Publ. Math. Debrecen **79/3-4** (2011), 531–537 DOI: 10.5486/PMD.2011.5120

On Kleinbock's Diophantine result

By NIKOLAY MOSHCHEVITIN (Moscow)

Abstract. We give an elementary proof of a metrical Diophantine result by D. Kleinbock related to badly approximable vectors in affine subspaces.

1. Definitions and notation

Let \mathbb{R}^d be a Euclidean space with the coordinates (x_1, \ldots, x_d) , let \mathbb{R}^{d+1} be a Euclidean space with the coordinates (x_0, x_1, \ldots, x_d) . For $\mathbf{x} \in \mathbb{R}^d$ or $\mathbf{x} \in \mathbb{R}^{d+1}$ we denote by $|\mathbf{x}|$ its sup-norm:

$$|\mathbf{x}| = \max_{1 \le j \le d} |x_j|$$
 or $|\mathbf{x}| = \max_{0 \le j \le d} |x_j|.$

Consider an affine subspace $A \subset \mathbb{R}^d$ and define the affine subspace $\mathcal{A} \subset \mathbb{R}^{d+1}$ in the following way:

$$\mathcal{A} = \{ \mathbf{x} = (1, x_1, \dots, x_d) : (x_1, \dots, x_d) \in A \}.$$

Let B be another affine subspace such that $B \subset A$. Define

$$\mathcal{B} = \{ \mathbf{x} = (1, x_1, \dots, x_d) : (x_1, \dots, x_d) \in B \}, \quad \mathcal{B} \subset \mathcal{A}.$$

Put

$$a = \dim A = \dim \mathcal{A}, \quad b = \dim B = \dim \mathcal{B}.$$

We define *linear* subspaces

$$\mathfrak{A}=\operatorname{span}\mathcal{A},\quad \mathfrak{B}=\operatorname{span}\mathcal{B}$$

 $Mathematics\ Subject\ Classification:\ 11J13.$

Key words and phrases: badly approximable vectors, affine subspaces.

This paper is supported by grants NSh-8784.2010.1 and RFBR 09-01-00371.

Nikolay Moshchevitin

as the smallest linear subspaces in \mathbb{R}^{d+1} containing \mathcal{A} or \mathcal{B} respectively. So

$$\dim \mathfrak{A} = a + 1, \quad \dim \mathfrak{B} = b + 1.$$

Let $\psi(T), T \ge 1$ be a positive valued function decreasing to zero as $T \to +\infty$. We define an affine subspace B to be ψ -badly approximable if

$$\inf_{\mathbf{x}\in\mathbb{Z}^{d+1}\setminus\{\mathbf{0}\}}\left(\frac{1}{\psi(|\mathbf{x}|)}\inf_{\mathbf{y}\in\mathfrak{B}}|\mathbf{x}-\mathbf{y}|\right)>0.$$
(1)

This definition is very convenient for our exposition.

Here we would like to note that in the case when the affine subspace B has zero dimension (and hence $B = \{\mathbf{w}\}$ consists of just one nonzero vector $\mathbf{w} = (w_1, \ldots, w_d) \in \mathbb{R}^d$) the definition (1) gives

$$\inf_{\mathbf{x}\in\mathbb{Z}^{d+1}\setminus\{\mathbf{0}\}}\left(\frac{1}{\psi(|\mathbf{x}|)}\inf_{t\in\mathbb{R}}|\mathbf{x}-t\mathbf{w}^*|\right)>0$$
(2)

with $\mathbf{w}^* = (1, w_1, \dots, w_d)$. Under mild restrictions on the function ψ the inequality (2) is equivalent to the condition that there exists a positive constant $\gamma = \gamma(\mathbf{w})$ such that

$$\max_{1 \le j \le d} \|w_j q\| \ge \gamma \cdot \psi(|q|), \quad \forall q \in \mathbb{Z} \setminus \{0\}$$
(3)

(here $\|\cdot\|$ denotes the distance to the nearest integer). We can consider the inequality

$$\inf_{T \ge 1} \frac{\psi(\kappa T)}{\psi(T)} > 0, \quad \forall \, \kappa \ge 1 \tag{4}$$

as an example of such a condition on the function ψ .

The condition (3) is a usual condition of ψ -badly simultaneously approximability of the vector **w**. This explains our definition (1).

2. Badly approximable vectors in affine subspaces

We consider a special case b = 0 and $\psi_d(T) = T^{-1/d}$. Then ψ_d -badly approximable vectors **w** are known as simultaneously badly approximable vectors (see [Schm], Chapter 2). Take

$$\varphi_{d,\Delta}(T) = \psi_d(T) \cdot (\log T)^{-\Delta} = T^{-\frac{1}{d}} (\log T)^{-\Delta}.$$
(5)

On Kleinbock's Diophantine result

Theorem 1. Consider an affine subspace $A \subset \mathbb{R}^d$. Suppose that there exists a badly approximable vector $\mathbf{w} \in A$. Suppose that $\Delta > \frac{1}{a}$. Then almost all vectors from the subspace A are $\varphi_{d,\Delta}$ -badly approximable vectors, where $\varphi_{d,\Delta}(T)$ is defined in (5).

We should note that a similar result dealing with 'not very well approximable' vectors (this is a condition weaker than 'badly approximabe' vectors) was obtained by DMITRY KLEINBOCK (see [Kle1], Theorem 4.2) by means of theory of dynamics on homogeneous spaces. Some generalizations are due to DMITRY KLEINBOCK [Kle2] and YUQING ZHANG [Zha]. We also refer to a relevant paper [Kle3]. We would like to note that the main subject of the papers [Kle1], [Kle2], [Zha] is dynamical approach to Diophantine approximations on submanifolds. A weaker result was announced by MIKHAIL B. SEVRYUK [Sevr].

Consider the function $\psi_a(T) = T^{-\frac{1}{a}}$. It can be shown that for a given affine subspace $A \subset \mathbb{R}^d$ of dimension dim $A = a \ge 1$ there exists a ψ_a -badly approximable vector \mathbf{w} such that $\mathbf{w} \in A$. Moreover in this case ψ_a -badly approximable vectors in A form a winning set (see [Mosh], where even a little bit stronger result is proved).

Obviously we have the following corollary to Theorem 1.

Corollary 1. For any affine subspace $A \subset \mathbb{R}^d$ almost all vectors from A are $\varphi_{a,\Delta}$ -badly approximable vectors, where $\varphi_{a,\Delta}(T)$ is defined in (5).

3. General result

In the sequel we consider two positive decreasing to zero functions $\psi(T)$, $\varphi(T)$ under the condition $\varphi(T) \leq \psi(T)$. We consider the following condition on function $\varphi(T)$:

$$0 < \inf_{T \ge 1} \frac{\varphi(\kappa T)}{\varphi(T)} \le \sup_{T \ge 1} \frac{\varphi(\kappa T)}{\varphi(T)} < +\infty, \quad \forall \, \kappa \ge 1.$$
(6)

For these functions we define quantities

$$\mu_T = \left(\frac{T}{\psi(T)}\right)^{a-b}, \quad \lambda_T = \left(\frac{\varphi(T)}{T}\right)^a - \left(\frac{\varphi(T+1)}{T+1}\right)^a.$$

Now we are ready to formulate the main result of this paper.

Nikolay Moshchevitin

Theorem 2. Consider function $\psi(T)$ decreasing to zero as $T \to +\infty$. Suppose that for all $T \ge 1$ one has $0 < \varphi(T) \le \psi(T)$ and the series

$$\sum_{T=1}^{+\infty} \mu_T \lambda_T \tag{7}$$

converges. Suppose that ψ satisfies (4) and φ satisfies (6). Suppose that $B \subset A$ are affine subspaces and $0 \leq b = \dim B < a = \dim A \leq d$. Let B be a ψ -badly approximable affine subspace.

Then almost all (in the sense of Lebesgue measure) vectors $\mathbf{w} \in A$ are φ -badly approximable vectors.

We should note that Theorem 1 immediately follows from Theorem 2 (one should take b = 0) as in the case $\Delta > \frac{1}{a}$ the series (7) converges.

We believe that the condition that (7) converges in Theorem 1 is optimal. Here we would like to refer to related papers [BBDD], [Gho1], [Gho2]; in particular these papers study metric Diophantine approximations with respect to convergence/divergence condition.

4. Proof of Theorem 2

Take $R \ge 1$. In the sequel we do not pay attention to the constants. All constants in the symbols \ll, \approx may depend on d, subspaces A, B and R.

For a set $\mathfrak{C} \subset \mathbb{R}^{d+1}$ and a point $\mathbf{x} \in \mathbb{R}^{d+1}$ we define the distance $|\mathbf{x}|_{\mathfrak{C}}$ from \mathbf{x} to \mathfrak{C} by

$$|\mathbf{x}|_{\mathfrak{C}} = \inf_{\mathbf{y} \in \mathfrak{C}} |\mathbf{x} - \mathbf{y}|$$

Consider the set

$$\Omega_T = \{ \mathbf{z} = (z_0, z_1, \dots, z_d) \in \mathbb{R}^{d+1} : 0 \le z_0 \le T, \max_{1 \le j \le d} |z_j| \le RT, \\ |\mathbf{z}|_{\mathfrak{B}} \le \gamma \cdot \psi(RT) \}.$$

Here we suppose that $\gamma > 0$ is strictly less than the infimum in (1). As B is a ψ -badly approximable subspace we see that

$$\Omega_T \cap \mathbb{Z}^{d+1} = \{\mathbf{0}\}$$

(we use the definition (1)). Now we observe that any translation of the 1/2contracted set

$$\frac{1}{2} \cdot \Omega_T + \mathbf{c}, \quad \mathbf{c} \in \mathbb{R}^{d+1}$$
(8)

On Kleinbock's Diophantine result

consists of not more than one integer point. Indeed if two different integer points \mathbf{x} , \mathbf{y} belong to the same set of the form (8) then $\mathbf{0} \neq \mathbf{x} - \mathbf{y} \in \Omega_T$. This is not possible.

Consider the set

$$\Pi_T = \{ \mathbf{z} \in \mathbb{R}^{d+1} : 0 \le z_0 \le T, \max_{1 \le j \le d} |z_j| \le RT, \ |\mathbf{z}|_{\mathfrak{A}} \le \varphi(RT) \}.$$

Let ν_T be the minimal number of points $\mathbf{c}_j, 1 \leq j \leq \nu_T$ such that

$$\Pi_T \subset \bigcup_{j=1}^{\nu_T} \left(\frac{1}{2} \cdot \Omega_T + \mathbf{c}_j \right).$$

As $\varphi(T) \leq \psi(T)$ and ψ satisfies (4), we see that $\nu_T \ll \mu_T$. That is why the set Π_T can be covered by not more than $C \cdot \mu_T$ different sets of the form (8) (here C is a positive constant). So we deduce a conclusion about an upper bound for the number of integer points in Π_T :

$$\#\left(\Pi_T \cap \mathbb{Z}^{d+1}\right) \ll \mu_T.$$
(9)

For an integer $T \ge 1$ we consider the set

$$\mathbb{Z}_T = \{ \mathbf{z} = (z_0, z_1, \dots, z_d) \in \mathbb{Z}^{d+1} : z_0 = T, \ \max_{1 \le j \le d} |z_j| \le RT, \ |\mathbf{z}|_{\mathfrak{A}} \le \varphi(RT) \}$$

of the cardinality

$$\zeta_T^{(R)} = \# \mathbb{Z}_T, \quad 0 \le \zeta_T^{(R)} \ll T^a.$$
(10)

For $\rho > 0$ and $\mathbf{z} \in \mathbb{R}^{d+1}$ put

$$\mathfrak{U}_{\rho}(\mathbf{z}) = \{ \mathbf{y} \in \mathbb{R}^{d+1} : |\mathbf{z} - \mathbf{y}| \le \rho \}.$$

Consider the set

$$\mathfrak{U}_T = \bigcup_{\mathbf{z}} \mathfrak{U}_{\varphi(RT)}(\mathbf{z})$$

where the union is taken over all integer points ${\bf z}$ such that

$$z_0 = T, \quad \max_{1 \le j \le d} |z_j| \le RT, \quad \mathfrak{U}_{\varphi(RT)}(\mathbf{z}) \cap \mathfrak{A} \neq \emptyset.$$
$$\mathfrak{U}_T = \bigcup \ \mathfrak{U}_{\varphi(RT)}(\mathbf{z})$$

Clearly

$$\mathfrak{U}_T = \bigcup_{\mathbf{z} \in \mathbb{Z}_T} \mathfrak{U}_{\varphi(RT)}(\mathbf{z}$$

Nikolay Moshchevitin

Consider the cone

$$\mathfrak{G}_T = \{\mathbf{x} \in \mathbb{R}^{d+1} : \mathbf{x} = t \cdot \mathbf{y}, t \in \mathbb{R}, \mathbf{y} \in \mathfrak{U}_T\}$$

and the projection

Consider the series

$$\mathcal{U}_T = \mathcal{A} \cap \mathfrak{G}_T$$

Now we suppose that $\mathbf{w} \in A \cap \{ |\mathbf{z}| \leq R \}$ is a φ -badly approximable vector. Then from (3) it follows that for any positive γ there exist infinitely many positive integers q such that

$$\max_{1 \le j \le d} \|w_j q\| < \gamma \varphi(q).$$

Define integers z_j from the condition

$$||w_j q|| = |w_j q - z_j|, \quad 1 \le j \le d$$

So we consider integer vector $\mathbf{z} = (q, z_1, \ldots, z_d) \in \mathbb{Z}^{d+1}$. We suppose γ to be small enough. Then by the left inequality from (6) for the corresponding vector $\mathbf{w}^* \in \mathcal{A}$ one has

$$q\mathbf{w}^* \in \mathfrak{U}_{\gamma\varphi(q)}(\mathbf{z}) \subset \mathfrak{U}_{\varphi(Rq)}(\mathbf{z}).$$

As $\mathbf{w} \in \{|\mathbf{z}| \leq R\}$ and $\mathbf{w}^* \in \mathcal{A}$ we have $q\mathbf{w}^* \in \mathfrak{U}_T$ and $\mathbf{w}^* \in \mathcal{U}_T$. So if $\mathbf{w} \in A \cap \{|\mathbf{z}| \leq R\}$ is a φ -badly approximable vector then there exist infinitely many T such that

$$\mathbf{w}^* \in \mathcal{U}_T.$$

$$\sum_{T=1}^{+\infty} \mathrm{mes}_a \mathcal{U}_T \tag{11}$$

where mes_a stands for the *a*-dimensional Lebesgue measure. Suppose that the series (11) converges. Then by the Borel–Cantelli lemma argument we see that the set of non- φ -badly approximable vectors $\mathbf{w}^* \in \mathcal{A} \cap \{ |\mathbf{z}| \leq R \}$ is a set of zero measure. As R is arbitrary we see that Theorem 2 follows from the convergence of the series (11).

Now we show that the series (11) converges. Note that the set \mathfrak{U}_T is a union of not more than $\zeta_T^{(R)}$ balls (in sup-norm) of radius $\varphi(RT)$. Hence the set $\mathcal{U}_T \subset \mathcal{A}$ can be covered by not more than $\zeta_T^{(R)}$ balls of radius $\varphi(RT)/T$. So in order to prove the convergence of the series (11) one can establish the convergence of the series

$$\sum_{T=1}^{+\infty} \zeta_T^{(R)} \cdot \left(\frac{\varphi(T)}{T}\right)^a \tag{12}$$

(we take the right inequality form (6) into account).

On Kleinbock's Diophantine result

It follows from (9) and monotonicity of ψ that

$$\sum_{j=1}^{T} \zeta_j^{(R)} \ll \sum_{\nu \le \log T} \mu_{T/2^{\nu}} = \sum_{\nu \le \log T} \left(\frac{T/2^{\nu}}{\psi(T/2^{\nu})} \right)^{a-b} \ll \left(\frac{T}{\psi(T)} \right)^{a-b} = \mu_T.$$

Now we see that the convergence of the series (12) follows from the convergence of the series (7) by partial summation as from (10) we see that

$$\zeta_T^{(R)} \cdot \left(\frac{\varphi(T+1)}{T+1}\right)^a \ll (\varphi(T))^a \to 0, \quad T \to +\infty.$$

Theorem 2 is proved.

ACKNOWLEDGEMENT. The author thanks anonymous referees for important suggestions.

References

- [BBDD] V. V. BERESNEVICH, V. I. BERNIK, H. DICKINSON and M. DODSON, On linear manifolds for which the Khinchin approximation theorem holds, *Vestsi Nats. Akad. Navuk Belarusi.* Ser. Fiz.-Mat. Navuk 2 (2000), 14–17 (in Belorussian).
- [Gho1] A. GHOSH, A Khintchine-type theorem for hyperplanes, J. London Math. Soc. (2) 72 (2005), 293–304.
- [Gho2] A. GHOSH, Diophantine approximation on affine hyperplanes, Acta Arithm. 144, no. 2 (2003), 167–182.
- [Kle1] D. KLEINBOCK, Extremal subspaces and their submanifolds, Geom. Funct. Anal. 13, no. 2 (2003), 437–466.
- [Kle2] D. KLEINBOCK, An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc. 360 (2008), 6497–6523.
- [Kle3] D. KLEINBOCK, An 'almost all versus no' dichotomy in homogeneous Diophantine approximation, Geom. Dedicata 149 (2010), 205–218.
- [Mosh] N. G. MOSHCHEVITIN, Badly approximable vectors in affine subspaces: Jarník-type results, preprint available at arXiv:1102.4431v1 (2011) (to appear in Chebyshevskii Sbornik).

[Sevr] M. B. SEVRYUK, Private communication (2006).

- [Schm] W. M. SCHMIDT, Diophantine Approximations, Lect. Not. Math. 785 (1980).
- [Zha] Y. ZHANG, Diophantine exponents of affine subspaces: The simultaneous approximation case, J. Number Theory 129, no. 8 (2009), 1976–1989.

NIKOLAY MOSHCHEVITIN

DEPARTMENT OF MATHEMATICS AND MECHANICS MOSCOW STATE UNIVERSITY

119991. MOSCOW

RUSSIA

E-mail: moshchevitin@rambler.ru, moshchevitin@gmail.com

(Received February 1, 2011; revised October 13, 2011)