
Publ. Math. Debrecen

79/3-4 (2011), 469–478

DOI: 10.5486/PMD.2011.5164

A note on speeding up exponentiation by precomputation

By TAMÁS HERENDI (Debrecen)

Abstract. We analyse the lower bounds for the number of exponentiation neces-

sary to compute the powers of a fixed member of an Abelian group and give a method

for a reasonably fast powering by storing some previously computed powers.

1. Introduction

In many numerical application exponentiation appears as an essential sub-

task. In particular, in cryptography several practical methods are based on the

computation of high powers of some element of a finite group. The most well

known are the RSA, El Gamal and elliptic curve cryptosystems.

The aim of the present paper is to calculate some time and space bounds for

the computation of powers, basically in finite structures, such as finite fields or

elliptic curves.

The work was initiated by Attila Pethő and the results have direct applica-

tions in the research and developments done by his cryptography research team.

The subject is excessively studied by many authors. One can find surveys

e.g. in [6] Ch. 4.6.3 and [7] Ch. 14.6.

Let (A, ·) be a finite Abelian group, let a be a not necessarily generator

element of A and let x ∈ Z+.

The task is to compute element ax, which is defined by repeated multiplica-

tion of a by itself.

Mathematics Subject Classification: 11T71.
Key words and phrases: exponentiation, addition chains, precomputation.

Research supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project and TARIPAR3

project grant Nr. TECH 08-A2/2-2008-0086.

470 Tamás Herendi

Our main result is a lower bound on the size of the minimum set which can

be a base of a k-step exponentiation.

Theorem 1. Assume we know some power of a and store them in a set Q.

If for any y ≤ x we can compute ay with at most k > 0 group operation, then

card(Q) >
k
√
x

3k + 1
.

2. Exponentiation without precomputation

Assume that

x =

k−1∑

i=0

2iξi,

where ξi ∈ {0, 1}.
The well known fast exponentiation method based on the fact that ax = ak,

where ai (i = 0 . . . k) is defined by the recurrence

a0 = e ai+1 = a2i · aξk−i ,

where e is the unit element of the group A.

This property enables us to compute ax at the cost of maximum 2k group

operation.

A significant speed up can be achieved by sparse signed binary representation

of x, where the digits are from the set {−1, 0, 1}. One can prove that there exists

a not necessarily unique optimal representation of x, where the number of nonzero

digits are minimal and not more than 1
2k. This modification reduces the worst

case complexity of the exponentiation to 3
2k. However, this approach requires

the computation of a−1, which is not necessarily easy at all. (For the details and

related results, see [3] and [4].)

Assume first that we want to have the most general exponentiation. This

means, that we can use the group operation only and we can not compute and

store anything in advance.

Let M : Z+ → N the function expressing the necessary minimal number of

group operations to compute ax. Clearly M is well defined and M(x) = M(x′)
where x ≡ x′ mod m. Here m is the order of a in A. By the time complexity of

the fast exponentiation, M(x) ≤ 2 [log(x)], where log(·) is the base 2 logarithm

and [·] is the integer part function.

The function M is independent of A and actually depends only on m and not

on the exact value of a. Since exponentiation have the property ax1+x2 = ax1 ·ax2 ,

A note on speeding up exponentiation by precomputation 471

the computation of ax can be transformed to an analogous computation in Zm.

Here we have to compute x from 1 using additions only. One can represent the

intermediate results in a list. This list is the well known addition chain of x.

Clearly the addition chain for a given x is not unique and even more, the shortest

one may not be unique. A detailed work on addition chains can be found in [8]

and [5].

As a first approach on the bounds of M , we state the following:

Lemma 2. Let Sn = {x|x ∈ Z,M(x) = n}. Then max (Sn) = 2n.

Proof. We prove the lemma by induction. Let

Tn =

n⋃

i=0

Si.

a.) Clearly S0 = {1}.
b.) Assume, that max(Sl) = 2l for all 0 ≤ l ≤ k, where k ≥ 0 is a fixed

integer. This yields, among others, that M(2k) = k and max(Tl) = 2l for all

0 ≤ l ≤ k.

If x ∈ Sn then M(2x) ≤ n+ 1, whence

M
(
2k+1

) ≤ k + 1. (1)

Since 2k+1 > max (Tl) thus (1) implies that M(2k+1) = k + 1, whence

max{Sk+1} ≥ 2k+1.

Assume now, that max{Sk+1} > 2k+1. Then ∃x ∈ Sk+1, such that x > 2k+1.

However, this means that ∃x1, x2 ∈ Tk not necessarily different integers, such that

x = x1 + x2. Then

2k+1 < x = x1 + x2 ≤ 2 ·max(Tk) = 2 · 2k,
which is a contradiction.

This implies that max{Sk+1} = 2k+1, whence by induction the lemma fol-

lows. ¤

Corollary 3. log(x) ≤ M(x) ≤ 2 [log(x)].

Remark 4. Corollary 3 means that basically there are no asymptotically bet-

ter general exponentiation algorithm, than the well known fast exponentiation.

However, there is a chance to increase its speed by a factor of 2.

472 Tamás Herendi

Algorithm 5. Let x ∈ N, s = [log(x)]+1, l = [log(s)−2 log(log(s))], k = d s
l e

and

x =

k−1∑

i=0

2ilξi ,

where ξi ∈ {0, 2l − 1}. Here d·e means the round up function.

First compute ai for all i ∈ {0, . . . , 2l − 1}. Then define the recurrence

a0 = e ai+1 = a2
l

i · aξk−i ,

where e is the unit element of the group A.

Lemma 6. The number of group operations necessary to compute ax by

using Algorithm 5 is at most

log x

(
1 +

c

log log x

)

with an absolute constant c > 0.

Proof. The number of necessary group operations are

2l − 2 for computing ai for all i ∈ {0, . . . , 2l − 1},
l(k − 1) for computing a2

l

i for all i ∈ {2, . . . , k} and

k − 1 additional one for the multiplication by aξl−i .

All together

2l + l(k− 1)+ k− 3< 2l + s+ k < 2log(s)− 2 log(log(s)) + s+ k =
s

log2(s)
+ s+ k .

Here for an arbitrary ε > 0 there exists N , such that

k <
s

(1− ε) log(s)

for all x > N , whence, for any c > 0, the time complexity of the algorithm is less

than log(x) · (1 + c 1
log(log(x))). ¤

Practically, if we assume, that x has magnitude 21000, the algorithm can

compute ax in around 1235 operations in the worst case, instead of the original

2000. During the computation, we have to store 62 powers of a (k = 6).

Remark 7. A slight improvement can be achieved, if we precompute ai only

for odd i and we don’t use fix block size, but always extend to the next nonzero

digit of the expansion of x.

Remark 8. As history shows, there are several way to improve the general

algorithms assuming special conditions. Bos and Coster [2] with a detailed analy-

sis of vector addition chains improved the above method to the average of 605

operations for 512-digit exponents in contrast to the average of 630 operations of

the original method.

A note on speeding up exponentiation by precomputation 473

3. Speeding up by precomputation

In the remaining part of the paper, assume that the base a is fixed. Then

some preliminary computations can be made to decrease the number of necessary

operations after getting the input x. Suppose again, that we want to have general

methods, thus no shortcuts and particular tricks, only the given group operation

can be used.

Let R be the set of x’s, such that ax are known in advance and let

µ =
∑

x∈R

M(x) .

Then the computation of ay for an arbitrary y ∈ Z+ requires at least M(y) − µ

group operations. Unfortunately, this means that precomputation asymptotically

does not improve anything. However we should not forget, that the group A is

finite and thus the value of interesting x’s are bounded. Taking this in account,

the improvement can be quite considerable.

One can generalize the definition of addition chains to multiple base.

Again, let R be a finite set of integers. We say that the finite list L is an

addition chain of base R, if either Lk ∈ R or there exist 1 ≤ i, j < k not necessarily

different integers, such that Lk = Li+Lj for all the possible indices k. The length

of L is the number of elements of L which are not in R.

Suppose that we want to compute the xth power of a and we want to use

at most k > 0 group operation for our purposes. How many powers should be

computed and stored in advance?

Let Rk(x) ⊆ N, such that for every y ≤ x there exists an addition chain of

length k based on Rk(x) which contains y.

Clearly Rk(x) is not unique, but there exists a minimal one, with the least

elements – which is still not necessarily unique. Let rk(x) be the cardinality of

this minimal base set.

Now we try to find a lower bound for rk(x).

Proof of Theorem 1. Without loss of generality, we may assume, that

a generalized addition chain L = [L1, L2, . . . , L2k] of length k is such, that

L1, . . . , Lk ∈ Rk(x). The remaining values in the list can be represented by

pairs of integers, expressing which two of the previous members were added to

obtain the actual one. If Li = Lj +Lm, then the representing pair is (j,m). Here

j,m < i should hold.

Let P = [P1, . . . , Pk] denote this list of pairs. Clearly, if Pi = (j,m) then

1 ≤ j, m < k + i, for all i = 1, . . . , k.

474 Tamás Herendi

Let R be a set of integers of cardinality r. Similarly as in the proof of Lem-

ma 1, denote by T the set of integers, which can be computed from the members

of R using at most k additions and let t = card(T). Denote by l the number of

different addition chains of length k with base R, by p the number of different list

of pairs P corresponding to addition chains of length k.

Since every addition chain contains k computed values, thus t < k · l.
The first half [L1, . . . , Lk] of an addition chain can be represented by a selec-

tion of k elements from R, while the second half [Lk+1, . . . , L2k] can be described

by a list of pairs P . Hence l <
(
r
k

) · p.
For any pair Pi from P we can have

(
k+i
2

)
different value, due to repetition

in the pair. This implies

p =

(
k + 1

2

)
·
(
k + 2

2

)
· · · · ·

(
2k − 1

2

)
=

1

2k
(2k − 2)!

(k − 1)!

(2k − 1)!

k!

=
1

2k
k

2k − 1

(
(2k − 1)!

k!

)2

.

Substituting the above inequalities successively into the others, we get

t < k · l < k ·
(
r

k

)
· p = k ·

(
r

k

)
· 1

2k
k

2k − 1

(
(2k − 1)!

k!

)2

= k · 1

2k
k

2k − 1

r!

k!(r − k)!
·
(
(2k − 1)!

k!

)2

=
k

k

1

2k
k

2k − 1
· r!

(k − 1)!(r − k)!
· (2k − 1)!

k!

(2k − 1)!

k!

=
1

2k
k

2k − 1
· r!

(r − k)!
·
(
2k − 1

k

)
(2k − 1)!

k!

<
1

2k
k

2k − 1
·
(
2k − 1

k

)
(2k − 1)!

k!
· rk

=
1

2k
k

2k − 1
·
(
2k − 1

k

)
1

2k

2k∏

i=k+1

i · rk

=
1

2k+1

1

2k − 1
·
(
2k − 1

k

) 2k∏

i=k+1

i · rk .

Taking the kth root of both side we get

k
√
t <

1

2
k+1
k

1
k
√
2k − 1

· k

√(
2k − 1

k

)
k

√√√√
2k∏

i=k+1

i · r.

A note on speeding up exponentiation by precomputation 475

Here
1

2
k+1
k

<
1

2
,

1
k
√
2k − 1

< 1,

by the Stirling formula

k

√(
2k − 1

k

)
' 4

(actually < 4 is true) and by the relation between geometric and arithmetic means

k

√√√√
2k∏

i=k+1

i <
1

k

2k∑

i=k+1

i =
3k + 1

2
.

Hence we get
k
√
t

3k + 1
< r.

Returning to our original problem, let tk(x) be the number of computable

integers from the set Rk(x) using at most k addition.

Clearly x < tk(x), whence

k
√
x

3k + 1
< rk(x). ¤

Since we have used very rough estimates at several points, a much better

lower bound can be found.

Example 9. A simple, but for small k, close to minimal choice for Rk(x), if

we assume, that during computations steps, we simply add together the members

of Rk(x). Then the base set can be chosen in the following way:

Denote by xk = [k+1
√
x].

Rk(x) = {1, 2, . . . , xk − 1,

1 · xk, 2 · xk, . . . , (xk − 1) · xk,

1 · x2
k, 2 · x2

k, . . . , (xk − 1) · x2
k,

. . .

1 · xk
k, 2 · xk

k, . . . , (xk − 1) · xk
k}.

Actually, Rk(x) can be used as the base xk representation of the numbers

not exceeding x. Although Rk(x) has cardinality (k + 1) · k+1
√
x, but it has the

big advantage, that determining the necessary members we have to use for the

computation is very fast.

476 Tamás Herendi

Example 10. One can improve the above choice of the base set by the

following idea:

Let xk = 4 · [14 · k+1
√
x
]
+ 2.

Assume, that y ≤ x. Then using a modified digit expansion

y =

k∑

i=0

ηi · xi
k + 2 ·

k∑

i=0

ξi · xi
k ,

where ηi, ξi, ξk ∈ {0, 1, 3, 5, . . . , xk − 1} for i = 0, . . . , k − 1

and ηk ∈ {−1, 0, 1, 3, 5, . . . , xk − 1}, furthermore ηi · ξi = 0 for all i = 0, . . . , k.

For instance, let xk = 10, y = 41904.

Since the last digit is even, thus η0 = 0, ξ0 = 7 and we have a carry c0 = −1.

The next digit is 0, with the carry we get η1 = 9, ξ1 = 0 and c1 = −1.

The next digit is 9, with the carry we get 8, whence η2 = 0, ξ2 = 9 and c2 = −1.

The next digit is 1, with the carry −1 we get 0, thus η3 = 0, ξ3 = 0 and c3 = 0.

Finally, the last digit of y is 4 with 0 carry, whence η4 = 0, ξ4 = 7 and c4 = −1.

Since there is a −1 carry remained, thus ξ5 = −1.

All together, y = 90 + 2 · (−1)70907.

With this representation, one can reduce the necessary storage capacity at the

cost of one extra operation for a squaring.

Thus the base set

Rk(x) = {1, 3, . . . , xk − 1,

1 · xk, 3 · xk, . . . , (xk − 1) · xk,

1 · x2
k, 3 · x2

k, . . . , (xk − 1) · x2
k,

. . .

1 · xk
k, 3 · xk

k, . . . , (xk − 1) · xk
k,

− 1 · xk+1
k }.

Here Rk(x) has cardinality
1
2 · (k + 1) · k+1

√
x

Brickell, Gordon, McCurley and Wilson [1] has improved a version

of the windowing powering method, by collecting the same coefficients and do the

exponentiation with proper data flow.

They achieved an algorithm, which computes ax with

k = (1 + o(1))
log(x)

log(log(x))

A note on speeding up exponentiation by precomputation 477

group operations, while it uses

r = O

(
log(x)

log(log(x))

)

previously computed powers.

They give a sample and show that they can compute ax if x is in the range

[1, 2512] with 63 operations and r = 16320.

Using the idea of our Example 10 choosing the parameters correspondingly

to their example, we get x = 2512, k = 63, xk = 282 and r = 8883. It means, that

if we want to use the same range of exponents and the same amount of operations,

our method need to precompute and store approximately the half of the powers

of their method.

With another parameter choice, x = 2512, k = 55, xk = 634 and r = 17435.

This yields, that with 7% more storage we can reduce the number of multiplica-

tions by 12%. Finally we present a table of the relations between the different

parameters of our method:

x

k 2512 21024 22048

32 xk = 65538 – –

r = 1048608 – –

48 xk = 1626 xk = 2642246 –

r = 39024 r = 63413904 –

64 xk = 258 xk = 65538 –

r = 8256 r = 2097216 –

96 xk = 42 xk = 1626 xk = 2642246

r = 2016 r = 78048 r = 126827808

128 xk = 18 xk = 258 xk = 65538

r = 1152 r = 16512 r = 4194432

192 xk = 10 xk = 42 xk = 1626

r = 960 r = 4032 r = 156096

478 T. Herendi : A note on speeding up exponentiation by precomputation

References

[1] E. F. Brickell, D. M. Gordon, K. S. McCurley and D. B. Wilson, Fast exponentiation
with precomputation: Algoritmhs and lower bounds, Advances in Cryptology – Proceedings
of Eurocrypt’92, Lecture Notes in Computer Science 658 (1993), 200–207.

[2] J. Bos and M. Coster, Addition Chain Heuristics, Advances in Cryptology - CRYPTO 89
Proceedings, Lecture Notes in Computer Science 435 (1990), 400–407.

[3] J. Demetrovics, A. Pethő and L. Rónyai, On ±1-representations of integers, Acta Cyber-
netica 14 (1999), 27–36.

[4] C. Heuberger, Minimal expansions in redundant number systems and shortest paths in
graphs, Computing 63 (1999), 341–349.

[5] G. A. Jensen and E. Wattel, Efficient calculation of powers in a semigroup, Math. Cent-
rum, Amsterdam, Afd. Zuivere Wisk. ZW 1968-001 (1968), 1–18.

[6] D. E. Knuth, The Art of Computer Programming, Vol. 2 Seminumerical Algorithms, Ad-
dison-Wesley, 1997.

[7] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Crypto-
graphy, CRC Press, Boca Raton, New York, London, Tokyo, 1997.

[8] A. Scholz, On addition chains, Jahresbericht der deutschen Mathematiker-Vereinigung,
class II 47 (1937), 41–42.

TAMÁS HERENDI

FACULTY OF INFORMATICS

UNIVERSITY OF DEBRECEN

H-4010 DEBRECEN, P.O. BOX 12

HUNGARY

E-mail: herendi@inf.unideb.hu

(Received February 28, 2011)

