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Two results on Beurling generalized numbers

By HAROLD G. DIAMOND (Urbana)

Dedicated to Professors Győry, Pethő, Pintz, and Sárközy

on their birthday milestones

Abstract. A sequence of Beurling generalized primes (g-primes) is an unbounded

sequence of real numbers P = {pi} satisfying 1 ≤ p1 ≤ p2 ≤ . . . . The multiplicative

semigroup generated by P along with 1 is designated as the corresponding collection

of g-integers N . Here we give a brief survey of Beurling numbers and then describe

two achievements of recent years: the L2 prime number theorem of Kahane and the

oscillation result of Diamond, Montgomery, and Vorhauer.

1. Introduction

Let P = {pi} be an unbounded sequence of real numbers satisfying 1 < p1 ≤
p2 ≤ . . . . We call P a sequence of Beurling generalized primes (g-primes), and the

multiplicative semigroup generated by P and 1 is designated as the corresponding

collection N of g-integers. Note that it is not assumed that either collection lies

in the positive integers nor that such staples of classical number theory as unique

prime factorization are in force.

We define counting functions

π(x) = πP(x) = #{P ∩ [1, x]} and N(x) = NP(x) = #{N ∩ [1, x]},
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with the understanding that counts are made with appropriate multiplicity. Usu-

ally, we have hypotheses on the distribution of one of N and π and we seek to

draw conclusions about the other one.

A simple example of g-primes is the sequence of natural primes exceeding 2.

Here N is just the collection odd numbers, and N(x) = (1/2)x+O(1). Note that

omission of the natural prime 2 had a very small effect on the prime count, but

it cut the integer density in half.

The subject of generalized numbers, in the present form, was initiated by

Beurling in a paper [Beur] in which he assumed that

N(x) = cx+O
(
x log−γ x

)
(1)

with c > 0 and γ > 3/2 and showed that

π(x) ∼ x/ log x, (2)

i.e. the analogue of the prime number theorem (PNT) holds for this g-number

system. Moreover, he showed the result to be optimal in the sense that there

exist examples which satisfy (1) with γ = 3/2 but for which (2) does not hold.

Beurling’s result can be regarded as an abstraction and sharpening of an

earlier article of E. Landau [Land] which established the prime ideal theorem for

algebraic number fields. Like g-integers, norms of integral ideals do not have an

additive structure, and Landau’s arguments deal with only the counting functions

of the integral ideals and prime ideals having norms at most a certain size.

In classical prime number theory we have the following notation and relations

which translate directly to the Beurling context:

N(x) :=
∑

n≤x

1 = [x] and π(x) :=
∑

p≤x

1, x > 0,

the counting functions of natural numbers and primes respectively, and

Π(x) := π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + · · · =

∑

pα≤x

1

α
, (3)

the weighted prime counting function.

The connection between N and Π can be expressed in a few ways. In analytic

terms, via the Riemann zeta function

ζ(s) =

∫ ∞

1−
x−sdN(x), σ := <s > 1, (4)
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we have

log ζ(s) =

∫ ∞

1

x−sdΠ(x), σ > 1. (5)

In “elementary” terms, the key relation between the counting functions of

integers and (weighted) primes can be expressed as

dN = δ1 + dΠ+
1

2!
dΠ ? dΠ+

1

3!
dΠ ? dΠ ? dΠ+ · · · =: exp dΠ, (6)

where δ1 = Dirac point mass at 1, ? denotes multiplicative convolution, and

convergence is in the sense of uniform convergence on compacta. Comparing the

two formulations, we obtain an interesting equivalent representation for ζ(s):

∫ ∞

1−
x−s{exp dΠ}(x) = exp

∫ ∞

1

x−sdΠ(x), σ > 1.

In Beurling theory, analogous relations are assumed to hold between the

counting functions of the g-primes and g-integers. Moreover, we have the surpri-

sing feature that we do not need actual g-primes and g-integers — instead we can

use mass distributions. Indeed, Beurling’s example of a failure of the PNT was

presented in this form. The only assumptions are that the (weighted) “prime den-

sity” has to be non-negative and supported on [1,∞), and the “integer density”

is connected to the g-prime density by (6).

Here is an important example of such a pair of mass distributions.

Lemma 1.1. Let

dΠ∗(x) =
1− x−1

log x
dx, x > 1.

Then the associated g-integer distribution satisfies dN∗(x) = δ1 + dx, i.e.

δ1 + dx = exp
{1− x−1

log x
dx

}
, x > 1. (7)

Proof. We establish this formula using Mellin transforms. Starting with

ζ∗(s) :=
∫ ∞

1−
x−s(δ1 + dx) = 1 +

1

s− 1
=

s

s− 1
, σ > 1,

we show that

∫ ∞

1

x−s
{1− x−1

log x
dx

}
= log

s

s− 1
= log ζ∗(s). (8)
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Indeed, as σ → ∞, each side of the last formula goes to 0. Also, the derivatives

of the two sides of (8) give the valid formula

−
∫ ∞

1

x−s(1− x−1) dx =
1

s
− 1

s− 1
, σ > 1.

Thus (8) holds, and dN∗ is the g-integer distribution associated with the g-prime

distribution dΠ∗. ¤

The integrals of the measures in (7) have a further interesting property.

Regarding N∗(x) as a continuous integer distribution, we have

N∗(x) =
∫ x

1−
δ1 + dt = 1 + (x− 1) = [x] +O(1)

and the PNT holds for Π∗:

Π∗(x) =
∫ x

1

1− t−1

log t
dt ∼ x

log x
. (9)

2. Kahane’s L2 theorem

In a 1969 survey article [BaD], P. T. Bateman and the author conjectured

that the condition ∫ ∞

1

∣∣∣N(x)− cx

x

∣∣∣
2

log2 x
dx

x
< ∞ (10)

would imply the PNT for a g-number system. Condition (10) is a bit weaker than

Beurling’s hypothesis (despite the optimality of Beurling’s result among g-number

systems satisfying (1)).

The conjecture was probably motivated by the big role L2 estimates played in

Beurling’s article and the fact that with condition (10) we could carry out most of

the proof of the PNT in our survey. To finish the argument, it remained to show

that the zeta function of the system is nonvanishing on the line {s ∈ C : <s = 1}.
J.-P. Kahane studied this conjecture, and, in a lecture in Montreal in 1996,

he expressed doubts about its truth. However, as he wrote up the lecture, he had

doubts about his doubts, and he went on to prove the conjecture [Kah1].

At worst, ζ has at most a single pair of conjugate zeros, each of order 1/2, at

points 1±it0; further zeros are ruled out by a de la Vallée Poussin-style argument.

Kahane assumed, without loss of generality, that ζ had such a pair of zeros at

1± i. He took Beurling’s critical example

Π0(x) =

∫ x

1

(1− cos(log t)) dt/ log t,
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whose associated zeta function is

√
(s− 1)2 + 1

/
(s− 1),

and set R(x) := P (x)−Π0(x), with P the counting function of g-primes.

Kahane studied the behavior of R(x) by delicate Fourier analysis. Using

the fact that dP is everywhere nonnegative and in particular for t near exp 2πn,

n = 1, 2, 3, . . . , where P has density zero, he was able to show that the average

value of |ζ ′/ζ(1 + it)| is too large and obtain a contradiction. A key step was to

show that hypothesis (10) implies that the zeta function goes to zero more slowly

at 1± i than does Beurling’s critical example.

This argument is subtle in both its structure and details, particularly in the

use of distribution techniques to treat measures.

In fact, Kahane established the PNT for g-numbers under a weaker hypot-

hesis than (10). The elementary formulation of his result [Kah2] is as follows:

Suppose that f ∈ L1(R) and its Fourier transform satisfies f̂(t) À exp(−|t|α) for
some α < 2. If

f ? (N(t)− ct)t−1 log t ∈ L2(1,∞), (Kα)

then the PNT holds. Further, Kahane showed that the condition (K2) does not

guarantee the PNT.

3. Oscillation example

In 1899, Ch. J. de la Vallée Poussin [dlVP] proved that

ζ(s) 6= 0 for σ > 1− c/ log τ, (11)

where s = σ + it and τ = |t|+ 4, the “classical” zero-free region of the Riemann

zeta function. From this the PNT was deduced with an error term

π(x) = lix+O
(
x exp{−c (log x)1/2}). (12)

Today better PNT error terms are known, e.g. that Vinogradov–Korobov, with

any exponent less than 3/5, but these improvements are made by special argu-

ments using the well-spacing of the rational integers.

It has long been suspected that (12) may be optimal for g-numbers, and we

show just this: we give an example [DMV] in which the zero-free region (11) and

the PNT error term (12) are exactly realized for a Beurling g-integer sequence.

Two further examples, with sharp constants, were given by W.-B. Zhang [Zha].
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Theorem 3.1. There is a Beurling g-integer sequence N satisfying

N(x) = cx+O
(
xθ

)
(13)

with c > 0 and θ < 1 having precisely the zero-free region and PNT error term

of de la Vallée Poussin.

3.1. Approach. First, construct a continuous g-prime counting function ΠC(x)

that is connected by (5) to an integer counting function NC(x) that is continuous

on (1, ∞), and show that ζC(s), NC(x), and ΠC(x) have the desired properties.

Continuity of the prime and integer distribution is somewhat of a cosmetic defect,

so we change the example into a discrete one. The conversion is carried out by a

probabilistic construction.

3.2. Continuous prime distribution. Let χ(u) denote the indicator function

of [e, e2] and χ?n the n-fold multiplicative convolution of χ with itself. Let

f(u) =

∞∑
n=1

1

n
χ?n(u), u ≥ 1.

Beyond the initial interval, this function becomes increasingly complicated, but

one can show that f(u) log u < 3 holds for all u > 1.

Our continuous Beurling prime counting measure is

dπ0(x) =
{1− x−1

log x
− 2

∑

k≥1

f(x1/(α log tk))

α log tk
x−β/(α log tk) cos(tk log x)

}
dx

for x > 1. Here {tk} is a rapidly increasing positive sequence and α and β are

suitable constants.

The main contribution to dπ0 comes from the first term, which appeared in

Lemma 1.1. The trigonometric part provides the required wobble. Important

properties of this measure are nonnegativity, dπ(x) ≤ 2 dx/ log x, and

1/2 ≤ π0(x)/{x/ log x} ≤ 2, x ≥ 2.

The associated zeta function is expressed in terms of the function

G(z) = 1− e−z − e−2z

z
. (14)

G is connected with f by the identity

logG(z) = −
∫ ∞

1

f(u)u−z−1du,

valid for <z > 0.
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The function G is entire with G(0) = 0 and infinitely many other zeros {zj}
with <zj < 0; having many zeros here is a Good Thing. The zeta function is

ζC(s) =
s

s− 1

∏

k 6=0

G(`k{s− ρk}), σ > 1.

Here

ρk = 1− a/ log |γk|+ iγk, k = 1, 2, . . . ,

and {`k} and {γk} are sequences going swiftly to infinity.

The factor s/(s − 1) will give the main contribution to the “integer” and

“prime” counting functions, and the product of G’s will provide the desired zeta

zeros and fluctuation in the prime count. Since G(0) = 0, it follows that ζC(s)

has zeros at the points s = ρk. Importantly, ζC(s) has other zeros too, points of

the form s = ρk + zj/`k, at the edge of de la Vallée Poussin’s zero-free region.

3.3. Probabilistic construction of primes. Let 1 = x0 < x1 < x2 < . . . be

a sequence of real numbers tending slowly to infinity. For k = 1, 2, . . . let Xk be

independent Bernoulli variables with parameters

pk =

∫ xk

xk−1

1 dπ0(u),

i.e.

Xk =

{
1 with probability pk,

0 with probability 1− pk.

(One condition on the xk is that they must increase sufficiently slowly to ensure

that pk < 1.) At any given point ω of our probability space, we let P (ω) be the

set of those xk for which Xk = 1. This is a set of candidates for our g-primes.

For x ≥ 2 let K be determined by xK ≤ x < xK+1. For a given element ω, define

a discrete prime counting function by π1(x) =
∑K

k=1 Xk = X, with expectation

E(X) =

K∑

k=1

pk = π0(xK) ≤ π0(x).

Using a form of Kolmogorov’s inequality, we show that most of the sets P (ω)

determine a measure dπ1(x) that is sufficiently close to dπ0(x) to inherit the

wobble and other properties of the continuous “prime” and “integer” counting

functions. Specifically, for most P (ω) the key relation

∫ x

1

u−it dπ1(u) =

∫ x

1

u−it dπ0(u) +O
(√

x log(|t|+ 2)
)
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holds uniformly for x ≥ 1 and all real t. In particular, for t = 0 this formula

asserts that

π1(x) = π0(x) +O
(√

x
)

for x ≥ 1. Also, the discrete integer counting function is shown to lie close to the

continuous one, which completes the construction.

4. Concluding remarks

We conclude with a moral and an unsolved problem.

4.1. A moral for classical prime number theory. We constructed an ex-

ample of Beurling numbers whose zeta function has zeros on the boundary of de

la Vallée Poussin’s zero-free region. There exist other g-integer examples having

counting function very close to the classical [x] but with a zeta function whose

zeros lie arbitrarily close to the line σ = 1. The message of such examples is that

a successful proof of the Riemann Hypothesis — or any further improvement in

estimates of the zero-free region of zeta — will need to exploit what is lacking in

Beurling theory, namely the additive structure of the integers.

4.2. An unsolved problem of Beurling. If |NP(x)− [x]| is sufficiently small,

then P is the set of classical primes. What is sufficiently small? The conclusion

is trivial if |NP(x) − [x]| < 1; it need not be true if |NP(x) − [x]| < C log x for

some C. What is the cut point?
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