′
q(α) are linearly independent

over K under the above assumptions on q and α. But it should be noticed, that

a result of Bézivin [1, Corollaire 1] contains the K-linear independence of

1, Eq(α1), . . . , E
(k−1)
q (α1), . . . , Eq(αm), . . . , E(k−1)

q (αm)

for arbitrary k ∈ N, where α1, . . . , αm are m ∈ N distinct numbers from K×, not
in −qN0 and satisfying an additional but very ‘natural’ condition which is void

for m = 1. By the way, Bézivin’s method, entirely different from the one used to

prove Theorems 1, 2 (and 3 below), highly depends on the particular form

∞∑

j=0

qjzj∏j
i=1(q

i − 1)

of the Taylor series of Eq(z) about the origin.

Whereas the last few applications concerned small values of k, `,m, the fol-

lowing one relates to arbitrary m ∈ N. Namely, (13) implies C̃(1, 1,m) > m− 1,

whence, by Theorem 2,

dimK

{m−1∑
µ=0

Kf(αq−µ)

}
> m− 1

if η = 0. Thus, if q ∈ OK and k = ` = 1 in this homogeneous case, one obtains the

linear independence over K of the m numbers f(αq−µ), 0 ≤ µ < m. By a different

method, the second-named author [19] even obtained the K-linear independence

of all numbers 1 and f(αq−µ), 0 ≤ µ < m, and moreover, a linear independence
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measure for them in the general case of (1) with k, `, η as before. Here the fact

that, in the case ` = 1, the solutions f of (1) are somehow related to the solutions

of functional equations of type

zsf(z) = S0(z)f(qz) + S1(z) (14)

with s ∈ N and polynomials S0, S1 is used. However, no similar interrelation is

known for ` ≥ 2. Generally speaking, the arithmetic behavior of the solutions

of type (1) functional equations seems to be more complicated than the one of

solutions of type (14). In this second case, very general and precise results are

available. For a survey, the reader may be referred to [18].

The main tool in the proofs of Theorems 1 and 2 is Nesterenko’s dimension

estimate [14] and its generalization to arbitrary algebraic number fields due to

Töpfer [16], compare Section 4. Whereas these dimension estimates led only

to qualitative results, Töpfer and the first-named author [8], [16] showed the

following. Essentially in all situations, where one can deduce from Nesterenko-

type estimates linear independence of numbers over the algebraic number field

under consideration, one can write down, with not much additional expense,

measures for this linear independence.

An example is the following quantitative version of the last-mentioned linear

independence result.

Theorem 3. Let the assumptions of Theorem 1 be valid, and assume furt-

hermore degR0 = 1, R1 = 0, q ∈ OK ,m ≥ 2. Then, for every ε ∈ R+, there

exists a constant C0 ∈ R+ depending at most on q, m, R′
0(0), α, ε such that,

for every Λ := (λ0, . . . , λm−1) ∈ Om
K with |Λ| := max(|λ0|, . . . , |λm−1|) ≥ C0, the

following inequality holds

∣∣∑λµf(αq
−µ)

∣∣ ≥ |Λ|−(ψ(m)+ε) (15)

where ψ(m) := (m− 1)
(√

(m− 1)2 + 4 +m− 1
)
/2.

Notice that if all hypotheses of Theorem 3 hold and, moreover, m = 2, then

the quotient f(α)/f(α/q) does not belong to K, and has ‘irrationality’ exponent

not greater than 1 + ψ(2) = (3 +
√
5 )/2 = 2.618 . . . .

It should be pointed out that, in a recent paper, Matala-aho [13] obtained

very strong quantitative linear independence results on three special functions.

The third one of these implies a measure for 1 and the Eqm(αq−µ), 0 ≤ µ < m,

for the q-exponential function E from (7) and every α ∈ K× \ qmZ. Here not only

the number 1 is included in contrast to the situation in Theorem 3 but also the

exponent ψ(m) in (15) is asymptotically m2, whereas Matala-aho’s is linear in m.
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4. Sketch of proofs

As already indicated in the preceding section, the basic ingredient of the

proofs of Theorems 1 and 2 is the following

Nesterenko-type dimension estimate. Let E be R or C according as K is Q
or an imaginary quadratic field. Further, let d ∈ N, d ≥ 2 and ω = (ω1, . . . , ωd) ∈
Ed \ {0}. Finally, assume that there exist N0 ∈ N, τ ∈ R+, an unbounded

increasing function F : N→ R+, and a sequence (ΛN )N≥N0
of linear forms over

OK in d variables with

(i) lim supN→∞ F (N + 1)/F (N) ≤ 1,

(ii) log |ΛN | ≤ F (N) for every N ≥ N0,

(iii) log |ΛN (ω)| = −(τ + o(1))F (N) for every large N ≥ N0,

where |ΛN | denotes the maximum norm of the coefficient vector of the linear form

ΛN . Then the following dimension estimate holds

dimK Kω1 + · · ·+Kωd ≥ 1 + τ.

In the case K = Q, and hence E = R, this result is Nesterenko’s [14]. If

K is imaginary quadratic, it is Töpfer’s Korollar 2 in [16] combined with his

remark after Korollar 7 that, in case of such particular algebraic number fields,

one may replace the field degree [K : Q] = 2 by 1.

It is obviously enough to prove Theorems 1, 2 (and 3) only for α = 1. To

apply the above dimension estimate, one has to construct an infinite sequence of

linear forms over OK in2

1, f(1), . . . , f (k−1)(1), f(q−1), . . . , f (k−1)(q−1), . . . ,

f(q−(m−1)), . . . , f (k−1)(q−(m−1)) (16)

(indexed by N , say), whose absolute values tend sufficiently rapidly to zero as

N → ∞, whilst the maximum of the absolute values of their coefficients do not

increase too quickly with N .

Before indicating the construction of such a sequence, the following easy con-

sequence of (1) should be noticed for the Taylor series
∑∞

n=0 cnz
n of f(z). Since

f is not a polynomial, for every integer n > max(`, degR1), not all cn−1, . . . , cn−`

can vanish. But much more than this fact can be deduced from the well-known

growth behavior of |f |r := max|z|=r |f(z)| for entire transcendental solutions f

2For Theorem 2, the number 1 has to be omitted.
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of (1). Namely, for any large integer n, there is an ñ ∈ {n − 1, . . . , n − `} such

that |cñ| essentially reaches its largest possible size allowed by the size of |f |r.
To construct now a sequence suitable for the present purposes, one considers

complex integrals of type

I(N) :=
1

2πi

∮

Γ(N)

f(qGz)dz

zL
∏M+βN+1

j=0 (z − qj)kj

, (17)

where L ≥ 0, M > 0 and G are integer parameters depending on N , suitable

βN ∈ {0, . . . , `− 1} having to do with the previous remark on ` successive Taylor

coefficients of f , and with kj = k (the derivation order of f) if 0 ≤ j ≤ M , and

kj = 1 if M < j ≤ M +βN +1. Of course, Γ(N) denotes a sufficiently large circle

centered at the origin.

For the asymptotic evaluation of |I(N)|, a very careful analysis is necessary.

The basic point here is to show that the absolute values of I(N) and of

1

2πi

∮

Γ(N)

f(qGz)dz

zL+k(M+1)+βN+1
= qG(L+k(M+1)+βN )cL+k(M+1)+βN

are asymptotically equal. So far the analytic preparations.

For the arithmetic parts of the proof, one first evaluates I(N) from (17) by

the residue theorem, and then expresses the arising derivatives of f of orders less

than k at integral powers of q by the k ·m numbers f (κ)(q−µ) (0 ≤ κ < k, 0 ≤ µ <

m) via iteration and differentiation of (1). Thus, one is led to linear forms in 1

and these f (κ)(q−µ) with explicitly known coefficients in K. These have to be

transformed into OK-linear forms on multiplying by appropriate Ω(N) ∈ OK \{0}
whose growth with N has to be precisely controlled. Checking all details it comes

out that the constructed sequence of OK-linear forms Ω(N)I(N) in the numbers

(16) tends to zero very rapidly, and thus all conditions of the Nesterenko-type

dimension estimate are fulfilled yielding Theorems 1 and 2.
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