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Abstract. Alon’s combinatorial Nullstellensatz and in particular the resulting

nonvanishing criterion is one of the most powerful algebraic tools in combinatorics,

with many important applications. The nonvanishing theorem has been extended in

two directions. The first and the third named authors proved a version allowing mul-

tiple points. MichaÃlek established a variant which is valid over arbitrary commutative

rings, not merely over subrings of fields. In this paper we give new proofs of the latter

two results and provide a common generalization of them. As an application, we prove

extensions of the theorem of Alon and Füredi on hyperplane coverings of discrete cubes.

1. Introduction

Alon’s combinatorial Nullstellensatz (Theorem 1.1 from [2]) and the resulting

nonvanishing criterion (Theorem 1.2 from [2]) is one of the most powerful algebraic

tools in combinatorics. It has several beautiful and strong applications, see [7],

[9], [10], [11], [12], [15], [17] for some recent examples.

Let F be a field, S1, S2, . . . , Sn be finite nonempty subsets of F. Let F [x] =
F [x1, . . . , xn] stand for the ring of polynomials over F in variables x1, . . . , xn.
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Alon’s theorem is a specialized, precise version of the Hilbertsche Nullstellensatz

for the ideal I(S) of all polynomial functions vanishing on the set S = S1 × S2 ×
· · · × Sn ⊆ Fn, and for the basis f1, f2, . . . , fn of I(S), where

fi = fi(xi) =
∏

s∈Si

(xi − s) ∈ F [x]

for i = 1, . . . , n. From this a simple and widely applicable nonvanishing criterion

(Theorem 1.2 in [2]) has been deduced. It provides a sufficient condition for a

polynomial f ∈ F [x] for not vanishing everywhere on S.

Herewith we consider extensions of the latter result in two directions. Before

formulating these, we need first some notation and definitions. Let N denote the

set of nonnegative integers, and let n be a fixed positive integer. Throughout

the paper R will denote a commutative ring (with 1, as usual), and F stands

for a field. Vectors of length n are denoted by boldface letters, for example s =

(s1, . . . , sn) ∈ Rn stands for points in the space Rn. For vectors a,b ∈ Nn, the

relation a ≥ b etc. means that the relation holds at every component. We use

the same notation for constant vectors. e.g. 0 = (0, 0, . . . , 0) or 1 = (1, 1, . . . , 1).

For w ∈ Nn, we write xw for the monomial xw1
1 . . . xwn

n ∈ R [x1, . . . , xn]. If

s ∈ Rn, then (x− s)w stands for the polynomial (x1 − s1)
w1 . . . (xn − sn)

wn .

It is well known that for an arbitrary s ∈ Rn we can express a polynomial

f(x) ∈ R [x1, . . . , xn] as

f(x) =
∑

u∈Nn

fu(s)(x− s)u, (1)

where the coefficients fu(s) ∈ R are uniquely determined by f , u and s. In

particular we have f0(s) = f(s) for all s ∈ Rn. Observe that if u1 + · · · + un ≥
deg f , then fu = fu(s) does not depend on s.

Suppose now that S1, S2, . . . , Sn are nonempty finite subsets of R, and as-

sume further that we have a positive integer multiplicity mi(s) attached to every

element s ∈ Si. This way we can view the pair (Si,mi) as a multiset which

contains the element s ∈ Si precisely mi(s) times. We shall consider the sum

di = d(Si) :=
∑

s∈Si
mi(s) as the size of the multiset (Si,mi). We put S =

S1 × S2 × · · ·Sn. For an element s = (s1, . . . , sn) ∈ S we set the multiplicity

vector m(s) as (m1(s1), . . . ,mn(sn)), and write |m(s)| = m1(s1) + · · ·+mn(sn).

We formulate first a version of Alon’s powerful nonvanishing theorem (The-

orem 1.2 in [2]) for multiple points over fields. From this one can obtain Alon’s

result by setting mi(s) = 1 identically.
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Theorem 1. Let F be a field, f = f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a poly-

nomial of degree
∑n

i=1 ti, where each ti is a nonnegative integer. Assume, that

the coefficient in f of the monomial xt1
1 xt2

2 · · ·xtn
n is nonzero. Suppose furt-

her that (S1,m1), (S2,m2), . . . , (Sn,mn) are multisets of F such that for the

size di of (Si,mi) we have di > ti (i = 1, . . . , n). Then there exists a point

s = (s1, . . . , sn) ∈ S1 × · · · × Sn and an exponent vector u = (u1, . . . , un) with

ui < mi(si) for each i, such that fu(s) 6= 0.

Theorem 1 was first proved in [13]. In another direction, over an arbitrary

commutative ring R MichaÃlek proved the following extension of the nonvanish-

ing theorem:

Theorem 2. Let R be a commutative ring, and let f(x) be a polynomial

in R [x1, . . . , xn]. Suppose that the degree deg(g) of f is
∑n

i=1 ti, where ti is a

nonnegative integer, and suppose that the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Suppose further that S1, . . . , Sn are subsets of R with |Si| > ti, and with the

property that if s 6= s∗ ∈ Si, then s− s∗ is a unit in R. Then there exists a vector

s ∈ S = S1 × · · · × Sn, such that

f(s) 6= 0.

In the case R = F, when we work over a field, the above result specializes to

Alon’s nonvanishing theorem; note that if R is a field, then s−s∗ is always a unit,

whenever s and s∗ are different. We give two new proofs of Theorem 2. The first

one will be on the basis of an identity obtained from an interpolation argument.

The second proof follows closely the original line of reasoning by Alon. In fact, for

a subset S of Rn let us denote the set of polynomials from R [x1, . . . , xn] vanishing

at all s ∈ S by I(S). It is easy to see that I(S) is an ideal of R [x1, . . . , xn]. Now

Theorem 2 will be a simple consequence of the following result, which can be

considered as an extension of Alon’s Nullstellensatz.

Theorem 3. Let R be a commutative ring, and let f(x) be a polynomial

from R [x1, . . . , xn]. Let S1, . . . , Sn be nonempty finite subsets of R with the

property that if s 6= s∗ ∈ Si, then s − s∗ is a unit in R, S = S1 × · · · × Sn and

define gi(xi) =
∏

s∈Si
(xi − s). Then for every polynomial f(x) ∈ R [x1, . . . , xn]

there are polynomials h1, . . . , hn, r ∈ R [x1, . . . , xn] such that deg hi ≤ deg f−|Si|
for all i, the degree of r is less then |Si| in every xi, for which

f(x) = r(x) +

n∑

i=1

hi(x)gi(xi).
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Moreover, f ∈ I(S) if and only if r is identically zero, hence g1(x1), . . . , gn(xn) is

a basis of I(S).

We have the following common generalization of Theorems 1 and 2:

Theorem 4. Let R be a ring, f = f(x1, . . . , xn) ∈ R[x1, . . . , xn] be a poly-

nomial of degree
∑n

i=1 ti, where each ti is a nonnegative integer. Assume, that

the coefficient in f of the monomial xt1
1 xt2

2 · · ·xtn
n is nonzero. Suppose further

that (S1,m1), (S2,m2), . . . , (Sn,mn) are multisets of R such that for the size di
of (Si,mi) we have di > ti (i = 1, . . . , n), and for each i any nonzero element s−s∗

from Si−Si is a unit in R. Then there exists a point s = (s1, . . . , sn) ∈ S1×· · ·×Sn

and an exponent vector u = (u1, . . . , un) with ui < mi(si) for each i, such that

fu(s) 6= 0.

In the next section we prove Theorem 4, which implies Theorems 1, and 2.

The proof will be based on an argument extending univariate Hermite interpo-

lation to our setting. In Section 3 we give an alternative proof for Theorem 2,

which will follow from Theorem 3. This line of reasoning is an adaptation of

Alon’s original proofs from [2]. In Section 4 we give two applications. These

will be extensions of a theorem of Alon and Füredi on almost covering a discrete

hypercube by hyperplanes. In Section 5 some concluding remarks are given.

2. Proof of Theorem 4

Lemma 5. Let (S,m) be a nonempty multiset in a commutative ring R such

that all nonzero elements s−s∗ in S−S are units, and let g(x) =
∏

s∈S(x−s)m(s).

For all polynomials f(x) ∈ R[x], the following statements are equivalent:

(a) fu(s) = 0 for every s ∈ S and 0 ≤ u < m(s);

(b) the polynomial (x− s)m(s) divides f(x) for every s ∈ S;

(c) g(x) divides f(x).

Proof. The relations (a)⇔(b) and (c)⇒(b) are trivial. To prove (a, b)⇒(c),

apply an induction on |S|. The initial case |S| = 1 is trivial.

Let n ≥ 2 and assume the statement of the Lemma for |S| = n− 1. Choose

an s0 ∈ S arbitrarily. By (b), there is a polynomial f∗ ∈ R[x] such that f(x) =

(x− s0)
m(s0)f∗(x). Let g∗(x) =

∏
s∈S\{s0}(x− s)m(s). We have to prove that g∗

divides f∗.
First we show that f∗

u(s) = 0 for every s ∈ S \ {s0} and 0 ≤ u < m(s).

Suppose the contrary, and take a pair (s, u) for which f∗
u(s) 6= 0 and u is minimal,
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i.e. f∗
0 (s) = f∗

1 (s) = . . . = f∗
u−1(s) = 0. Then

fu(s) =
(
(x− s0)

m(s0)f∗(x)
)
u
(s) =

u∑
v=0

(
(x− s0)

m(s0)
)
v
(s) · f∗

u−v(s)

= (s− s0)
m(s)f∗

u(s).

Since s− s0 is a unit in R and f∗
u(s) 6= 0, this contradicts fu(s) = 0.

So we have f∗
u(s) = 0 for every s ∈ S \ {s0} and 0 ≤ u < m(s). By the

induction hypothesis, f∗ is divisible by g∗. ¤

Lemma 6. Let (S,m) be a nonempty multiset in a commutative ring R such

that all nonzero elements s− s∗ in S − S are units, and let s0 ∈ S and 0 ≤ u0 <

m(s0). Then there exists a polynomial h(s0,u0)(x) ∈ R[x] with deg h(s0,u0) < d(S)

such that for every s ∈ S and 0 ≤ u < m(s) we have

h(s0,u0)
u (s) =

{
1 if s = s0 and u = u0;

0 otherwise.

Proof. For every v = 0, 1, . . . ,m(s0)− 1 let

f (v)(x) = (x− s0)
v

∏

s∈S\{s0}

(
x− s

s0 − s

)m(s)

.

These auxiliary polynomials have the following obvious properties:

• For every s ∈ S \ {s0} and every v, the polynomial f (v)(x) is divisible by

(x− s)m(s), so f
(v)
u (s) = 0 for all 0 ≤ u < m(s).

• For every 0≤u < v, since f (v)(x) is divisible by (x−s0)
v, we have f

(v)
u (s0)= 0.

• For every v we have f
(v)
v (s0) = 1.

Now we can construct h
(s0,u0)
u (s) as a linear combination of the auxiliary

polynomials, inductively: if h(s0,u0+1), . . . , h(s0,m(s0)−1) are already defined then

let

h(s0,u0)(x) = f (u0)(x)−
∑

u0<u<m(s0)

f (u0)
u (s0) · h(s0,u)(x). ¤

Lemma 7 (Hermite interpolation). Let (S,m) be a multiset in a commuta-

tive ring R such that all nonzero elements s − s∗ in S − S are units. For each

s ∈ S and 0 ≤ u < m(s), let ys,u be an arbitrary element in R. Then

(a) there exists a unique polynomial f(s) ∈ R[x], with deg f < d(S), satisfying

fu(s) = ys,u for every pair (s, u);
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(b) this polynomial can be constructed as

f =
∑

s∈S

∑

u<m(s)

ys,uh
(s,u).

Proof. Let f =
∑

s∈S

∑
u<m(s) ys,uh

(s,u). For every s ∈ S and u < m(s)

we have

fu(s) =
∑

r∈S

∑

v<m(r)

yr,vh
(r,v)
u (s) =

∑

r∈S

∑

v<m(r)

{
1 if r = s and v = u

0 otherwise

}
yr,v = ys,u

so the polynomial f satisfies the requested property.

For the uniqueness, suppose that there exists another polynomial f∗ with the

same property. Then, for all s ∈ S and u < m(s) we have (f − f∗)u(s) = fu(s)−
f∗
u(s) = 0. By Lemma 5, this implies that f − f∗ is divisible by

∏
s∈S(x− s)m(s).

Since the degree of the latter polynomial is d(S) and its leading coefficient is 1,

this contradicts deg(f − f∗) < d(S). ¤

Lemma 8. Let (S,m) be a multiset in a commutative ring R such that all

nonzero elements s− s∗ in S−S are units, and let t = d(S)− 1. Then there exist

elements α(s, u) ∈ R for all s ∈ S and 0 ≤ u < m(s) with the following property:

for every ` ≥ 0,

∑

s∈S

∑

0≤u<m(s)

α(s, u)

(
`

u

)
s`−u =





0 if ` < t;

1 if ` = t;

∗ if ` > t.

Here the symbol ∗ means “undetermined”.)

Proof. Take the polynomials h(s,u)(x) provided by Lemma 6, and let α(s, u)

be the coefficient of xt in the polynomial h(s,u)(x).

For every s ∈ S we have

x` =
(
s+ (x− s)

)`
=

∞∑
u=0

(
`

u

)
s`−u(x− s)u,

and therefore (
x`
)
u
(s) =

(
`

u

)
s`−u

for every u ≥ 0. (For u > ` we have
(
`
u

)
= 0 and the negative exponent in s`−u

does not matter.)
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Now take an arbitrary ` < d(S), and apply Lemma 7 to the values ys,u =(
`
u

)
s`−u. From these values, Lemma 7 reconstructs the polynomial x`:

∑

s∈S

∑

u<m(s)

(
`

u

)
s`−uh(s,u)(x) = x`.

Comparing the coefficients of xt, we get

∑

s∈S

∑

u<m(s)

α(s, u)

(
`

u

)
s`−u

{
0 if ` < t;

1 if ` = t.
¤

Proof of Theorem 4. Without loss of generality, we may assume that

ti = d(Si)− 1 for every i = 1, 2, . . . , n.

Expand f as f(x) =
∑

k ckx
k. For every s ∈ S, from

f(x) =
∑

k

ck
(
s+ (x− s)

)k
=

∑

k

ck
∑
u

(
n∏

i=1

(
ki
ui

)
ski−ui
i

)
(x− s)u

=
∑
u

(∑

k

ck

n∏

i=1

(
ki
ui

)
ski−ui
i

)
(x− s)u

we get

fu(s) =
∑

k

ck

n∏

i=1

(
ki
ui

)
ski−ui
i .

For each i, by Lemma 8, there exist elements αi(s, u) ∈ R for all s ∈ Si and

0 ≤ u < mi(s) such that

∑

s∈Si

∑

0≤u<mi(s)

αi(s, u)

(
`

u

)
s`−u =





0 if ` < ti;

1 if ` = ti;

∗ if ` > ti.

Now let α(s,u) =
∏n

i=1 αi(si, ui) and consider the following expression:

∑

s∈S

∑

u<m(s)

α(s,u)fu(s) =
∑

s∈S

∑

u<m(s)

(
n∏

i=1

αi(si, ui)

)∑

k

ck

n∏

i=1

(
ki
ui

)
ski−ui
i

=
∑

k

ck
∑

s1∈S1

∑

u1<m1(s1)

. . .
∑

sn∈Sn

∑

un<mn(sn)

n∏

i=1

(
αi(si, ui)

(
ki
ui

)
ski−ui
i

)
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=
∑

k

ck

n∏

i=1

( ∑

si∈Si

∑

ui<mi(si)

αi(si, ui)

(
ki
ui

)
ski−ui
i

)
=
∑

k

ck

n∏

i=1





0 if ki < ti
1 if ki = ti
∗ if ki > ti





.

Since deg f = t1 + . . .+ tn, the last product is zero except for k = t (when every

factor is 1). Therefore, we have

∑

s∈S

∑

u<m(s)

α(s,u)fu(s) = ct.

On the left-hand side, there stands a linear combination of the values fu(s). Since

ct 6= 0 on the right-hand side, there must be at least one nonzero among these

values. ¤

3. An alternative proof for Theorem 2

Here we intend to give a proof of Theorem 2 which follows closely the original

line of reasoning from Alon [2].

Proof of Theorem 3. We denote by V the R module of all functions from

S to R. V is a free R module,

rankRV = |S| =
n∏

i=1

di,

where |Si| = deg gi = di. In fact, for s ∈ S we denote by f(s) the S −→ R function

taking value 1 at s and 0 everywhere else in S. Then the set F = {f(s)| s ∈ S} is

a free generating set of V over R, and |F | = ∏n
i=1 di = |S|. Next we observe, that

every f(s) can be written as a polynomial from R [x1, . . . , xn], using interpolation.

For s = (s1, . . . , sn) ∈ S we have

f(s)(x) =

n∏

i=1

( ∏

α∈Si,α 6=si

(xi − α)(si − α)−1

)
.

Note that since si 6= α ∈ Si, the element si − α is a unit in R, hence the

definition of f(s)(x) makes sense. Consider the following set of monomials

M = {xw; wi ≤ di − 1, i = 1, . . . , n}.

Set G = {g1(x1), . . . , gn(xn)}. An arbitrary polynomial f from R [x1, . . . , xn]

can be reduced with G. This means that an occurrence of the monomial xdi
i is
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replaced by −(gi(xi)−xdi
i ) as long as it is possible. Note that this reduction does

not change f as a function on S. Clearly any f can be reduced into an R-linear

combination of monomials from M . In particular, the elements of F are reduced

this way into a collection of |S| polynomials which are independent over R. Using

also that |M | = |S|, we infer that M , as a set of functions from S to R, is also

linearly independent over R.

Now consider an arbitrary polynomial f from R [x1, . . . , xn], and reduce f

with G as much as possible. Denote the resulting (reduced) polynomial by r, which

is an R-linear combination of monomials from M . The fact that f reduces to r

means that there are polynomials h1, . . . , hn ∈ R [x1, . . . , xn] such that deg(hi) ≤
deg f − di for all i, the degree of r is less than di in every xi, and

f(x) = r(x) +

n∑

i=1

hi(x)gi(xi).

Because of the linear independence of the monomial functions from M , we have

that f ∈ I(S) if and only if r is the all zero linear combination. This concludes

the proof. ¤

We remark that the proof actually gives that G is a Gröbner basis of I(S)

with respect to an arbitrary term order on R [x1, . . . , xn]. For an introduction to

Gröbner bases the reader is referred to [1].

From Theorem 3 the original argument of Alon gives Theorem 2 quite simply.

Below we reproduce Alon’s proof for the convenience of the reader.

An alternative proof of Theorem 2. Clearly we may assume that

|Si| = ti + 1 for all i. Suppose that the result is false, i.e. f ∈ I(S), and de-

fine gi(xi) =
∏

s∈Si
(xi − s). By Theorem 3 there are polynomials h1, . . . , hn ∈

R [x1, . . . , xn] such that deg(hj) ≤
∑n

i=1 ti − deg(gj) for all j, for which

f =

n∑

i=1

higi.

Here the degree of higi is at most deg(f), and if there are any monomials

of degree deg(f) in it, then they are divisible by xti+1
i . It follows that the co-

efficient of
∏n

i=1 x
ti
i on the right hand side is zero. However by our assumption

the coefficient of
∏n

i=1 x
ti
i on the left hand side is nonzero, and this contradiction

completes the proof. ¤
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4. Two applications

We can extend a result of Alon and Füredi [4] on the covering of a discrete

cube by hyperplanes in the following way. (The original result is the special case

when every multiplicity is 1.)

Theorem 9. Let (S1,m1), . . . , (Sn,mn) be finite multisets from the field F.
Suppose that 0 ∈ Si, with mi(0) = 1 for every i, and H1, . . . , Hk are hyperplanes

in Fn such that every point s ∈ S \ {0} is covered by at least |m(s)| − n + 1

hyperplanes and the point 0 is not covered by any of the hyperplanes. Then

k ≥ d(S1) + d(S2) + · · ·+ d(Sn)− n.

Proof. Let `j(x) be a linear polynomial defining the hyperplane Hj , set

f(x) =
∏k

j=1 `j(x), and ti = d(Si)− 1.

Let

P (x) =

n∏

i=1

∏

s∈Si\{0}
(xi − s)mi(s)

and

F (x) = P (x)− P (0)

f(0)
f(x).

Note that we have f(0) 6= 0, because the hyperplanes do not cover 0. If the

statement is false, then the degree of F is t1 + t2 + · · · + tn and the coefficient

of xt1
1 · · ·xtn

n is 1. Theorem 1 applies with (S1,m1), . . . , (Sn,mn) and t1, . . . , tn:

there exists a vector s ∈ S, and an exponent vector u < m(s) such that Fu(s) 6= 0.

We observe that s cannot be 0, because F (0) = 0. Thus s must have at least one

nonzero coordinate, implying that Pu(s) = 0.

Moreover, as s is a nonzero vector, f(x) must vanish at s at least |m(s)|−n+1

times, implying that fu(s) = 0 (expand the product at s; for every term (x− s)v

obtained there will be an index j such that vj ≥ mj(sj)). These facts imply that

Fu(s) = 0, a contradiction. This finishes the proof. ¤

Next, as an application of Theorem 2, we present a generalization of The-

orem 6.3. from [2] to the Boolean cube over a commutative ring R. By a hy-

perplane H in Rn we understand the set of zeros of a polynomial of the form

a1x1 + · · ·+ anxn − b := (a,x)− b, where ai, b ∈ R.

Theorem 10. Let R be a commutative ring, and let H1, . . . ,Hm be hy-

perplanes in Rn such that H1, . . . ,Hm cover all the vertices of the unit cube

{0, 1}n ⊆ Rn, with the exception of 0. Let (ai,x)− bi be the polynomial defining

Hi. If
∏m

i=1 bi 6= 0, then m ≥ n.
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Proof. The proof is essentially the same as the one in [2]. Assume that the

assertion is false: m < n, and consider the polynomial

P (x) = (−1)n+m+1
m∏

j=1

bj

n∏

i=1

(xi − 1)−
m∏

i=1

[(ai,x)− bi].

The degree of this polynomial is clearly n, and the coefficient of
∏n

i=1 xi in P is

(−1)n+m+1
∏m

j=1 bj , which is nonzero by our assumption. By applying Theorem 2

to Si = {0, 1}, ti = 1, we obtain a point s ∈ {0, 1}n for which P (s) 6= 0. This

point is not the all zero vector, as P vanishes on 0. But otherwise (ai, s)− bi = 0

for some i (as s is covered by an Hi), implying that P does vanish on s, a

contradiction. ¤

Alon and Füredi have obtained the preceding statement for the case R = F,
using the original nonvanishing argument. If we put R = Zn for some square

free integer n ∈ N, then an application of the original nonvanishing theorem for a

suitable prime factor of n proves the statement. However, if n has square factors,

then Theorem 10 appears to give a new result.

5. Concluding remarks

Our interest in developing a version of the nonvanishing theorem for multisets

has grown out of an attempt to prove Snevily’s conjecture [16] in a particular

case.

Let G be a finite group of odd order and suppose that a1, . . . , ak ∈ G

are pairwise distinct and b1, . . . , bk ∈ G are pairwise distinct. Snevily’s Con-

jecture states that there is a permutation π of the indices 1, 2, . . . , k for which

a1bπ(1), a2bπ(2), . . . , akbπ(k) are pairwise distinct. The conjecture has been proved

for cyclic groups of prime order by Alon [3], for cyclic groups by Dasgupta,

Károlyi, Serra, and Szegedy [8] and recently for all commutative groups by

Arsovski [5]. Note that Alon’s proof, which is based on the Combinatorial

Nullstellensatz, allows one of the sequences a1, . . . , ak and b1, . . . , bk to contain

repeated elements when k < |G|.
Our approach was the following. Let N be a normal subgroup of G. We look

for the permutation to be applied to the factor group G/N first. Of course, in the

factor group, some of the cosets a1N, . . . , anN and b1N, . . . , bnN may coincide to

each other; it is even possible that a1N, . . . , anN all coincide and b1N, . . . , bnN

all coincide. So we must allow (aiN)(bπ(i)N) = (ajN)(bπ(j)N) in some cases.
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The idea is to allow (aiN)(bπ(i)N) = (ajN)(bπ(j)N) only in those cases, when

aiN = ajN and bπ(i)N = bπ(j)N holds. Suppose that we found such a permu-

tation π. If some classes (ai1N)(bπ(i1)N), (ai2N)(bπ(i2)N), . . . , (ai`N)(bπ(i`)N)

coincide, then the elements ai1 , . . . , ai` are all in the same coset cN , and similarly

bπ(i1), . . . , bπ(i`) are in the same coset Nd. Then we could apply Snevily’s Conjec-

ture inductively to the sequences c−1ai1 , . . . , c
−1ai` and bπ(i1)d

−1, . . . , bπ(i`)d
−1

which all lie in N . By the induction hypothesis, the values π(j1), . . . , π(j`) can be

permuted in such a way, that c−1ai1bπ(i1)d
−1, . . . , c−1ai`bπ(i`)d

−1 are pairwise dis-

tinct. Hence the elements ai1bπ(i1), . . . , ai`bπ(i`) are all in the coset (cd)N = cNd,

and they will be pairwise distinct.

If we choose N to be a maximal normal subgroup of G, then the order

|G/N | = p will be a prime (G is solvable, since |G| is odd). In this case we can

use the additive group of the prime field Fp and re-formulate the existence of the

desired permutation.

Conjecture 11. Suppose that k ≤ p, and a1, . . . , ak ∈ Fp and b1, . . . , bk ∈ Fp
are arbitrary elements. Then there is a permutation π of the indices 1, 2, . . . , k

with the following property: ai = aj and bπ(i) = bπ(j) holds whenever ai+ bπ(i) =

aj + bπ(j).

This conjecture would imply Snevily’s conjecture for all cases when k is not

greater than the smallest prime divisor of |G|.
To use the polynomial method to prove Conjecture 11 and similar statements,

it appears that one is required to handle multiple values in the sequences a1, . . . , ak
and b1, . . . , bk.

The requirements in Theorems 2 and 4 about the invertibility in R of the

differences s−s∗ can be somewhat relaxed. The theorems still hold if we assume,

instead of invertibility, that the multiplicative monoid D ⊂ R generated by the

differences s − s∗ and f(t1,...,tn) does not contain 0. In this case the map from

R to its ring of fractions D−1R lifts our proofs from D−1R to R (the reader is

referred to [6] for basic facts on rings of fractions). Actually, it suffices to assume

that a certain specific product from D is not zero.
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in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.

[2] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7–29.

[3] N. Alon, Additive Latin transversals, Israel J. Math. 117 (2000), 125–130.



Some extensions of Alon’s Nullstellensatz 519
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