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Abstract. Recall that an order O in an algebraic number field K is called mo-

nogenic if it is generated by one element, i.e., there is an α with Z[α] = O. By work

of Győry [11, 1976] there are, up to a suitable equivalence, only finitely many α such

that Z[α] = O. In this survey, we give an overview of recent results on estimates for the

number of α up to equivalence.

1. Introduction

Let K be an algebraic number field of degree d and denote by OK its ring of

integers. Let O be an order in K, i.e., a subring of OK with quotient field K. The

order O is called monogenic if it can be expressed as Z[α] with some α ∈ O. Equi-

valently, this means that O has a Z-module basis of the shape {1, α, α2, . . . , αd−1}.
Clearly, if O = Z[α] then also O = Z[β] for any β of the shape ±α+a with a ∈ Z.
Such β are said to be equivalent to α. It is well-known that orders in quadratic

number fields are monogenic, but number fields of degree > 2 may have non-

monogenic orders.

We consider the ‘Diophantine equation’

Z[α] = O in α ∈ O. (1.1)
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As explained above, the solutions of (1.1) can be divided into equivalence classes

{±α + a : a ∈ Z}. We can rewrite (1.1) as a genuine Diophantine equation as

follows. Fix a Z-module basis {1, ω1, . . . , ωd−1} of O. There exists a homogeneous

polynomial I ∈ Z[X1, . . . , Xd−1] of degree d(d− 1)/2 in d− 1 variables, called the

index form associated to this basis, such that α = x0 + x1ω1 + · · · + xd−1ωd−1

with xi ∈ Z is a solution of (1.1) if and only if (x1, . . . , xd−1) is a solution of the

index form equation

I(x1, . . . , xd−1) = ±1 in x1, . . . , xd−1 ∈ Z. (1.2)

Suppose that K has degree d ≥ 3. In 1976, Győry [11] proved that the

set of solutions of (1.1) is a union of at most finitely many equivalence classes

and that a full system of representatives of those can be determined effectively.

Equivalently, this means that (1.2) has only finitely many solutions which can

be determined effectively. Today there are practical algorithms to solve (1.1) or

(1.2) for arbitrary number fields of degree ≤ 6 and some special classes of higher

degree number fields, see Gaál [8, 2002] and Bilu, Gaál and Győry [5, 2004].

In this survey, we do not go into the algorithmic resolution of (1.1), but

rather focus on estimates for the number of solutions of (1.1) up to equivalence.

We call an order O k times monogenic if (1.1) has at least k equivalence classes

of solutions, i.e., if there are α1, . . . , αk such that

O = Z[α1] = · · · = Z[αk], αi ± αj 6∈ Z for i, j = 1, . . . , k with i 6= j.

Analogously, we call O precisely/at most k times monogenic if (1.1) has preci-

sely/at most k equivalence classes of solutions.

It is easy to see that every order in a quadratic number field is precisely one

time monogenic. In case that K is a cubic number field, the index form equation

(1.2) corresponding to (1.1) is a cubic Thue equation. Bennett [1, 2001] proved

that such equations have up to sign not more than 10 solutions. Thus, any order

in a cubic number field is at most 10 times monogenic. Gaál and Schulte [9,

1989] determined the solutions of (1.1) for several orders in cubic number fields.

A consequence of their result is that Z[ζ7 + ζ−1
7 ] is precisely 9 times monogenic,

where ζp := e2πi/p. It is believed that all other orders in a cubic number field are

less than 9 times monogenic.

We now consider orders in number fields K of degree d ≥ 4. Győry and

the author [6, 1985] proved that any order O in K is at most (3× 72g)d−2 times

monogenic, where g is the degree of the normal closure ofK. Note that d ≤ g ≤ d!.

This was the first uniform bound of this type. In this survey, we deduce the

following improvement.
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Theorem 1.1. Let K be a number field of degree d ≥ 4. Then any order O
in K is at most

24(d+5)(d−2)

times monogenic.

This bound is probably far from best possible. The best lower bound we could

find is due to Miller-Sims and Robertson [15, 2005]. They considered (1.1)

for O = Z[ζp+ ζ−1
p ] where p is a prime, this is the ring of integers of the maximal

real subfield of the cyclotomic field Q(ζp). They proved that if p ≥ 7 then (1.1) is

satisfied by ζkp+ζ−k
p , (ζkp+ζ−k

p +b)−1 (b = −1, 0, 1, 2, k = 1, . . . , (p−1)/2). If p = 7

then among these numbers there are precisely nine pairwise inequivalent ones and

by the result of Gaál and Schulte mentioned above these are up to equivalence the

only solutions of (1.1). If p ≥ 11 then all these numbers are pairwise inequivalent

and thus, the ring Z[ζp + ζ−1
p ] is 5(p− 1)/2 times monogenic.

We now fix a number field, and consider varying orders in that field. It can be

shown that in a given number field, ‘most’ orders are only few times monogenic.

The following result, which is a refinement of work of Bérczes [2, 2000], makes

this more precise.

Theorem 1.2 (Bérczes, Evertse, Győry [3, to appear]). Let K be a

number field of degree d ≥ 3. Then there are at most finitely many three times

monogenic orders in K.

It is not difficult to show that there are number fields with infinitely many

two times monogenic orders. For instance, let K be a number field of degree

d ≥ 3 and suppose that K is not a CM-field, i.e., it is not a totally complex

quadratic extension of a totally real field. Then the ring of integers OK of K has

infinitely many units ε such that Q(ε) = K. If ε is one of these units, then from

the minimal polynomial of ε one easily deduces that ε−1 = g(ε), ε = h(ε−1) for

certain g, h ∈ Z[X], and thus Z[ε] = Z[ε−1]. Moreover, ε−1 cannot be equivalent

to ε since ε has degree ≥ 3. By varying ε we obtain infinitely many two times

monogenic orders in K.

We believe that if K is a number field of degree d ≥ 3, then the collection

of two times monogenic orders in K consists of finitely many infinite classes of

‘special’ two times monogenic orders, and at most finitely many orders outside

these classes. Bérczes, Győry and the author [3] managed to make this precise

in some special cases. We recall their result.

Let again K be a number field of degree d ≥ 3 and O an order in K. We

call O an order of type I if there are α, β ∈ O, and a matrix
(
a1 a2
a3 a4

) ∈ GL(2,Z)
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with a3 6= 0 such that

O = Z[α] = Z[β], β =
a1α+ a2
a3α+ a4

.

It is easily shown that such α, β are inequivalent. Hence type I orders are two

times monogenic. If K is not a CM-field then it has infinitely many orders of

type I. In [3] it is proved that every two times monogenic order in a cubic number

field is of type I.

Type II orders exist only in quartic number fields. We call O an order of

type II if there are α, β ∈ O, and a0, a1, a2, b0, b1, b2 ∈ Z with a2b2 6= 0 such that

O = Z[α] = Z[β], β = a0 + a1α+ a2α
2, α = b0 + b1β + b2β

2.

Again, it is obvious that such α, β are inequivalent and thus, that orders of

type II are two times monogenic. In [3], examples have been given of quartic

number fields with infinitely many orders of type II. The construction of these

orders uses cubic resolvents.

Recall that a number field K is called k times transitive (where 1 ≤ k ≤
[K : Q]) if, for any two ordered k-tuples of distinct embeddings (σ1, . . . , σk),

(τ1, . . . , τk) of K in Q, there is ρ ∈ Gal(Q/Q) such that ρ◦σi = τi for i = 1, . . . , k.

Theorem 1.3 (Bérczes, Evertse, Győry [3, to appear]). (i) Let K be a

number field of degree 4 such that the normal closure of K has Galois group S4.

Then there are at most finitely many two times monogenic orders in K that are

not of type I or II.

(ii) Let K be a four times transitive number field of degree ≥ 5. Then there

are at most finitely many two times monogenic orders in K that are not of type I.

We mention that in [3], more general versions of Theorems 1.2 and 1.3 are

proved about orders that are monogenic over an arbitrary domain which is in-

tegrally closed and finitely generated over Z. We do not know if Theorem 1.3

remains valid if we drop the conditions on K.

In Section 2 we prove Theorem 1.1. In Sections 3, 4, respectively we give

brief sketches of the proofs of Theorems 1.2 and 1.3. For the full (and lengthy)

proofs of these theorems we refer to [3].

2. Proof of Theorem 1.1

Given a field G, we denote by (G∗)m the group of m-tuples (x1, . . . , xm) with

x1, . . . , xm ∈ G∗, endowed with coordinatewise multiplication

(x1, . . . , xm)(y1, . . . , ym) = (x1y1, . . . , xmym).
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Our main tool is the following result.

Proposition 2.1. Let G be a field of characteristic 0, and Γ a finitely gene-

rated subgroup of (G∗)2 of rank r. Then the equation

x+ y = 1 in (x, y) ∈ Γ

has at most 28(r+1) solutions.

Proof. Beukers, Schlickewei [4, 1996]. ¤

We deduce the following consequence.

Lemma 2.2. Let G be a field of characteristic 0, n ≥ 1, and Γ a finitely

generated subgroup of (G∗)2n of rank r. Then the system of equations

xi + yi = 1 (i = 1, . . . , n) in (x1, y1, . . . , xn, yn) ∈ Γ (2.1)

has at most 28(r+2n−1) solutions.

Proof. We proceed by induction on n. For n = 1, Lemma 2.2 is precisely

Proposition 2.1. Assume that n ≥ 2, and that the lemma is true for systems of fe-

wer than n equations. Write x := (x1, y1, . . . , xn, yn), x
′:= (x1, y1, . . . , xn−1, yn−1)

and define the homomorphism ϕ : x 7→ x′. Let Γ′ := ϕ(Γ) and Γ0 := ker(ϕ : Γ →
Γ′). Notice that if x is a solution of (2.1), then ϕ(x) is a solution of the system

consisting of the first n− 1 equations of (2.1). By the induction hypothesis, if x

runs through the solutions of (2.1), then x′ runs through a set of cardinality at

most 28(r
′+2n−3), where r′ := rankΓ′. Pick an element from Γ′ and then an ele-

ment from its inverse image under ϕ, say x∗ := (x∗
1, y

∗
1 , . . . , x

∗
n, y

∗
n) ∈ Γ. To finish

the induction step we have to prove that (2.1) has at most 28(r−r′+2) solutions

x = (x1, . . . , yn) with ϕ(x) = ϕ(x∗), i.e., with x · (x∗)−1 ∈ Γ0.

Let Γ1 be the image of the group generated by Γ0 and x∗ under the projection
(x1, y1, . . . , xn, yn) 7→ (xn, yn). Then Γ1 is a group of rank at most rankΓ0 +1 =

r−r′+1. Notice that if x = (x1, . . . , yn) is a solution of (2.1) with ϕ(x) = ϕ(x∗),
then xi = x∗

i , yi = y∗i for i = 1, . . . , n − 1, xn + yn = 1 and (xn, yn) ∈ Γ1. From

Proposition 2.1 it follows that for (xn, yn), hence x, we have at most 28(r−r′+2)

possibilities. This completes our induction step. ¤

In what follows, let K be a number field of degree d ≥ 4, say K = Q(θ) and
denote by G its normal closure, i.e., G = Q(θ(1), . . . , θ(d)), where θ(1) = θ, . . . , θ(d)

are the conjugates of θ. Denote by x 7→ x(i) the embedding of K in G defined by

θ(i). Further, define the fields Lij := Q(θ(i) + θ(j), θ(i)θ(j)) (1 ≤ i, j ≤ d, i 6= j).

Denote by Uij the unit group of the ring of integers of Lij .
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Let O be an order in K and define

S(O) := {α ∈ O : Z[α] = O}.

Lemma 2.3. Let α, β ∈ S(O). Then

uij(α, β) :=
α(i) − α(j)

β(i) − β(j)
∈ Uij for 1 ≤ i, j ≤ d, i 6= j. (2.2)

Proof. Let i, j ∈ {1, . . . , d}, i 6= j. The quantity uij(α, β) is a symmetric

function in θ(i), θ(j), hence it belongs to Lij . There are f, g ∈ Z[X] such that

β = f(α) and α = g(β). This shows that both uij(α, β) and its multiplicative

inverse are algebraic integers, hence it is an algebraic unit. ¤

Lemma 2.4. The multiplicative subgroup of (G∗)d(d−1)/2 generated by the

tuples

ρ(α) :=
(
α(i) − α(j) : 1 ≤ i < j ≤ d

)
(α ∈ S(O)) (2.3)

has rank at most 1
2d(d− 1).

Proof. Denote by U the group under consideration. We fix β ∈ S(O) (if

no such β exists we are done) and let α ∈ S(O) vary. Then for α ∈ S(O) we have

ρ(α) = ρ(β) · u(α) with u(α) := (uij(α, β) : 1 ≤ i < j < d). (2.4)

We partition the collection of 2-element subsets of {1, . . . , d} into classes such that

{i, j} and {i′, j′} belong to the same class if and only if there exists σ ∈ Gal(G/Q)
such that σ(θ(i) + θ(j)) = θ(i

′) + θ(j
′), σ(θ(i)θ(j)) = θ(i

′)θ(j
′). Then by Lemma 2.3

and since uij(α, β) is a symmetric function in θ(i), θ(j) we have

ui′,j′(α, β) = σ(uij(α, β)) for α ∈ S(O). (2.5)

Clearly, the cardinality of the class represented by {i, j} is [Lij : Q].
Denote the different classes by C1, . . . , Ct, and suppose that {ik, jk} ∈ Ck

for k = 1, . . . , t. Property (2.5) and Lemma 2.3 imply that

(xij : 1 ≤ i < j ≤ d) 7→ (xi1,j1 , . . . , xit,jt)

defines an injective homomorphism from the group generated by the tuples u(α)

(α ∈ S(O)) into Ui1,j1 × · · · × Uit,jt . By Dirichlet’s Unit Theorem, rankUik,jk ≤
[Lik,jk : Q]− 1 = #Ck − 1 for k = 1, . . . , t. Together with (2.4), this implies that

U has rank at most

1 +

t∑

k=1

(#Ck − 1) ≤ 1
2d(d− 1). ¤
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Proof of Theorem 1.1. Let O be an order in K. Notice that we have the

relations
α(i) − α(1)

α(2) − α(1)
+

α(2) − α(i)

α(2) − α(1)
= 1 (i = 3, . . . , d). (2.6)

The group homomorphism from (G∗)d(d−1)/2 → (G∗)2d−4,

(xij : 1 ≤ i < j ≤ d) 7→ (x31/x21, x23/x21, . . . , xd1/x21, x2d/x21)

maps, for every α ∈ S(O), the tuple ρ(α) as defined in Lemma 2.4 to

τ(α) :=

(
α(3) − α(1)

α(2) − α(1)
,
α(2) − α(3)

α(2) − α(1)
, . . . ,

α(d) − α(1)

α(2) − α(1)
,
α(2) − α(d)

α(2) − α(1)

)
.

Together with Lemma 2.4, this implies that the rank of the multiplicative group

generated by the tuples τ(α) (α ∈ S(O)) is at most 1
2d(d − 1). By applying

Lemma 2.2 to (2.6), it follows that among the tuples τ(α) (α ∈ O) there are at

most 28(d(d−1)/2+2d−5) = 24(d+5)(d−2) distinct ones.

Theorem 1.1 follows once we have proved that if α1, α2 ∈ S(O) and τ(α1) =

τ(α2), then α1, α2 are equivalent. Take such α1, α2. By simple linear algebra,

there exist unique λ ∈ G∗, µ ∈ G such that α
(i)
2 = λα

(i)
1 + µ for i = 1, . . . , d.

Thus,

λ =
α
(i)
2 − α

(j)
2

α
(i)
1 − α

(j)
1

for 1 ≤ i < j ≤ d.

By Galois symmetry we have λ ∈ Q∗, and by Lemma 2.3, λ is an algebraic unit.

Hence λ = ±1. But then, µ = α
(i)
2 ± α

(i)
1 for i = 1, . . . , d. This shows that µ ∈ Q

and µ is an algebraic integer, hence µ ∈ Z. So α1, α2 are indeed equivalent. This

concludes the proof of Theorem 1.1. ¤

3. Sketch of the proof of Theorem 1.2

The next proposition is our main tool. Let G be a field of characteristic 0,

and Γ a finitely generated subgroup of (G∗)2. We consider equations

ax+ by = 1 in (x, y) ∈ Γ (3.1)

where a, b ∈ G∗. By Lang [13, 1960] or Proposition 2.1 above, each such equation

has only finitely many solutions. We call the pair (a, b) normalized if (1, 1) is a

solution of (3.1), i.e., if a + b = 1. In general, if (x0, y0) is a solution of (3.1)

then the pair (ax0, by0) is normalized, and the equation (ax0)x + (by0)y = 1 in

(x, y) ∈ Γ has the same number of solutions as (3.1).
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Proposition 3.1. There are at most finitely many normalized pairs (a, b) ∈
(G∗)2 such that (1.1) has more than two solutions, the pair (1, 1) included.

Proof. Evertse, Győry, Stewart, Tijdeman [7, 1988]. ¤

We keep the notation from the previous section; thus, K is an algebraic

number field of degree d ≥ 3 and G is its normal closure. The next lemma,

which we state without proof, is used in both the proofs of Theorems 1.2 and 1.3.

For x with Q(x)=K and distinct i, j, k ∈ {1, . . . , d} we put

x(ijk) :=
x(i) − x(j)

x(i) − x(k)
.

Lemma 3.2. Let cijk ∈ G∗ (1 ≤ i < j < k ≤ d) be given. Then the set of

β ∈ OK such that

β(ijk) = cijk for 1 ≤ i < j < k ≤ d, Z[β] is two times monogenic

is contained in finitely many equivalence classes.

Proof. [3], Lemmas 5.3, 6.2. ¤

To give a flavour, we prove Theorem 1.2 under the assumption thatK is three

times transitive. This condition can be dropped, but then the proof becomes more

complicated. Our assumption on K implies the following:

Lemma 3.3. Let O be an order in K and suppose that Z[α1] = Z[α2] = O
and α

(123)
1 = α

(123)
2 . Then α1, α2 are equivalent.

Proof. By taking conjugates, using that K is three times transitive, it

follows that also α
(ijk)
1 = α

(ijk)
2 for 1 ≤ i < j < k ≤ d. Then, similarly to the last

part of the proof of Theorem 1.1 one shows that α1, α2 are equivalent. ¤

Let O be a three times monogenic order in K. Fix β with Z[β] = O. We

claim that the equation

β(123)x+ β(321)y = 1 in x, y ∈ O∗
G (3.2)

has at least three distinct solutions, including (1, 1). Indeed, let α ∈ S(O).

Then by Lemma 2.3, we have xα := α(123)/β(123) = u12(α, β)/u13(α, β) ∈ O∗
G

and likewise, yα := α(321)/β(321) ∈ O∗
G. Since α(123) + α(321) = 1 this shows

that (xα, yα) is a solution of (3.2). By our assumption that O is three times

monogenic, and by Lemma 3.3, there are at least three different values among

the numbers α(123), hence among the numbers xα, for α ∈ S(O). So indeed,

(3.2) has at least three distinct solutions, and taking α = β we get the solution

(1, 1). Now by Proposition 3.1, if β runs through the numbers in OK such that

Z[β] is three times monogenic, then β(123) runs through a finite set. By taking
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conjugates, using that K is three times transitive, it follows that also β(ijk) runs

through a finite set, for all distinct i, j, k ∈ {1, . . . , d}. But then by Lemma 3.2,

the β under consideration lie in only finitely many equivalence classes, and so

there are only finitely many possibilities for the order Z[β]. This completes our

proof. ¤

4. Sketch of the proof of Theorem 1.3

Let for the moment G be any field of characteristic 0 and m an integer ≥ 2.

An algebraic subset of (G∗)m is the set of common zeros in (G∗)m of a set of

polynomials in G[X1, . . . , Xm]. An algebraic subgroup of (G∗)m is an algebraic

subset which is also a subgroup of (G∗)m under coordinatewise multiplication.

An algebraic coset in (G∗)m is a coset aH = {a · x : x ∈ H}, where a ∈ (G∗)m

and H is an algebraic subgroup of (G∗)m. The proof of Theorem 1.3 uses the

following result.

Proposition 4.1. Let X be an algebraic subset of (G∗)m and Γ a finitely

generated subgroup of (G∗)m. Then X ∩ Γ is contained in a finite union of

algebraic cosets a1H1 ∪ · · · ∪ atHt with aiHi ⊆ X for i = 1, . . . , t.

Proof. Laurent [14, 1984]. ¤

Like in the statement of Theorem 1.3, let K be number field of degree d ≥ 4,

and assume that either d = 4 and the normal closure of K has Galois group S4,

or d ≥ 5 and K is four times transitive. Denote by G the normal closure of K.

We consider pairs (α, β) such that

α, β ∈ OK , Q(α) = Q(β) = K, Z[α] = Z[β], α, β are inequivalent. (4.1)

We have to show that there is a finite collection of orders in K, such that for every

pair (α, β) with (4.1), the order Z[α] = Z[β] either belongs to this collection or is

of type I or (if d = 4) of type II.

Let Γ be the multiplicative group generated by the tuples

(
α(i) − α(j)

β(i) − β(j)
: 1 ≤ i < j ≤ d

)
,

for all α, β with (4.1). By Lemma 2.3, Γ is a subgroup of (O∗
G)

d(d−1)/2. Hence Γ

is finitely generated.
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Take α, β with (4.1). Put

uij :=
α(i) − α(j)

β(i) − β(j)
(1 ≤ i, j ≤ d, i 6= j).

Write again x(ijk) := (x(i) − x(j))/(x(i) − x(k)) for x with Q(x) = K and distinct

indices i, j, k. Then from

β(jik) + β(kij) = 1,

β(jik) · uij

ujk
+ β(kij) · uik

ujk
= α(jik) + α(kij) = 1,

it follows that

β(ijk) ·
(
1− uij

ujk

)
= 1− uik

ujk
for any distinct i, j, k ∈ {1, . . . , d}. (4.2)

We can eliminate the terms depending on β by applying the above identities with

the triples (i, j, k), (i, k, l) and (i, l, j), and using β(ijk)β(ikl)β(ilj) = 1. This leads

to

(
1− uij

ujk

)(
1− uik

ukl

)(
1− uil

ujl

)
=

(
1− uik

ujk

)(
1− uil

ukl

)(
1− uij

ujl

)

for any distinct i, j, k, l ∈ {1, . . . , d}. (4.3)

It follows that the tuple u = (uij : 1 ≤ i < j ≤ d) lies in X ∩ Γ, where X is the

algebraic subset of (G∗)d(d−1)/2 defined by (4.3).

We apply Proposition 4.1 to X ∩Γ. By a precise analysis of the algebraic set

X and the group Γ (see [3]) it can be shown that there is a finite set S such that

for each u ∈ X ∩ Γ, at least one of the following three alternatives holds:

(i) uij/uik ∈ S for all distinct i, j, k ∈ {1, . . . , d};
(ii) uijukl = uikujl for all distinct i, j, k, l ∈ {1, . . . , d};
(iii) d = 4 and u12 = −u34, u13 = −u24, u14 = −u23.

In the deduction of this, Bérczes et.al. heavily used the conditions imposed on K

in Theorem 1.3; probably without these conditions there are more alternatives.

If (α, β) run through the set of pairs with (4.1) for which the corresponding

tuple u satisfies (i), then by (4.2), the quantities β(ijk) (1 ≤ i < j < k ≤ d) run

through a finite set. Now Lemma 3.2 implies that the β lie in at most finitely
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many equivalence classes, and thus, that there are only finitely many possibilities

for the order Z[β].
If (α, β) is a pair with (4.1) such that the corresponding tuple u satisfies (ii),

then
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
=

(β(i) − β(j))(β(k) − β(l))

(β(i) − β(k))(β(j) − β(l))

for all distinct i, j, k, l ∈ {1, . . . , d}, i.e., the cross ratio of any four of the α(i) is

equal to that of the corresponding four β(i). By elementary projective geometry

on P1(G), there is a matrix A =
(
a1 a2
a3 a4

) ∈ GL(2, G) such that β(i) = (a1α
(i) +

a2)/(a3α
(i) + a4) for i = 1, . . . , d. By Galois symmetry, we can choose A from

GL(2,Q), and in [3] it is shown that A can be chosen from GL(2,Z). Hence

Z[α] = Z[β] is an order of type I.

If (α, β) is a pair with (4.1) such that the corresponding u satisfies (iii)

then by elementary algebra it can be shown that β = a0 + a1α + a2α
2 and

α = b0 + b1β + b2β
2 for certain ai, bi ∈ Q with a2b2 6= 0. But since Z[α] = Z[β]

it then follows that ai, bi ∈ Z for i = 1, 2, 3. Hence Z[α] = Z[β] is an order of

type II. This completes our sketch of the proof of Theorem 1.3. ¤
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