The least nonzero digit of n ! in base 12

By JEAN-MARC DESHOUILLERS (Bordeaux) and IMRE Z. RUZSA (Budapest)

To Kálmán Györy, Attila Pethő, János Pintz and András Sárközy, with respect and friendship, for their joint 260 th birth anniversary

Abstract

We positively answer a question raised by the first author and prove that, for $1 \leq a \leq 11$, the sequence $\left\{n: \ell_{12}(n!)=a\right\}$ has an asymptotic density, which is $1 / 2$ if $a=4$ or $a=8$ and 0 otherwise; here $\ell_{b}(m)$ denotes the least nonzero digit of m in base b.

1. Introduction

In [3], Dresden has studied, among others, the sequence of the least nonzero digit of n ! in base 10, and showed that the decimal number written in base 10 by concatenating those digits one after the other is transcendental. More precisely, if we write a positive integer m in the base b as

$$
\begin{equation*}
m=\sum_{k \leq \log _{b} m} \epsilon_{k}(m) b^{k}, \quad \text { with } \quad \epsilon_{k}(m) \in\{0,1, \ldots b-1\} \tag{1}
\end{equation*}
$$

the least nonzero digit of m in the base b, denoted by $\ell_{b}(m)$, is the number $\epsilon_{h}(m)$, where $\epsilon_{h}(m) \neq 0$, whereas $\epsilon_{k}(m)=0$ for any $k<h$. For example, $\ell_{10}(403000)=3$.

[^0]Although Dresden does not phrase it this way, the key point in his proof that the number $\sum \ell_{10}(n!) / 10^{n}$ is transcendental is the fact that the sequence $\left(\ell_{10}(n!)\right)$ is 5 -automatic, but not periodic. We refer the reader to the excellent monograph [1] by Allouche and Shallit for the definition of automatic sequences and their properties, including the transcendence of power series they generate.

One important feature of the sequence $(n!)$ used by Dresden is the fact that

$$
\begin{equation*}
\text { for } n \geq 2, \quad 5^{k}\left|n!\Rightarrow 2^{k+1}\right| n!. \tag{2}
\end{equation*}
$$

Due to analogues of this property, Dresden's result extends to a majority of bases; for example, if b is squarefree and p is the largest prime factor of b, then the sequence $\left(\ell_{b}(n!)\right)$ is p-automatic.

In this paper, we study a special case when we cannot guarantee the automaticity of the sequence $\left(\ell_{b}(n!)\right)$, namely the case $b=12$. In this case, there is no systematic relation like (2); indeed, for $n=3^{m}$ and $k=(n-1) / 2$, we have $3^{k} \mid n!$ and $4^{k} \nmid n!$, but for $n=4^{m}$ and $k=\lfloor(n-1) / 2\rfloor$ we have $4^{k} \mid n!$ but $3^{k} \nmid n!$.

Although the sequence $\left(\ell_{12}(n!)\right)$ seems not to be automatic, it turns out that it coincides almost everywhere (i.e. on a set of asymptotic density 1 ; this classical notion is defined a few lines below Lemma 1) with a 3 -automatic sequence, and this permits to solve the question raised by the first-named author during the conference "Analytic and Combinatorial Number Theory" held in September 2010 in IMSc, Chennai (cf. [4]). More precisely, we have the following result.

Theorem. Let $0 \leq a \leq 11$. The sequence $\left\{n: \ell_{12}(n!)=a\right\}$ has an asymptotic density, which is $1 / 2$ if $a=4$ or $a=8$ and 0 otherwise.

It seems to be difficult to find the order of magnitude of the counting functions of these sets in the case $a \neq 4,8$. We can show that

$$
\left|\left\{n \leq x: \ell_{12}(n!)=a\right\}\right|=O\left(x^{c}\right)
$$

with some $c<1$ whenever $a \neq 4,8$. From the other side we cannot even prove that they are all infinite, which seems to be likely.

2. Proof of the main result

We use $v_{q}(n)$ to denote the largest integer k such that q^{k} divides n.
The following lemma, which is due to Legendre, is a direct consequence of Theorem 3.2.1 of [1].

Lemma 1. Let p be a prime, let $a \geq 1$ and $n \geq 0$ be integers. We have

$$
\begin{equation*}
v_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \quad \text { and } \quad v_{p^{a}}(n!)=\left\lfloor\frac{n-s_{p}(n)}{a(p-1)}\right\rfloor . \tag{3}
\end{equation*}
$$

Our second basic lemma is also fairly classical: it follows from the fact that $s_{b}(n)$ behaves like the sum of $\log _{b} n$ independent random variables which are uniformly distributed in $\{0,1, \ldots, b-1\}$. We could not find out who first explicitly expressed and proved it. More general results abound in the literature; Bassily [2] gives a simple proof (and generalizations which are irrelevant for our purposes).

We recall that a sequence of non-negative integers \mathcal{A} is said to have asymptotic density (or simply density) α if $|\{a \in \mathcal{A}: a \leq x\}|$ is asymptotically equal to αx as x tends to infinity.

Lemma 2. Let $\delta>0$ and $b \geq 2$. The set

$$
\begin{equation*}
\mathcal{S}_{b}(\delta):=\left\{n:\left|s_{b}(n)-\frac{b-1}{2} \log _{b} n\right| \geq \delta \log _{b} n\right\} \tag{4}
\end{equation*}
$$

has asymptotic density 0 .
Our next lemma is a direct consequence of the previous one.
Lemma 3. Let $p<q$ be prime numbers. There exists a positive δ such that the set of the integers n satisfying

$$
\begin{equation*}
s_{p}(n) \leq s_{q}(n)-\delta \log n \tag{5}
\end{equation*}
$$

has asymptotic density 1.
Proof. The function $x \mapsto(x-1) / \log x$ is strictly increasing on $[2,+\infty)$. We let

$$
\delta=\frac{q-1}{4 \log q}-\frac{p-1}{4 \log p}
$$

which is positive, and we consider the sets

$$
\mathcal{T}_{q, \delta}^{+}=\left\{n: s_{q}(n) \geq \frac{q-1}{2} \log _{q} n-\frac{\delta}{2} \log n\right\}
$$

and

$$
\mathcal{T}_{p, \delta}^{-}=\left\{n: s_{p}(n) \leq \frac{p-1}{2} \log _{p} n+\frac{\delta}{2} \log n\right\}
$$

By Lemma 2, the sets $\mathcal{T}_{q, \delta}^{+}$and $\mathcal{T}_{p, \delta}^{-}$have density 1. Now if n is in their intersection, which still has density 1 , we have

$$
\begin{aligned}
s_{p}(n) & \leq\left(\frac{p-1}{2 \log p}+\frac{\delta}{2}\right) \log n \\
& \leq\left(\frac{q-1}{2 \log q}-\frac{\delta}{2}\right) \log n-\delta \log n \leq s_{q}(n)-\delta \log n
\end{aligned}
$$

We now show that $\ell_{12}(n!)$ and $4 \ell_{3}(n!)$ are equal on a set of density 1 .
Proposition 1. Let n be an integer such that $s_{2}(n) \leq s_{3}(n)-3$; then $\ell_{12}(n!)=4 \ell_{3}(n!)$.

Proof. Let us consider such an integer n and let us write it in the bases 3 and 12 as

$$
n!=\sum_{k \geq k_{0}} \eta_{k}^{(12)} 12^{k}=\sum_{h \geq h_{0}} \eta_{h}^{(3)} 3^{h}
$$

where $\eta_{k_{0}}^{(12)}=\ell_{12}(n!)$ and $\eta_{h_{0}}^{(3)}=\ell_{3}(n!)$.
We have

$$
\begin{aligned}
v_{4}(n!)=\left\lfloor(1 / 2)\left(n-s_{2}(n)\right)\right\rfloor \geq & (1 / 2)\left(n-s_{2}(n)-1\right) \\
& \geq(1 / 2)\left(n-s_{3}(n)+2\right)=v_{3}(n!)+1=h_{0}+1
\end{aligned}
$$

This implies that $4^{h_{0}+1} \mid n!$; since $3^{h_{0}} \mid n!, 3^{h_{0}+1} \nmid n!$, we have $k_{0}=h_{0}$ and $\eta_{k_{0}}^{(12)} \equiv 0(\bmod 4)$. We may thus write $n!=3^{k_{0}}\left(\eta_{k_{0}}^{(3)}+3 r\right)=12^{k_{0}}\left(\eta_{k_{0}}^{(12)}+12 s\right)$, and so $\eta_{k_{0}}^{(3)} \equiv 4^{k_{0}} \eta_{k_{0}}^{(12)} \equiv \eta_{k_{0}}^{(12)}(\bmod 3)$. We thus have the two congruences $\eta_{k_{0}}^{(12)} \equiv 0(\bmod 4)$ and $\eta_{k_{0}}^{(12)} \equiv \eta_{k_{0}}^{(3)}(\bmod 3)$, whence $\eta_{k_{0}}^{(12)}=4 \eta_{k_{0}}^{(3)}$.

We now give a direct proof that the sequence $\left(\ell_{3}(n!)\right)$ is automatic.
Proposition 2. The sequence $\left(\ell_{3}(n!)\right)_{n \geq 0}$ is the fixed point, starting with 1 , of the substitution given by

$$
1 \mapsto 112221221 \quad \text { and } \quad 2 \mapsto 221112112
$$

Proof. We easily notice that $\ell_{3}(n m) \equiv \ell_{3}(n) \ell_{3}(m)(\bmod 3)$ and in particular, we have $\ell_{3}(9 n)=\ell_{3}(n)$. Let $\alpha=\ell_{3}((9 n)!)$ and let $\beta \equiv 2 \alpha(\bmod 3)$. We have $\ell_{3}((9 n+1)!)=\alpha \ell_{3}(9 n+1)=\alpha$, and we find in the same way that we have successively $\ell_{3}((9 n+2)!)=\beta, \ell_{3}((9 n+3)!)=\beta, \ell_{3}((9 n+4)!)=\beta, \ell_{3}((9 n+5)!)=$ $\alpha, \ell_{3}((9 n+6)!)=\beta, \ell_{3}((9 n+7)!)=\beta$ and $\ell_{3}((9 n+8)!)=\alpha$. This proves that the sequence of the nine values $\left(\ell_{3}((9 n+i)!)\right)_{0 \leq i \leq 8}$ is one of the two sequences given in the proposition.
In order to prove the proposition, it is enough to prove that $\ell_{3}(0!)=1$, which is obvious, and that for any n, we have $\ell_{3}((9 n)!)=\ell_{3}(n!)$, an assertion which we shall prove by induction. We assume that for some k, we have $\ell_{3}((9 k)!)=\ell_{3}(k!)$; again, by the previous computation, we have

$$
\begin{aligned}
\ell_{3}((9 k+9)!) & \left.\left.\equiv \ell_{3}(9 k+9) \ell_{3}(9 k+8)!\right) \equiv \ell_{3}(k+1) \ell_{3}(9 k)!\right) \\
& \equiv \ell_{3}(k+1) \ell_{3}(k!) \equiv \ell_{3}((k+1)!) \quad(\bmod 3) .
\end{aligned}
$$

This ends the proof of the proposition.

We are now equipped to prove the main result. The automaticity of a sequence does not imply the existence of its density (cf. the example of the numbers starting with a 1 in the base 10), and a little extra work is still needed. Let us consider the sequence $(\alpha(n))_{n \geq 0}$ which is the fixed point, starting with a 4 , of the substitution given by

$$
4 \mapsto 448884884 \text { and } \quad 8 \mapsto 884448448
$$

Let $1 \leq a<b$ be two integers, h a non-negative integer and let us write, for i being 4 or 8

$$
\pi_{i}(h)=\frac{1}{(b-a) 9^{h}}\left|\left\{n \in\left[a \cdot 9^{h}, b \cdot 9^{h}\right): \alpha(n)=i\right\}\right| .
$$

For $h \geq 0$, we have

$$
\binom{\pi_{4}(h+1)}{\pi_{8}(h+1)}=M\binom{\pi_{4}(h)}{\pi_{8}(h)}
$$

where $M=\left(\begin{array}{cc}4 / 9 & 5 / 9 \\ 5 / 9 & 4 / 9\end{array}\right)$.
One readily sees that $M^{h} \rightarrow\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ as h tends to infinity, for example because M is positive and bi-stochastic. This implies that the sequence $\mathcal{D}_{4}=$ $\{n: \alpha(n)=4\}$ has the property that

$$
\forall a<b: \lim _{h \rightarrow \infty} \frac{1}{(b-a) 9^{h}}\left|\mathcal{D}_{4} \cap\left[a \cdot 9^{h}, b \cdot 9^{h}\right)\right|=\frac{1}{2}
$$

This implies in turn that the sequence \mathcal{D}_{4} has density $1 / 2$. By Proposition 5 , the set $\mathcal{D}_{4} \cap\left\{n: s_{2}(n) \leq s_{3}(n)-3\right\}$ has density $1 / 2$, and so $\left\{n: \ell_{12}(n!)=4\right\}$ has also density $1 / 2$. For the same reason, the set $\left\{n: \ell_{12}(n!)=8\right\}$ has also density $1 / 2$; this furthermore implies that for any $u \in\{1, \ldots, 11\} \backslash\{4,8\}$, the set $\left\{n: \ell_{12}(n!)=u\right\}$ has density 0 . This completes the proof of Theorem 1 .

References

[1] Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge University Press, Cambridge, UK, 2003.
[2] N. L. Bassily, Distribution of q-ary digits in some sequences of integers, Ann. Univ. Sci. Budapest, Sect. Comp. 14 (1994), 13-22.
[3] Gregory P. Dresden, Three transcendental numbers from the last non-zero digits of n^{n}, F_{n}, and $n!$, Math. Mag. 81, no. 2 (2008), 96-105.

JEAN-MARC DESHOUILLERS
UNIVERSITÉ BORDEAUX 1 ET CNRS
UMR 5251
33405 TALENCE CEDEX
FRANCE
E-mail: jean-marc.deshouillers@math.u-bordeaux.fr
IMRE Z. RUZSA
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS
H-1364 BUDAPEST, P.O. BOX 127
HUNGARY
E-mail: ruzsa@renyi.hu
(Received March 8, 2011; revised July 30, 2011)

[^0]: Mathematics Subject Classification: 11B85, 11B05, 11A63.
 Key words and phrases: digit, factorial, automata, density.
 Supported by Université de Bordeaux et CNRS(UMR 5251).
 Supported by ERC-AdG Grant No. 228005 and Hungarian National Foundation for Scientific Research (OTKA), Grants No. 72731, 81658.

