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On periodogram based least squares estimation
of the long memory parameter of FARMA processes

By E. IGLÓI (Debrecen)

Abstract. In [1] a periodogram based least squares regression method was pro-

posed to get an estimation bδ of the long memory parameter δ ∈ (− 1
2
, 1
2
) of the FARMA

process (3). It was suspected for the case δ > 0 and was proved for the case δ < 0 that

there exists a sequence bδn of estimators under consideration for which bδn is asymptoti-

cally normal, namely bδn ; N (δ, an) holds, where lim
n→∞ an = 0. However we shall state

that the large-sample behaviour of the FARMA’s periodogram for very low frequencies
is unusual, so we shall have to improve the considerations of [1]. In this paper a suffi-
cient condition for the asymptotical “goodness” of the periodogram, will be given. For
Gaussian FARMA processes by each δ ∈ (− 1

2
, 1
2
) \ {0} but one at most, it happens

to be necessary condition too. With the aid of this condition we shall prove (both for

δ < 0 and for δ > 0) the asymptotical normality of bδn arising from some modification
of the estimation procedure of [1].

§ 1. Introduction

Sometimes the periodogram of the time series examined has a high
peak at some frequency. One can consider this symptom as an indication of
a deterministic trend or seasonal component. However there are data sets
coming from hidrology, economy and astronomy, which have the former
feature and which can be rather explained by stationary models, called
long memory (or strongly dependent) time series models. The charac-
teristic property of these various processes is the long-range dependence.
Namely, the autocovariance series, R(k) decreases so slowly as k → ∞,
that

∑ |R(k)| diverges. Equivalently, the spectral density function is un-
bounded, and so it has one or more infinitely high peak.

In [2] there are different linear models for long memory processes and
[3] studies strongly dependent bilinear models. We shall deal only with the
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case in which the spectral density of the underlying linear process has one
peak and it is at zero. Granger and Joyeux ([4]) and Hosking ([5])
have proposed the use of fractional ARMA (FARMA) model to describe
this long memory phenomenon. The originality of this approach lies in
avoiding overdifferencing.

The FARMA (or ARIMA(p, δ, q)) process can be defined with the
“fractional difference equation”

(1) φ(B)(I −B)δXt = θ(B)Zt, t ∈ Z
where φ and θ are polynomials of degrees p and q respectively, I is the
identity and B is the back-shift operator and Zt is white noise with mean
zero and variance σ2 = 1, for simplicity. δ is a real value, called the
long memory parameter and (I −B)δ is the fractional difference operator,
defined for δ > −1 by the binomial expansion

(I −B)δ =
∞∑

k=0

ckBk,

c0 = 1, ck =
Γ(k − δ)

Γ(k + 1)Γ(−δ)
=

k∏

j=1

j − 1− δ

j
, k = 1, 2, . . . ,

where Γ is the gamma function.
From Stirling’s formula it follows that

(2) ck = O(Γ(−δ)k−δ−1).

(All over this article ak = O(bk) means lim
k→∞

ak

bk
= 1.) Thus for δ < 1

2 ,
(
1 − e−iλ

)δ =
∞∑

k=0

cke−ikλ is mean square (i.e. L2[0, 1]) convergent, while

for 0 < δ it is even uniformly (i.e. C[0, 1]) convergent. So, according to
the theorem about the composition of linear filters, it follows that if

a) − 1
2 < δ < 1

2 and

b) φ and θ have no common zeroes and φ(z) 6= 0 on the complex unit
circle

then there exists a unique stationary solution of (1), given by

(3) Xt = ψ(B)(I −B)−δZt, where ψ(z) =
θ(z)
φ(z)

.

So Xt can be thought of as an ARMA(p, q) sequence with innovation pro-
cess (I −B)−δZt, called fractional white noise.
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The spectral density function of the FARMA process (3) is of the form

(4)
f (X)(λ) =

∣∣1− e−iλ
∣∣−2δ

f (Y )(λ) =
(
2 sin λ

2

)−2δ
f (Y )(λ),

λ ∈ [−π, π], λ 6= 0 if δ > 0,

where f (Y )(λ) is the spectral density of Yt = ψ(B)Zt, i.e.,

f (Y )(λ) =
1
2π

∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

, λ ∈ [−π, π].

Let us suppose that
c) θ(1) 6= 0,

then f (Y )(λ) is strictly positive at some neighbourhood of λ = 0, so

(5) f (X)(λ) = O
(

1
2π

(
θ(1)
φ(1)

)2

λ−2δ

)
as λ → 0,

whereby f (X)(λ) really has a peak at λ = 0 if δ > 0. In the case δ < 0,
f (X)(0) = 0 and f (X)(λ) is continuous on [−π, π], so Xt has not the long
memory property. In such a case Xt is called intermediate memory process
since for it’s autocovariance series R(k) = constO(k2δ−1) holds (as for
δ > 0 too), while processes with R(k) = constO(rk−1), where 0 < r < 1,
e.g. ARMA processes, are defined to be short memory.

The above mentioned things and other properties of FARMA pro-
cesses can be found in [6], ch.12.

Throughout the paper Xt denotes the FARMA process defined by (3)
and in what follows we shall suppose assumption (a), (b) and (c).

There are a number of approaches to parameter estimation of FARMA
processes. The most attractive and computationally simple method was
invented by Geweke and Porter-Hudak in [1]. It has the virtue of
permiting estimation of δ without knowledge of p and q. Once the long
memory parameter is estimated at δ̂, the series Xt can be transformed
(applying (I − B)bδ to (3)) to obtain the series Ŷt. After this step stan-
dard identification methods developed for ARMA processes can be used
to estimate p, q and φ, θ.

This method is based on the assumption that the random variables
’periodogram/spectral density’ at different frequencies are asymptotically
identically exponentially distributed and independent. It is well known
(see e.g. [6], Theorem 10.3.2 and [8], § 2) that the processes occuring
most frequently in the literature, have this feature. But we shall see in
§ 3 that FARMA processes have not this good asymptotic property. So,
the estimation method of [1] calls for modification. In § 4 the asymptotic
normality of the modified estimator δ̂ will be proved.
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§ 2. The estimation of δ and the problem associated with it

Now, let us see the estimation procedure of δ, first as described in [1].
The periodogram of X0, . . . Xn−1 will be denoted by

I(X)
n

(
ω

(n)
k

)
=

1
2πn

∣∣∣∣∣∣

n−1∑

j=0

Xje
−ijω

(n)
k

∣∣∣∣∣∣

2

at Fourier frequencies ω
(n)
k = 2πk/n (k = 0, 1, . . . , [(n + 1)/2]). Take

logarithms in (4), replace λ by the Fourier frequencies ω
(n)
k ∈ [0, π] and

add log
(
I
(X)
n (ω(n)

k )
)

to both sides, one obtains

(6)

log
(
I(X)
n

(
ω

(n)
k

))
= log

(
f (Y )(0)

)
− δ log

(∣∣∣1− e−iω
(n)
k

∣∣∣
2
)

+

+ log


 I

(X)
n

(
ω

(n)
k

)

f (X)
(
ω

(n)
k

)

 + log


f (Y )

(
ω

(n)
k

)

f (Y )(0)


 , k = 1, 2, . . . , `(n),

where ` : N → N, `(n) < n/2 for all n ≥ 3. (N = {1, 2, 3, . . . }) If we
choose the sequence ` so that lim

n→∞
2π`(n)/n = 0, then the last term in

(6) converges to zero. So, for large n we can consider (6) as the linear
regression equation

(7) yk = a + δxk + εk, k = 1, 2, . . . , `(n),

where yk = log
(
I
(X)
n (ω(n)

k )
)
, the intercept parameter a = log

(
f (Y )(0)

)
,

xk = − log
(∣∣1− e−iω

(n)
k

∣∣2
)

and the error variables are

εk = log
(

I(X)
n

(
ω

(n)
k

) /
f (X)

(
ω

(n)
k

))
.

This suggests estimating δ by least squares regression.
The usability of this method depends on the large-sample behaviour of

the joint distribution of the regression errors. In [1] the following theorem
has been stated and proved.

Let Xt be a FARMA process with δ < 0. Then there exists a sequence

` :N→N for which the least squares estimator δ̂ of δ in (7) is asymptotically
Gaussian, namely

δ̂ ; N

δ, π2

/
6

`(n)∑

i=1

(xi − x̄)2




 as n →∞,
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where xi is the same as in (7) and x̄ =
`(n)∑
i=1

xi

/
`(n). Moreover δ̂ is consistent

in the sense that lim
n→∞

`(n)∑
i=1

(
xi − x̄

)2 = ∞.

In [1] the proof is based on the statement that

(8)





for δ < 0 and for any fixed k ∈ N the joint distribution of

I
(X)
n (2π/n)

f (X)(2π/n)
,

I
(X)
n (4π/n)

f (X)(4π/n)
, . . . ,

I
(X)
n (2πk/n)

f (X)(2πk/n)

converges weakly to the one of a k-dimensional random
vector with independent and mean 1 exponentially distri-
buted components.

If this was so, it would follow (see [7], Theorem 5.1) that the asymp-
totical finite dimensional joint distribution of the errors in (6) and (7) is
the same as the joint distribution of independent random variables with
distribution function 1 − exp(−ex), x ∈ R. It is to be noted that the
expectation of this latter distribution, −γ (γ is Euler’s constant), can be
included in the intercept term in (7), while the variance of it is π2/6 (see
[1]).

Nevertheless we shall see in § 3, that for each δ ∈ (− 1
2 , 1

2 )\{0}, except
one at most, there exist FARMA processes with long memory parameter
δ, not meeting the statement of (8). The cause of this unexpected be-
haviour of the periodogram lies in property (5) of the spectral density,
and so in the property of long or intermediate memory after all. However
we shall prove that taking the frequencies (2πh(n)/n, 2π(h(n) + 1)/n, . . . ,
2π(h(n) + k − 1)/n) instead of the ones in (8), where h : N → N,
lim

n→∞
(h(n)/n) = 0 and lim

n→∞
h(n) = ∞, the assertion respective to (8),

becomes true. This is valid for both δ < 0 and δ > 0.
In § 4 it will turn out to be true that δ̂ arising from the equations which

remain after dropping the first h(n)−1 equations in (7), is asymptotically
normal.

§ 3. Asymptotical behaviour of the FARMA
process’s periodogram in frequency zero

Let us denote the discrete Fourier transform of X0, . . . , Xn−1 and of



372 E. Iglói

Z0, . . . , Zn−1 at frequency ω
(n)
k = 2πk/n by

J (X)
n

(
ω

(n)
k

)
=

1√
n

n−1∑

j=0

Xje
−ijω

(n)
k , J (Z)

n

(
ω

(n)
k

)
=

1√
n

n−1∑

j=0

Zje
−ijω

(n)
k ,

respectively. Moreover, ϕ, ϕ(Y ) and ϕ(X) will be the transfer function of
the operator (I −B)−δ, ψ(B) and ψ(B)(I −B)−δ respectively, i.e.

ϕ(λ) = (1− e−iλ)−δ, ϕ(Y )(λ) = ψ(e−iλ), ϕ(X)(λ) = ϕ(Y )(λ)ϕ(λ),

where ψ has been defined in (3) and let I
(X)
n and f (X) = 1

2π

∣∣ϕ(X)(λ)
∣∣2 be

the periodogram and the spectral density of the FARMA process Xt.
h will be a sequence with the properties

(9) h : N→ N,
h(n)

n
<

1
2

if n ≥ 3, lim
n→∞

(
h(n)

n

)
= 0.

We shall frequently use the notations

(10)

Dn =
{

λ ∈
(
− nπ

2h(n)
,

nπ

2h(n)

)
, λ 6= π if δ > 0

}
,

An(λ) =





ϕ(X)
(

2h(n)
n (π − λ)

)

ϕ(X)
(

2h(n)
n π

) if λ ∈ Dn

0 otherwise.

Now we state a lemma, which has only technical importance.

Lemma 1. If h and An(λ) are defined by (9) and (10), respectively,
then
a) there exist a, b, c ∈ R for which

|An(λ)|2 ≤ a

∣∣∣∣
π

π − λ

∣∣∣∣
2δ

, |An(λ)− 1|2 ≤ b

(∣∣∣∣
π

π − λ

∣∣∣∣
δ

+ c

)2

holds for all n ∈ N and λ ∈ Dn;
b) if 0 < ε < π, then

lim
n→∞

sup
[−ε,ε]

|An(λ)− 1|2 ≤
∣∣∣∣∣
(

π

π − ε

)δ

− 1

∣∣∣∣∣

2

;
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c)

lim
n→∞

|An(λ)|2 =
∣∣∣∣

π

π − λ

∣∣∣∣
2δ

, lim
n→∞

|An(λ)− 1|2 =

(∣∣∣∣
π

π − λ

∣∣∣∣
δ

− 1

)2

holds for all λ ∈ R, λ 6= π if δ > 0.

Proof. The assertions concerning |An(λ)− 1|2 can be found in [11]
with proof while the ones with respect to |An(λ)|2 can be verified similarly
but more easily.

The following three theorems throw light on the interesting phenome-
non that the asymptotical distribution of the scaled periodogram ordinates

(11) I(X)
n

(
ω

(n)
h(n)

)/
f (X)

(
ω

(n)
h(n)

)
, ω

(n)
h(n) = 2π

h(n)
n

depends on how fast the series ω
(n)
h(n) approach to zero. It is well known

that there is no such subordination for stationary linear processes with
both absolutely convergent AR and MA representation. (See [6], Theorem
10.3.2.) In other words, for the last mentioned processes the series of the
quantities (11), always has mean 1 exponential limit distribution.

Theorem 1 and 2 are about the sufficient condition lim
n→∞

h(n) =

∞ which ensure the scaled periodogram ordinates (11) to have mean 1
exponential limit distribution. In [9] and in [10] a stronger condition,
lim

n→∞
(
h(n)/

√
n
)

= ∞ is given and only for the case of Gaussian Xt.

Theorem 1. Let h be defined by (9) and lim
n→∞

h(n) = ∞. Then

lim
n→∞

E

∣∣∣∣∣∣
J

(X)
n

(
ω

(n)
h(n)

)

ϕ(X)
(
ω

(n)
h(n)

) − J (Z)
n

(
ω

(n)
h(n)

)
∣∣∣∣∣∣

2

= 0.

Proof. Since the spectral representation of Zt is

Zt =

π∫

−π

eitλ dZ(λ),

where Z(λ) is an orthogonal increment process for which E |dZ(λ)|2 =
dλ/(2π), thus

Xt =

π∫

−π

ϕ(X)(λ)eitλ dZ(λ).
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From this

(12)

E

∣∣∣∣∣∣
J

(X)
n

(
ω

(n)
h(n)

)

ϕ(X)
(
ω

(n)
h(n)

) − J (Z)
n

(
ω

(n)
h(n)

)
∣∣∣∣∣∣

2

= E

∣∣∣∣∣∣

π∫

−π


 ϕ(X)(λ)

ϕ(X)
(
ω

(n)
h(n)

) − 1


 1√

n

n−1∑

k=0

e
ik(λ−ω

(n)
h(n)) dZ(λ)

∣∣∣∣∣∣

2

=

π∫

−π

∣∣∣∣∣∣
ϕ(X)(λ)

ϕ(X)
(
ω

(n)
h(n)

) − 1

∣∣∣∣∣∣

2

Kn

(
ω

(n)
h(n) − λ

)
dλ,

where

Kn(µ) =
1

2πn

∣∣∣∣∣
n−1∑

k=0

eikµ

∣∣∣∣∣

2

=
sin2(nµ/2)

2πn sin2(µ/2)

is the Fejér kernel. Now, first making use of that ϕ(X) and Kn has pe-
riod 2π, we can perform the substitution µ = 2h(n)π/n − λ. Then the
substitution λ = nµ/(2h(n)) leads to the equation

E

∣∣∣∣∣∣
J

(X)
n

(
ω

(n)
h(n)

)

ϕ(X)
(
ω

(n)
h(n)

) − J (Z)
n

(
ω

(n)
h(n)

)
∣∣∣∣∣∣

2

=
∫

Dn

|An(λ)−1|2 2h(n)
n

Kn

(
2h(n)

n
λ

)
dλ.

Let us introduce the function

Bn(λ) =





2h(n)
n

Kn

(
2h(n)

n
λ

)
if − nπ

2h(n)
< λ <

nπ

2h(n)
0 otherwise.

We mention that

(13) Bn(λ) ≤ π

4h(n)λ2
for all n ∈ N and λ 6= 0.

Let ε ∈ (0, π). Then
π∫
−π

Kn(λ)dλ = 1 implies that

(14)

ε∫

−ε

Bn(λ) dλ ≤ 1 for all n ∈ N.
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Using (13) and (14) we get

(15)
∫

Dn

|An(λ)− 1|2Bn(λ) dλ ≤ sup
[−ε,ε]

|An(λ)− 1|2

+
π

4h(n)

∫

Dn\[−ε,ε]

|An(λ)− 1|2
λ2

dλ.

Utilizing Lemma 1 (a) and the inequality − 1
2 < δ < 1

2 , it follows that the
last integral in (15) can be majorized for all n ∈ N with the same finite
constant. Taking lim

n→∞
in (15), applying Lemma 1 (b) and exploiting the

continuity of |(π/(π − ε))δ − 1|2 at ε = 0 we have finished the proof.

Theorem 2. Let N ∈ N be a fixed number and hi : N → N, i =
1, 2, . . . , N sequences for which hi(n) 6= hj(n) if i 6= j, 0 < 2πhi(n)/n < π,
i = 1, 2, . . . , N hold for all n ∈ N being large enough. Moreover assume
that lim

n→∞
hi(n)/n = 0, i = 1, 2, . . . , N and the white noise innovation

process Zt is i.i.d. or mixing (see [8]).
Then lim

n→∞
min

i=1,...,N
hi(n) = ∞ implies that the joint distribution of

I(X)
n

(
ω

(n)
hi(n)

)/
f (X)

(
ω

(n)
hi(n)

)
, i = 1, 2, . . . , N

converges to the joint distribution of N independent mean 1 exponentially
distributed random variables.

Proof. The vector of the discrete Fourier transforms J
(Z)
n (ω(n)

hi(n)),
i = 1, 2, . . . , N , converges weakly to the N -dimensional complex normal
distribution with independent N (0,Σ) components where Σ is a diagonal
matrix with elements π (see [6], Proposition 10.3.2 and [8]). Since we are
in possession of the key Theorem 1, the method of Theorem 10.3.1 and
10.3.2 in [6] can be applicable.

The next theorem is about the necessity of the condition lim
n→∞

h(n) =
∞.

Theorem 3. Let h be defined by (9) and assume that h(n) 6→ ∞ as
n →∞. Then for each δ ∈ (− 1

2 , 1
2 )\{0} except one δ at most, the FARMA

process (3) with long memory parameter δ, satisfies

E I(X)
n

(
ω

(n)
h(n)

)/
f (X)

(
ω

(n)
h(n)

)
6→ 1 as n →∞,

and so, if Xt is Gaussian, then the series of the distributions of the scaled
periodogram ordinates (11) do not converge to the mean 1 exponential
distribution.
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Proof. Similarly as we began the proof of Theorem 1,

E I(X)
n

(
ω

(n)
h(n)

)/
f (X)

(
ω

(n)
h(n)

)
=

∞∫

−∞
|An(λ)|2Bn(λ)dλ.

There exists a H ∈ N and a subsequence nk, for which h(nk) = H,
for all k ∈ N. Now,

lim
k→∞

Bnk
(λ) =

sin2(Hλ)
πHλ2

.

Utilizing Lemma 1 (c), (a), the inequality (13) and Bnk
(λ) ≤ H/π, we can

apply Lebesgue’s theorem to conclude that

(16)

lim
k→∞

E I(X)
nk

(
ω

(nk)
H

)/
f (X)

(
ω

(nk)
H

)

=

∞∫

−∞

∣∣∣∣
π

π − λ

∣∣∣∣
2δ 1

πH

sin2(Hλ)
λ2

dλ =

∞∫

−∞

∣∣∣∣∣
π

π − λ
H

∣∣∣∣∣

2δ
1
π

sin2 λ

λ2
dλ.

Next we show that the limit in (16) is different from 1 for all δ ∈
(− 1

2 , 1
2 ) \ {0} except one δ at most. Let us introduce the notations

K(λ) =
sin2 λ

πλ2
, D(δ) =

∞∫

−∞

∣∣∣∣∣
π

π − λ
H

∣∣∣∣∣

2δ

K(λ)dλ.

Since K(λ) is the limit of the pulled out version of Kn(λ) to
[−nπ

2 , nπ
2

]
,

it integrates to 1. From the Hölder inequality,

(17) 1 =

∞∫

−∞
K(λ)dλ ≤

√
D(δ)

√
D(−δ).

Application of the strict Jensen inequality leads to

(18) (D(δ))r
> D(δr), δ ∈ (− 1

2 , 1
2

) \ {0}, 0 < r < 1.

So, if for some δ̃ ∈ (
0, 1

2

)
, D(δ̃) = 1, then the function D < 1 on (0, δ̃) and

D > 1 on
(
δ̃, 1

2

)
, because of (18). Moreover, (17) ensures that D > 1 on( − δ̃, 0

)
. Using (18) again, we get that D > 1 holds on

(− 1
2 , 0

)
too. So,

D(δ) − 1 has one zero at most, in addition to δ = 0. The case δ̃ < 0 can
be fixed up similarly. We have proved the first statement of the theorem.

In connection with the second assertion we remark that for Gaussian
Xt processes the distribution of the scaled periodogram ordinate (11) is
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the same as the one of the random variable a2
nξ2

n + b2
nη2

n, where (ξn, ηn) is
Gaussian with mean zero and D2ξn = D2ηn = 1. For the previously used
subsequence nk (h(nk) = H), the series of the expectations of the scaled
periodogram ordinates is convergent, so it is bounded. Therefore a2

nk
+b2

nk

is bounded sequence. So, the sequence of the second order moments of the
random varables I

(X)
nk

(
ω

(nk)
H

)/
f (X)

(
ω

(nk)
H

)
, k ∈ N, is bounded. Thus, the

weak convergence of the distributions of (11) to the mean 1 exponential
distribution would imply (see [7], exercise 4 of § 7) the convergence of
the means to 1. But the latter is possible for one δ at most, in the set(− 1

2 , 1
2

) \ {0}.
Remark 1. Theorem 2 in [11], corresponding to the latter Theorem 3

here, is faulty.
Remark 2. It comes from the previous proof that for fixed H ∈ N,

lim
n→∞

E I(X)
n

(
ω

(n)
H

)/
f (X)

(
ω

(n)
H

)
=

∞∫

−∞

∣∣∣∣∣
π

π − λ
H

∣∣∣∣∣

2δ
1
π

sin2 λ

λ2
dλ = DH(δ).

Numerical computation of DH shows that for each H ∈ N, there exists a
δ̃H for which DH(δ̃H) = 1. Moreover, δ̃1 ≈ .06 and 0 < δ̃H+1 < δ̃H .

Remark 3. Theorem 3 suggests handling periodogram based tests
with care for FARMA processes because the scaled periodogram ordinates
I
(X)
H

(
ω

(n)
H

)/
f (X)

(
ω

(n)
H

)
, for H << n, may behave unusually.

§ 4. The asymptotical distribution of the estimation of δ

The following lemma will be used in the proof of the main theorem,
Theorem 4.

Lemma 2. Let g : N → N, lim
n→∞

(g(n)/n) = 0, lim
n→∞

g(n) = ∞, ` ∈ N
be fixed and k(n) = g(n) + k′, n ∈ N, where k′ ∈ {0, 1, . . . , `} is arbitrary.

Moreover let xk = − log
∣∣1− exp(−2kπi/n)

∣∣2, k ∈ N.
Then

lim
n→∞




g(n)+`∑

j=g(n)

(xj − x̄)2


− 1

2 (
xk(n) − x̄

)
=

√
3(`− 2k′)√

`(` + 1)(` + 2)
,

where x̄ =
1

` + 1

g(n)+`∑
j=g(n)

xj .

Proof. See [11].
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Let us consider the regression equations

(19) yk = a + δxk + εk, k = g(n), g(n) + 1, . . . , g(n) + `(n),

where g, ` : N → N, g(n) + `(n) < n/2 for all n ≥ 5 and yk, xk, εk and a
denotes the same as in (7).

Theorem 4. Let Xt be the FARMA process (3) (whether δ < 0 or
δ > 0) with white noise innovation process Zt. Assume that Zt is either
i.i.d. or mixing. Moreover let g : N→ N be a sequence for which g(n) < n/2
for all n ≥ 3, lim

n→∞
(g(n)/n) = 0, lim

n→∞
g(n) = ∞ hold.

Then there exists a sequence ` : N → N for which the least squares

estimator δ̂ of δ in (19) is asymptotically Gaussian, namely

δ̂ ; N

δ, π2

/
6

g(n)+`(n)∑

i=g(n)

(xi − x̄)2




 as n →∞,

where xi is the same as in (7) and x̄ =
1

`(n) + 1

g(n)+`(n)∑
k=g(n)

xk.

Proof. The least squares estimator obtained from (19) is

δ̂ =

g(n)+`(n)∑
g(n)

(xk − x̄)(yk − ȳ)

g(n)+`(n)∑
g(n)

(xk − x̄)2
= δ +

g(n)+`(n)∑
g(n)

(xk − x̄)εk

g(n)+`(n)∑
g(n)

(xk − x̄)2
.

If the sequences g and ` are choosen to satisfy

lim
n→∞

g(n) = ∞, lim
n→∞

(
g(n)/n

)
= 0, `(n) = ` = const.,

then the conditions of Theorem 2 are fulfilled. Moreover, since the discon-
tinuities of the logarithm function has measure zero with respect to the
exponential distribution, it follows (see [7], Theorem 5.1) that the error
variables εk are asymptotically i.i.d. random variables with double expo-
nential distribution. This distribution has expectation −γ, where γ is the
Euler constant and the variance of it is π2/6 (see [1]). Let us replace for
all k = g(n), g(n) + 1, . . . , g(n) + `, εk with εk + γ. From this replacement
δ̂ will not be changed.
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The formal standardization of δ̂ is

(20)

(
δ̂ − δ

) √6
π




g(n)+`∑

g(n)

(xk − x̄)2



1
2

=
√

6
π




g(n)+`∑

g(n)

(xk − x̄)2



− 1

2 g(n)+`∑

g(n)

(xk − x̄)εk.

Using Lemma 2 too, we get that for fixed ` ∈ N the distribution of the
right of (20) converges weakly as n →∞ to the one of

(21)
√

6
π

∑̀

i=0

(`− 2i)
√

3√
`(`2 + 3` + 2)

(ε̃i + γ) ,

where ε̃0, ε̃1, . . . , ε̃` are independent double exponentially distributed ran-
dom variables. Moreover, since (21) is linear combination of i.i.d. random
variables, to satisfy the Lindeberg condition as ` → ∞, it is enough to
prove that

lim
`→∞

max
0≤i≤`

(`− 2i)2

`(`2 + 3` + 2)
= lim

`→∞
`2

`(`2 + 3` + 2)
= 0,

which trivially holds. Thus the distribution of (21) converges weakly as
` →∞ to the standard normal distribution.

Since the weak convergence of distributions is metrizable (e.g. with
the Lévy–Prohorov distance), we get from the above two weak conver-
gences that there exists a sequence `(n), for which lim

n→∞
`(n) = ∞ holds and

the distribution of (20) (with `(n) in it instead of `) converges weakly to the
standard normal distribution. Here the condition lim

n→∞
(
(g(n)+`(n))/n

)
=

0 (which is needed because in the regression equations the largest frequency
must tend to zero) can be satisfied by choosing the sequence `(n) so that
lim

n→∞
(
`(n)/n

)
= 0.
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