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The least nonzero digit of n! in base 12

By JEAN-MARC DESHOUILLERS (Bordeaux) and IMRE Z. RUZSA (Budapest)

To Kálmán Győry, Attila Pethő, János Pintz and András Sárközy, with respect

and friendship, for their joint 260th birth anniversary

Abstract. We positively answer a question raised by the first author and prove

that, for 1 ≤ a ≤ 11, the sequence {n : `12(n!) = a} has an asymptotic density, which is

1/2 if a = 4 or a = 8 and 0 otherwise; here `b(m) denotes the least nonzero digit of m

in base b.

1. Introduction

In [3], Dresden has studied, among others, the sequence of the least nonzero

digit of n! in base 10, and showed that the decimal number written in base 10 by

concatenating those digits one after the other is transcendental. More precisely,

if we write a positive integer m in the base b as

m =
∑

k≤logb m

εk(m)bk, with εk(m) ∈ {0, 1, . . . b− 1}, (1)

the least nonzero digit of m in the base b, denoted by `b(m), is the number

εh(m), where εh(m) 6= 0, whereas εk(m) = 0 for any k < h. For example,

`10(403000) = 3.
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Although Dresden does not phrase it this way, the key point in his proof that

the number
∑

`10(n!)/10
n is transcendental is the fact that the sequence (`10(n!))

is 5-automatic, but not periodic. We refer the reader to the excellent monograph

[1] by Allouche and Shallit for the definition of automatic sequences and their

properties, including the transcendence of power series they generate.

One important feature of the sequence (n!) used by Dresden is the fact that

for n ≥ 2, 5k | n! ⇒ 2k+1 | n!. (2)

Due to analogues of this property, Dresden’s result extends to a majority of

bases; for example, if b is squarefree and p is the largest prime factor of b, then

the sequence (`b(n!)) is p-automatic.

In this paper, we study a special case when we cannot guarantee the auto-

maticity of the sequence (`b(n!)), namely the case b = 12. In this case, there is

no systematic relation like (2); indeed, for n = 3m and k = (n − 1)/2, we have

3k | n! and 4k - n!, but for n = 4m and k = b(n−1)/2c we have 4k | n! but 3k - n!.
Although the sequence (`12(n!)) seems not to be automatic, it turns out that

it coincides almost everywhere (i.e. on a set of asymptotic density 1; this classical

notion is defined a few lines below Lemma 1) with a 3-automatic sequence, and

this permits to solve the question raised by the first-named author during the

conference “Analytic and Combinatorial Number Theory” held in September 2010

in IMSc, Chennai (cf. [4]). More precisely, we have the following result.

Theorem. Let 0 ≤ a ≤ 11. The sequence {n : `12(n!) = a} has an asymp-

totic density, which is 1/2 if a = 4 or a = 8 and 0 otherwise.

It seems to be difficult to find the order of magnitude of the counting functions

of these sets in the case a 6= 4, 8. We can show that

|{n ≤ x : `12(n!) = a}| = O(xc)

with some c < 1 whenever a 6= 4, 8. From the other side we cannot even prove

that they are all infinite, which seems to be likely.

2. Proof of the main result

We use vq(n) to denote the largest integer k such that qk divides n.

The following lemma, which is due to Legendre, is a direct consequence of

Theorem 3.2.1 of [1].
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Lemma 1. Let p be a prime, let a ≥ 1 and n ≥ 0 be integers. We have

vp(n!) =
n− sp(n)

p− 1
and vpa(n!) =

⌊
n− sp(n)

a(p− 1)

⌋
. (3)

Our second basic lemma is also fairly classical: it follows from the fact that

sb(n) behaves like the sum of logb n independent random variables which are

uniformly distributed in {0, 1, . . . , b−1}. We could not find out who first explicitly

expressed and proved it. More general results abound in the literature; Bassily

[2] gives a simple proof (and generalizations which are irrelevant for our purposes).

We recall that a sequence of non-negative integers A is said to have asymp-

totic density (or simply density) α if |{a ∈ A : a ≤ x}| is asymptotically equal to

αx as x tends to infinity.

Lemma 2. Let δ > 0 and b ≥ 2. The set

Sb(δ) :=

{
n :

∣∣∣∣sb(n)−
b− 1

2
logb n

∣∣∣∣ ≥ δ logb n

}
(4)

has asymptotic density 0.

Our next lemma is a direct consequence of the previous one.

Lemma 3. Let p < q be prime numbers. There exists a positive δ such that

the set of the integers n satisfying

sp(n) ≤ sq(n)− δ logn (5)

has asymptotic density 1.

Proof. The function x 7→ (x − 1)/ log x is strictly increasing on [2,+∞).

We let

δ =
q − 1

4 log q
− p− 1

4 log p
,

which is positive, and we consider the sets

T +
q,δ =

{
n : sq(n) ≥ q − 1

2
logq n− δ

2
logn

}

and

T −
p,δ =

{
n : sp(n) ≤ p− 1

2
logp n+

δ

2
log n

}
.

By Lemma 2, the sets T +
q,δ and T −

p,δ have density 1. Now if n is in their intersection,

which still has density 1, we have

sp(n) ≤
(

p− 1

2 log p
+

δ

2

)
log n

≤
(

q − 1

2 log q
− δ

2

)
logn− δ logn ≤ sq(n)− δ logn. ¤
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We now show that `12(n!) and 4`3(n!) are equal on a set of density 1.

Proposition 1. Let n be an integer such that s2(n) ≤ s3(n) − 3; then

`12(n!) = 4`3(n!).

Proof. Let us consider such an integer n and let us write it in the bases 3

and 12 as

n! =
∑

k≥k0

η
(12)
k 12k =

∑

h≥h0

η
(3)
h 3h,

where η
(12)
k0

= `12(n!) and η
(3)
h0

= `3(n!).

We have

v4(n!) = b(1/2)(n− s2(n))c ≥ (1/2)(n− s2(n)− 1)

≥ (1/2)(n− s3(n) + 2) = v3(n!) + 1 = h0 + 1.

This implies that 4h0+1 | n!; since 3h0 | n!, 3h0+1 - n!, we have k0 = h0 and

η
(12)
k0

≡ 0 (mod 4). We may thus write n! = 3k0(η
(3)
k0

+ 3r) = 12k0(η
(12)
k0

+ 12s),

and so η
(3)
k0

≡ 4k0η
(12)
k0

≡ η
(12)
k0

(mod 3). We thus have the two congruences

η
(12)
k0

≡ 0 (mod 4) and η
(12)
k0

≡ η
(3)
k0

(mod 3), whence η
(12)
k0

= 4η
(3)
k0

. ¤

We now give a direct proof that the sequence (`3(n!)) is automatic.

Proposition 2. The sequence (`3(n!))n≥0 is the fixed point, starting with 1,

of the substitution given by

1 7→ 1 1 2 2 2 1 2 2 1 and 2 7→ 2 2 1 1 1 2 1 1 2.

Proof. We easily notice that `3(nm) ≡ `3(n)`3(m) (mod 3) and in parti-

cular, we have `3(9n) = `3(n). Let α = `3((9n)!) and let β ≡ 2α (mod 3). We

have `3((9n+ 1)!) = α`3(9n+ 1) = α, and we find in the same way that we have

successively `3((9n+2)!) = β, `3((9n+3)!) = β, `3((9n+4)!) = β, `3((9n+5)!) =

α, `3((9n+6)!) = β, `3((9n+7)!) = β and `3((9n+8)!) = α. This proves that the

sequence of the nine values (`3((9n+ i)!))0≤i≤8 is one of the two sequences given

in the proposition.

In order to prove the proposition, it is enough to prove that `3(0!) = 1, which is

obvious, and that for any n, we have `3((9n)!) = `3(n!), an assertion which we

shall prove by induction. We assume that for some k, we have `3((9k)!) = `3(k!);

again, by the previous computation, we have

`3((9k + 9)!) ≡ `3(9k + 9)`3(9k + 8)!) ≡ `3(k + 1)`3(9k)!)

≡ `3(k + 1)`3(k!) ≡ `3((k + 1)!) (mod 3).

This ends the proof of the proposition. ¤
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We are now equipped to prove the main result. The automaticity of a sequ-

ence does not imply the existence of its density (cf. the example of the numbers

starting with a 1 in the base 10), and a little extra work is still needed. Let us

consider the sequence (α(n))n≥0 which is the fixed point, starting with a 4, of the

substitution given by

4 7→ 4 4 8 8 8 4 8 8 4 and 8 7→ 8 8 4 4 4 8 4 4 8.

Let 1 ≤ a < b be two integers, h a non-negative integer and let us write, for

i being 4 or 8

πi(h) =
1

(b− a)9h
∣∣{n ∈ [a · 9h, b · 9h) : α(n) = i

}∣∣ .

For h ≥ 0, we have (
π4(h+ 1)

π8(h+ 1)

)
= M

(
π4(h)

π8(h)

)
,

where M =
(

4/9 5/9
5/9 4/9

)
.

One readily sees that Mh →
(

1/2 1/2
1/2 1/2

)
as h tends to infinity, for example

because M is positive and bi-stochastic. This implies that the sequence D4 =

{n : α(n) = 4} has the property that

∀a < b : lim
h→∞

1

(b− a)9h
∣∣D4 ∩ [a · 9h, b · 9h)

∣∣ = 1

2
.

This implies in turn that the sequence D4 has density 1/2. By Proposition 5,

the set D4 ∩ {n : s2(n) ≤ s3(n) − 3} has density 1/2, and so {n : `12(n!) = 4}
has also density 1/2. For the same reason, the set {n : `12(n!) = 8} has also

density 1/2; this furthermore implies that for any u ∈ {1, . . . , 11}\{4, 8}, the set

{n : `12(n!) = u} has density 0. This completes the proof of Theorem 1.
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