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Representing integers as linear combinations of powers

By LAJOS HAJDU (Debrecen) and ROBERT TIJDEMAN (Leiden)

Dedicated to Professors K. Győry and A. Sárközy on their 70th birthdays

and Professors A. Pethő and J. Pintz on their 60th birthdays

Abstract. At a conference in Debrecen in October 2010 Nathanson announced

some results concerning the arithmetic diameters of certain sets. (See his paper in the

present volume.) He proposed some related problems on the representation of integers

by sums or differences of powers of 2 and of 3. In this note we prove some results on this

problem and the more general problem about the representation by linear combinations

of powers of some fixed integers.

1. Introduction

Let P be a nonempty finite set of prime numbers, and let T be the set of

positive integers that are products of powers of primes in P . Put TP = T ∪
(−T ). Then there does not exist an integer k such that every positive integer

can be represented as a sum of at most k elements of TP . This follows e.g.

from Theorem 1 of Jarden and Narkiewicz [6], cf. [5], [1]. At a conference

in Debrecen in October 2010 Nathanson announced the following stronger result

(see also [7]):
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For every positive integer k there exist infinitely many integers n such that k is

the smallest value of l for which n can be written as

n = a1 + a2 + · · ·+ al (a1, a2, . . . , al ∈ TP ).

Let f(k) be the smallest positive integer which cannot be represented as sum of

less than k terms from TP . In Problem 2 of [7]Nathanson asked to give estimates

for f(k). (The notation in [7] is somewhat different from ours.) Problem 1 asks

the same question in case T consists of the pure powers of 2 and of 3. Observe

that in both cases f(k) can be represented as a sum of k terms from TP , since

less than TP terms suffice for f(k)− 1 and 1 ∈ TP .

In this note we consider Problem 1. More generally, let B = {b1, . . . , bt} be

any finite set of positive integers. Put A = {bji ,−bji : i = 1, . . . , t; j = 0, 1, 2, . . . }.
Note that on writing P = {p prime : p | b1 · · · bt} we have A ⊆ TP . So there is no k

for which every positive integer can be represented as a sum of at most k elements

of A. Let f(k) be the smallest positive integer which cannot be represented as

sum of less than k terms of A. Similarly as above, we get that f(k) can be

represented as a sum of k terms of A.

In this paper we show that there exists a number c depending only on B and

an absolute constant C such that exp(ck) < f(k) < exp((k log t)C). Moreover, we

show that there are infinitely many k’s for which f(k) < exp(c∗k log(2kt) log log k)
where c∗ is some constant.

For the upper bound we apply a method of Ádám, Hajdu and Luca [1]

in which a result of Erdős, Pomerance and Schmutz [4] plays an important

part. We refine the result of Erdős, Pomerance and Schmutz in Section 2 and

that of Ádám, Hajdu and Luca in Section 3. In Section 4 we derive lower and

upper bounds for f(k) in a somewhat more general setting. We conclude with

some remarks in Section 5.

2. An extension of a theorem of Erdős, Pomerance and Schmutz

Let λ(m) be the Carmichael function of the positive integer m, that is the

least positive integer for which

bλ(m) ≡ 1 (mod m)

for all b ∈ Z with gcd(b,m) = 1. Theorem 1 of [4] gives the following information

on small values of the Carmichael function.
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For any increasing sequence (ni)
∞
i=1 of positive integers, and any positive constant

c0 < 1/ log 2, one has

λ(ni) > (log ni)
c0 log log log ni

for i sufficiently large. On the other hand, there exist a strictly increasing sequence

(ni)
∞
i=1 of positive integers and a positive constant c1, such that, for every i,

λ(ni) < (log ni)
c1 log log log ni .

This nice theorem does not give any information on the size of ni. Since

we need such information in this paper, we prove the following refinement of the

second part. The proof is an extension of the proof in [4].

Theorem 1. There exist positive constants c2, c3 such that for every large

integer i there is an integer m with logm ∈ [log i, (log i)c2 ] and

λ(m) < (logm)c3 log log logm.

Proof. In [2] it is shown that there is a computable constant c4 > 0 with

the property that, for any x > 10, there is a squarefree number hx < x2 for which
∑

p−1|hx

1 > ec4 log x/ log log x.

Put x = (log i)(2/c4) log log log i, y = hx, and m =
∏

p−1|y p. Note that, for i

sufficiently large, we have

m ≥
∏

p−1|y
2 > exp

(
(log 2) exp

(
c4 log x

log log x

))
> i.

But then, for i sufficiently large and c3 = 4/c4,

λ(m) ≤ y < x2 = (log i)(4/c4) log log log i < (logm)c3 log log logm.

It remains to estimate m from above. Let s be the number of prime factors

of the squarefree number y and 0 < ε < 0.1. Then y is at least s(1−ε)s if i is

sufficiently large. Hence s < (1 + 2ε) log y/ log log y. It follows that

∑

p−1|y
1 ≤ 2s <

y1/ log log y

log(y + 1)

when i is large. Thus

logm = log


 ∏

p−1|y
p


 <

∑

p−1|y
log(y + 1) < y1/ log log y < x2/ log log x < (log i)c2

for some constant c2. ¤
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3. An extension of a theorem of Ádám, Hajdu and Luca

Let B = {b1, . . . , bt} be any finite set of positive integers. Let A = {bji : i =

1, . . . , t; j = 0, 1, 2, . . . }. Let k be a positive integer and R a finite set of integers

of cardinality ρ. Put

HB,R,k =

{
n ∈ Z : n =

k∑

i=1

riai

}

where ri ∈ R, ai ∈ A (i = 1, 2, . . . , k). For H ⊆ Z and m ∈ Z,m ≥ 2, we write

]H for the cardinality of the set H and

H(mod m) = {i : 0 ≤ i < m, h ≡ i (mod m) for some h ∈ H}.
Observe that the definition of A differs from that in the introduction and that we

get the situation described there by choosing R = {−1, 1}.
Theorem 2. Let B, R and k be given as above. For every sufficiently large

integer i there exists a number m with logm ∈ [log i, (log i)c2 ] such that

]HB,R,k (mod m) < (ρt)k(logm)c5k log log logm

where c5 is a constant.

In the proof of Theorem 1 the following lemma is used.

Lemma 1 ([1], Lemma 1). Let m = qα1
1 · · · qαz

z where q1, . . . , qz are distinct

primes and α1, . . . , αz are positive integers, and let b ∈ Z. Then
]{bu (mod m) : u ≥ 0} ≤ λ(m) + max

1≤j≤z
αj .

The proof of Theorem 2 is similar to that of Theorem 3 of [1]. In that paper

there is the restriction that of each element of B only one power occurs in HB,R,K ,

hence k = t.

Proof of Theorem 2. Let i be an integer so large that Theorem 1 applies.

Choose m as in Theorem 1. Write m as in Lemma 1 as a product of powers of

distinct primes. Lemma 1 implies that for all b ∈ B,

]{r · bu (mod m) : b ∈ B, r ∈ R, u ≥ 0} ≤ ρt
(
λ(m) + max

1≤j≤z
αj

)
.

On the other hand, with the constant c3 from Theorem 1,

λ(m) + max
1≤j≤z

αj ≤ (logm)c3 log log logm +
logm

log 2
.

The combination of both inequalities yields the theorem. ¤
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4. Representing integers as linear combinations of powers

We use the notation of Section 3. Suppose we want to express the positive

integer n as a finite sum of powers of b1. For this we apply the greedy algorithm. If

we subtract the largest power of b1 not exceeding n from n, we obtain a number

which is less than n(1 − 1/b1). We can iterate subtracting the highest power

of b1 not exceeding the rest from the rest and so reduce the rest each time by

a factor at most 1 − 1/b1. Hence we can represent n as the sum of at most

log n/ log(1/(1 − 1/b1)) powers of b1. Thus we find that the sum of k ≤ c6 logn

powers of b1 suffices to represent n, where c6 depends only on b1. This implies

the lower bound exp(ck) for f(k) claimed in the introduction. More generally, let

fR(k) be the smallest positive integer n which cannot be represented as a sum∑l
j=1 rjaj with l < k, rj ∈ R, aj ∈ A. Then the above argument shows that

1 ∈ R implies fR(k) > ek/c6 .

For an upper bound for fR(k) suppose first that all the elements of R are

positive. We study the representation of positive integers up to n as
∑k−1

j=1 rjb
kj

j

with rj ∈ R, bj ∈ B, kj ∈ Z, kj ≥ 0. Then kj ≤ logn/ log bj ≤ logn/ log 2. Hence

the number of represented integers is at most (ρt logn/ log 2)k−1. If this number

is less than n, then we are sure that some positive integer ≤ n is not represented.

This is the case if

k − 1 <
logn

log(ρt) + log log n− log log 2
.

Hence it suffices that n ≥ (1.5ρkt log(ρkt))k−1 and for this special case we find

that

fR(k) ≤ (1.5ρkt log(ρkt))k−1.

We now turn to the general case. Choose the smallest positive integer i >

10 such that i > (ρt)k(log i)c5k log log log i. Then i < 2(ρt)k(log i)c5k log log log i. It

follows that

log i < k(log ρt) + c7k(log log i)(log log log i)

for some constant c7, thus log i < 2k log(ρt) or log i < 2c7k(log log i)(log log log i).

In the latter case log i < c8k(log k)(log log k) for some suitable constant c8. Ac-

cording to Theorem 2 there exists an m with log i ≤ logm ≤ (log i)c2 such that all

representations are covered by at most (ρt)k(logm)c5k log log logm residue classes

modulo m. By the definition of i and the inequality i ≤ m, we see that this

number of residue classes is less than m, therefore at least one positive integer

n ≤ m has no representation of the form
∑k

j=1 rjaj with rj ∈ R, aj ∈ A for all j.
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Since logm ≤ (log i)c2 , we obtain

logn ≤ logm ≤ (log i)c2 < (max(2k log ρt, c8k(log k)(log log k)))
c2 < (k log ρt)c9

for some constant c9.

There are infinitely many k’s for which a considerably better bound for fR(k)

can be derived by a variant of the above argument. According to Theorem 1 there

are infinitely many integers m for which

λ(m) < (logm)c3 log log logm. (1)

Let B, hence A, ρ and t be given. Choose k as the largest integer such that

(ρt)k(logm)c5k log log logm < m

for an m satisfying (1). It follows from Theorem 1 that there are infinitely many

such k’s. Theorem 2 and its proof imply that there is a positive integer n ≤
m which is not representable as a linear combination of k elements of A with

coefficients from R. Moreover,

logm ≤ (k + 1)(log(ρt) + c5 log logm log log logm).

Hence logm ≤ 2(k + 1) log(ρt) or logm ≤ 2c5(k + 1) log logm log log logm. In

the latter case logm ≤ c10k log k log log k where c10 is some constant. Combining

both inequalities we obtain, for some constant c11,

logn ≤ logm ≤ c11k log(ρkt) log log k.

So we have proved the following result.

Theorem 3. Let B = {b1, . . . , bt} be any finite set of positive integers. Put

A = {bji : i = 1, . . . , t; j = 0, 1, 2, . . . }. Let R be a finite set of integers of

cardinality ρ and k a positive integer. Denote by fR(k) the smallest positive

integer which cannot be represented in the form
∑k−1

i=1 riai with ri ∈ R, ai ∈ A

for all i. Then

(i) if 1 ∈ R, then log fR(k) > k/c6 for some number c6 > 0 depending only

on b1,

(ii) if all elements of R are positive, then fR(k) ≤ (1.5ρkt log(ρkt))k−1,

(iii) there exists a constant c9 such that log fR(k) < (k log(ρt))c9 ,

(iv) there exist a constant c11 and infinitely many positive integers k such that

log fR(k) ≤ c11k log(ρkt) log log k.
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In Nathanson’s Problem 1 mentioned in the introduction we have R =

{−1, 1}, and hence ρ = 2. Thus we have the following consequences for the

function f .

Corollary 1. There is a positive number c depending only on b1 such that

log f(k) > ck.

On the other hand, log f(k) < (k log(2t))C where C is a constant.

Moreover, log f(k) < c∗k log(2kt) log log k for infinitely many integers k where c∗

is a constant.

5. Some remarks

Remark 1. To prove that fR(k) > eck we assumed 1 ∈ R. Here we check

what happens if this condition is not fulfilled. Obviously, we may assume that

0 /∈ R and that not all the elements of R are negative. Further, if the elements of

R are not coprime, then there is a full residue class not represented as
∑k

i=1 riai.

Therefore we may assume that the elements of R are coprime. (In particular,

since R = {1} is now excluded, that ρ > 1.)

Assume first that R contains a negative element. There exist integers dj (j =

1, . . . , ρ) such that
∑ρ

j=1 djrj = 1. Let P =
∏ρ

j=1 |rj |. So P is a multiple of rj

for every j. Consider the sum
∑ρ

j=1

(
dj+ej

P
rj

)
rj where the ej ’s are integers such

that dj + ej
P
rj

≥ 0 and ejrj ≥ 0 for all j. Let v =
∑t

j=1 ej . If v > 0 then we

replace ej by ej − v for some j with rj < 0, and if v < 0 then we do so for some j

with rj > 0. Afterwards
∑t

j=1 ej = 0, hence
∑ρ

j=1

(
dj + ej

P
rj

)
rj = 1, and further

dj + ej
P
rj

≥ 0 for j = 1, . . . , ρ. Thus 1 admits a representation
∑k

j=1 rjaj where

aj = b01 = 1 for all j, and k is bounded by
∑ρ

j=1

(
dj +ej

P
rj

)
, that is by a constant

c12 which only depends on R.

If the elements of R are coprime and all positive, then we have to do with the

so-called coin problem or Frobenius problem. Let 0 < r1 ≤ r2 ≤ · · · ≤ rρ. Schur

[3] proved in 1935 that every number larger than c13 := r1rρ+ r2+ · · ·+ rρ−1 can

be represented as a linear combination of r1, r2, . . . , rρ with nonnegative integer

coefficients. Note that c13 depends only on R. Therefore each of the integers

in the interval (c13, 2c13] can be represented as
∑c14

j=1 rjaj where the number c14
depends only on R. We can now use the greedy algorithm as in the first block

of Section 4, iterating until we reach this interval, to obtain a representation of

n > c13 with at most (c6 + c14) log n terms rjaj .
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We conclude that if the elements of R are coprime, every positive integer

n > c13 can be represented as
∑k−1

i=1 riai with ri ∈ R, ai ∈ A for all i and with

k < c15 logn, where c15 is a number depending only on R. Thus fR(k) > eck

where c is a number depending only on R.

Remark 2. The upper bound for f(k) can possibly be improved by deriving

a version of Theorem 1 where the interval for m is essentially smaller at the cost

of a larger bound for λ(m). We expect that the given upper bound for infinitely

many values of k may be close to an upper bound for all k.
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