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Primitive sets with large counting functions
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Dedicated to András Sárközy on his 70th birthday

Abstract. A set of positive integers is said to be primitive if no element of the

set is a multiple of another. If S is a primitive set and S(x) is the number of elements

of S not exceeding x, then a result of Erdős implies that
∫∞
2

(S(t)/t2 log t) dt converges.

We establish an approximate converse to this theorem, showing that if F satisfies some

mild conditions and
∫∞
2

(F (t)/t2 log t) dt converges, then there is a primitive set S with

S(x) ³ F (x).

1. Introduction

A set of positive integers is primitive if no element of the set is a multiple

of another. In the 1930s Chowla, Davenport, and Erdős independently studied a

special primitive set, namely the set of primitive nondeficient numbers (numbers n

such that the sum of the proper divisors of n is at least n, but no proper divisor of n

has this property), which probably inspired the generalization to general primitive

sets around the same time. Besicovitch [2] showed, perhaps unexpectedly, that

the upper asymptotic density of a primitive set can be arbitrarily close to 1/2;

his construction yields a set whose counting function is occasionally large but

usually extremely small. In [3], Erdős showed that the lower asymptotic density
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of a primitive set must be 0, and also that

sup
S primitive

∑

n∈S\{1}

1

n log n
< ∞. (1)

It is thought that this supremum is attained when S is the set of primes, but this

is still not known. Further references to results on primitive sets can be found

in [6], [10, Section 5.1], and [11, Section 5].

In this note we ask if there are primitive sets with consistently large counting

functions (as opposed to occasionally large counting functions, as in Besicovitch’s

example). We show that essentially any smoothly growing counting function that

is consistent with the necessary convergence (1) can be the order of magnitude

for the counting function of a primitive set.

A favorite problem of Erdős, as related in [5], is as follows: If 1 < b1 <

b2 < . . . is a sequence of numbers with
∑

1/bn log bn < ∞, must there exist a

primitive sequence 1 < a1 < a2 < . . . with an ¿ bn? One may interpret our

principal result as answering “yes” for smoothly growing sequences {bn}.
For a set S of natural numbers, let S(x) denote its counting function; that is,

S(x) is the number of members of S not exceending x. Let log1 x = max{1, log x}
and log` x = log1(log`−1 x) for every integer ` ≥ 2.

Theorem 1. Suppose that L(x) is defined, positive, and increasing for x ≥ 2,

that L(2x) ∼ L(x) as x → ∞, and that

∫ ∞

2

dt

t log t · L(t) < ∞. (2)

Then there is a primitive set S such that

S(x) ³ x

log2 x · log3 x · L(log2 x)
(3)

for all sufficiently large x. In particular, for any integer ` ≥ 3 and every real

number ε > 0, there exists a primitive set S such that

S(x) ³ x

log2 x · · · log`−1 x · (log` x)1+ε
(4)

for all sufficiently large x.

By taking L(x) = (log2 x) · · · (log`−3 x)(log`−2 x)
1+ε, we see that (3) implies

(4) for ` ≥ 4, and the case ` = 3 follows by taking L(x) = (log x)ε. By an argument

somewhat similar to our proof of Theorem 1, Ahlswede, Khachatrian, and
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Sárközy [1] gave a construction for the lower bound in (4) in the case ` = 3.

Like the paper [1], our proof depends heavily on a result of Sathe–Selberg on the

fine distribution of integers with a given number of prime factors.

It is not hard to see that the condition (2) is necessary in Theorem 1. Indeed,

suppose S is a set of natural numbers greater than 1 satisfying (3), and suppose

that
∑

n∈S\{1} 1/(n logn) converges (as it must, by equation (1), for primitive

sets S). Since
∑

n∈S\{1}

1

n logn
=

∫ ∞

2

S(t)

(
1

t2 log t
+

1

t2 log2 t

)
dt,

it follows that ∫ ∞

2

S(t)

t2 log t
dt < ∞.

Then (3) implies that
∫ ∞

2

dt

t log t · log2 t · log3 t · L(log2 t)
dt < ∞.

Via a change of variables, we obtain (2).

Another question one might consider is what conditions on the distribution

of a set A of natural numbers forces A to have a large primitive subset. It is not

too difficult to see that if an infinite set A contains no primitive subset of size k,

then A(x) ¿ k log x. Indeed, if b1 < · · · < bk are any k consecutive elements

in A, that they are not primitive forces some bi | bj for 1 ≤ i < j ≤ k, so that

bk/b1 ≥ 2. On the other hand, the set A = {m2j : m < 2k − 1, j ≥ 0} has no

primitive subset of size k and A(x) À k log x.

At the other extreme, it is also not difficult to see that if A has positive

upper density, then it contains a primitive subset also with positive upper density.

Indeed, any integer subset of a dyadic interval [x, 2x) is primitive, and a set

with positive upper density must contain a fixed positive proportion δ of each

dyadic interval [xi, 2xi) for some unbounded sequence {xi}. The Besicovitch

argument then goes over to show that A contains a primitive subset of upper

density arbitrarily close to δ/2.

We address this subset question for a set of “intermediate” density, namely

it has density 0, but an infinite reciprocal sum. We prove the following result.

Theorem 2. There is a set A of natural numbers of asymptotic density 0

satisfying ∑

a∈A\{1}

1

a log a
< ∞ and

∑

a∈A

1

a
= ∞, (5)
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such that for any primitive set S contained in A we have

∑

s∈S

1

s
< ∞. (6)

In particular, no primitive subset ofA has positive relative lower density inA,

despite the counting function of A being small enough to allow the possibility.

The set A that we exhibit has the property that there is a primitive subset of

positive relative upper density, so the following problem is perhaps interesting:

Is there a set A with infinite reciprocal sum such that any primitive subset has

relative density 0 in A? Maybe the Besicovitch construction will show such a set

A does not exist.

2. Constructing primitive sets from a sequence of primes

Let p1 < p2 < · · · be any infinite sequence of primes such that

∞∑

j=1

1

pj
<

1

2
.

We need this sequence not to grow too quickly; for now we make only the rest-

riction pj ¿ j2.

Using the usual notation Ω(n) for the number of prime factors of n counted

with multiplicity, we define for any positive integer k

Sk = {n ∈ N : Ω(n) = k, pk | n, (p1 · · · pk−1, n) = 1},

and we set

S =

∞⋃

k=1

Sk.

We prove two results about S: the first is that S is primitive and the second is a

lower bound for S(x) (see Proposition 6 below).

Lemma 3. The set S is primitive.

Proof. Note that if m and n are distinct positive integers and m divides n,

then Ω(m) < Ω(n). Therefore if S were not primitive, then there would exist

positive integers j < k and integers m ∈ Sj and n ∈ Sk such that m | n. However,
then pj would divide m but not n, a contradiction. (Indeed, S is an example of

a homogeneous set, in the terminology of [12].) ¤
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Let σj(x) denote the number of positive integers n ≤ x such that Ω(n) = j.

Lemma 4 (Sathe–Selberg). For any positive integer j ≤ b 3
2 log2 xc,

σj(x) = Hj(x)

(
1 +O

(
1

log2 x

))

where

Hj(x) = G

(
j − 1

log log x

)
x

log x

(log log x)j−1

(j − 1)!

and

G(z) =
1

Γ(z + 1)

∏
p

(
1− z

p

)−1(
1− 1

p

)z

.

For a proof, see [8, Theorem 7.19].

Lemma 5. Let x be a sufficiently large real number. For any integer k ∈[
2, 3

2 log2 x
]
,

Sk(x) ³ x

log x

(log log x)k−2

(k − 2)!

1

pk
,

where the implied constants are absolute.

Proof. The result follows immediately from the prime number theorem in

the case k = 2, so assume that k ≥ 3. Since every element of Sk(x) is divisible

by pk and is coprime to p1 . . . pk−1, we have the inequalities

σk−1

(
x

pk

)
≥ Sk(x) ≥ σk−1

(
x

pk

)
−

k−1∑

j=1

σk−2

(
x

pjpk

)
.

By Lemma 4, this becomes

Hk−1

(
x

pk

)(
1 +O

(
1

log2(x/pk)

))
≥ Sk(x)

≥

Hk−1

(
x

pk

)
−

k−1∑

j=1

Hk−2

(
x

pjpk

)


(
1 +O

(
1

log2(x/pjpk)

))
.

Because k ¿ log2 x and pj ¿ j2, each occurrence of log(x/pk) or log(x/pjpk) can

be rewritten as (log x)(1+O(1/ log2 x)), and similarly log2(x/pk) and log2(x/pjpk)
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can be rewritten as (log2 x)(1 +O(1/ log x)). In addition, the expressions

G((k − 2)/ log2(x/pk)) and G((k − 3)/ log2(x/pjpk)) can be rewritten as

G

(
k − 2

log2 x
+O

(
1

log2 x

))
= G

(
k − 2

log2 x

)(
1 +O

(
1

log2 x

))
,

since logG(z) is analytic and hence has a bounded first derivative in a neighbor-

hood of the interval [0, 3/2]. Therefore

Hk−1

(
x

pk

)(
1 +O

(
1

log2 x

))
≥ Sk(x)

≥ Hk−1

(
x

pk

)
1− k − 3

log2 x

k−1∑

j=1

1

pj




(
1 +O

(
1

log2 x

))
.

Since the sum is less than 1
2 , and since G(z) is bounded away from 0 and ∞ on

the interval [0, 3/2], this becomes

Sk(x) ³ Hk−1

(
x

pk

)
³ x

log x

(log log x)k−2

(k − 2)!

1

pk

as claimed. ¤

Proposition 6. For x ≥ p1, we have x/pB À S(x) À x/pB′ , where B =

B(x) = b 1
2 log2 xc and B′ = B′(x) = b 3

2 log2 xc.
Proof. Since S =

⋃∞
k=1 Sk is a disjoint union, we have by Lemma 5,

S(x) ≥
B′∑

k=2

Sk(x) À
B′∑

k=2

x

log x

(log2 x)
k−2

(k − 2)!

1

pk
≥ x

log x

1

pB′

B′∑

k=2

(log2 x)
k−2

(k − 2)!
À x

pB′
,

where we used the inequality
byc∑

j=0

yj

j!
À ey

(which follows from [9, equation 1.10] with β = 0) for the last step. For the upper

bound, we have

S(x) ≤
∞∑

k=1

Sk(x) ≤
B′∑

k=B+1

Sk(x) +
∑

n≤x
Ω(n)≤B

1 +
∑

n≤x
Ω(n)>B′

1.
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There is a positive constant c such that the last two sums here are O(x/(log x)c).

Indeed, Ω(n) ≤ B implies that ω(n) ≤ B, where ω counts the number of distinct

prime divisors, so the estimate for Ω(n) ≤ B follows from the Hardy–Ramanujan

inequality (see [4, Proposition 3]). If Ω(n) > B′, a similar estimate holds using

the Hardy–Ramanujan inequality plus an estimate for those n with Ω(n)− ω(n)

large, or more directly from [7, Lemma 13].

By Lemma 5,

B′∑

k=B+1

Sk(x) ¿
B′∑

k=B+1

x

log x

(log2 x)
k−2

(k − 2)!

1

pB
≤ x

pB

∞∑

j=0

(log2 x)
j

j! log x
=

x

pB
.

Since pB ≤ pB′ = O(B′2) = O((log2 x)
2), sets of size O(x/(log x)c) are negligible,

and our result follows. ¤

3. Proof of Theorem 1

Lemma 7. Suppose that L(x) is defined, positive, and increasing for x ≥ 2

and that L(2x) ∼ L(x) as x → ∞. Then L(x) ¿ε x
ε for any ε > 0.

Proof. Given ε > 0, we need to show that L(x)/xε is bounded. Since

L(2x) ∼ L(x), we may choose x1 such that L(2x) < (1 + ε log 2)L(x) for all

x ≥ x1. Define Mu = maxu≤x≤2u L(x)/x
ε. Then for any u ≥ x1,

M2u = max
2u≤x≤4u

L(x)

xε
= max

u≤y≤2u

L(2y)

(2y)ε
<

1 + ε log 2

2ε
max

u≤y≤2u

L(y)

yε
< 1 ·Mu,

since 2ε > 1 + ε log 2. Therefore Mx1 > M2x1 > M4x1 > · · · , and so L(x)/xε is

bounded by Mx1 on [x1,∞). Since it is clearly bounded by L(x1) on [2, x1], the

lemma is established. ¤

Proposition 8. Suppose that L(x) is defined, positive, and increasing for

x ≥ 2, that L(2x) ∼ L(x) as x → ∞, and that

∫ ∞

2

dt

t log t · L(t) < ∞.

Then there is a sequence p1 < p2 < · · · of primes with
∑∞

k=1 1/pk < 1/2 and

pk ∼ k log k · L(k) as k → ∞.
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Proof. Choosing y0 so that L(y) ≥ 1 holds for all y ≥ y0, define

qk =

{
the k th prime, if k < y0,

the bkL(k)cth prime, if k ≥ y0.

Then {qk} is increasing since (k + 1)L(k + 1) ≥ (k + 1)L(k) ≥ kL(k) + 1 for

k ≥ y0, so that b(k + 1)L(k + 1)c > bkL(k)c. By the prime number theorem,

when k → ∞ we have

qk ∼ bkL(k)c logbkL(k)c ∼ kL(k)(log k + logL(k)) ∼ kL(k) log k,

where the last asymptotic equality used Lemma 7. Further,

∑

k≥y0+1

1

qk
¿

∑

k≥y0+1

1

k log k · L(k) <

∫ ∞

y0

dt

t log t · L(t)

which converges; consequently, there is some nonnegative integer k0 such that∑
k>k0

1/qk < 1/2. Then the sequence {pk} defined by pk = qk0+k has the

required properties. ¤

Proof of Theorem 1. Note that if c > 0 is fixed,

pbc log2 xc ∼ c log2 x · log3 x · L(c log2 x
) ∼ c log2 x · log3 x · L(log2 x)

by the slowly varying property of L. Applying this with c = 1
2 and c = 3

2 , together

with Proposition 6, proves Theorem 1. ¤

4. Proof of Theorem 2

For every positive integer j, define

Aj =
{
a ∈ N : 22

j

< a ≤ 22
j+1

, 2j ‖ a
}
,

and define A =
⋃∞

j=1 Aj (a disjoint union). It is clear that A(x) ³ x/ log x, so

that A has density 0 and the two assertions in (5) hold. It remains to show that

if S is a primitive subset of A, then (6) holds.

Let S ⊂ A be primitive. For each natural number s, define s◦ to be the

largest odd divisor of s, and define S◦ = {s◦ : s ∈ S}.
Lemma 9. If s1, s2 ∈ S are distinct, then s◦1 - s◦2. In particular, S◦ is also

primitive, and the map s 7→ s◦ is a bijection between S and S◦.
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Proof. Suppose, for the sake of contradiction, that s◦1 | s◦2. Choose j1, j2 ∈N
so that s1 ∈ Aj1 and s2 ∈ Aj2 . Since s1 = 2j1s◦1 and s2 = 2j2s◦2, the fact that

s1 - s2 (by primitivity of S) forces j1 ≥ j2 + 1. But then

s◦1 =
s1
2j1

> 22
j1−j1

and

s◦2 =
s2
2j2

≤ 22
j2+1−j2 ≤ 22

j1−(j1−1),

since the expression 2k− (k−1) is an increasing function for k ≥ 1. In particular,

s◦2 < 2s◦1, and so the divisibility relation s◦1 | s◦2 forces s◦1 = s◦2. But then s2 | s1,
contradicting the primitivity of S.

This shows that s◦1 - s◦2. The symmetric argument shows that s◦2 - s◦1, and so

S◦ is indeed primitive. Also, s◦1 - s◦2 implies that s◦1 6= s◦2, which shows that the

map s 7→ s◦ is a bijection between S and S◦. ¤

If s ∈ Aj then s◦ = s/2j , and also 2j ≥ (log s)/(2 log 2) by the upper bound

on elements of Aj ; these relations imply that

s◦ log s◦ =
s

2j
log

s

2j
≤ 2s log 2

log s
log

2s log 2

log s
¿ s.

Therefore ∑

s∈S

1

s
¿

∑

s◦∈S◦

1

s◦ log s◦

(using the injectivity of s 7→ s◦). However, S◦ is primitive, and so the last sum is

convergent by (1). This proves (6).
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