
Publ. Math. Debrecen

79/3-4 (2011), 539–551

DOI: 10.5486/PMD.2011.5134

Prime factorization by interval-valued computing

By BENEDEK NAGY (Debrecen) and SÁNDOR VÁLYI (Nýıregyháza)

This paper is dedicated to Attila Pethő on his 60th birthday

Abstract. Interval-valued computing is a new theoretical computing paradigm.

Hard problems, e.g. satisfiability of quantified Boolean formulae, can be solved in an

efficient way deploying the massive parallelism of this paradigm. In this paper, we

consider the prime factorization problem. We show an interval-valued algorithm that

computes a proper divisor of the input number (or 1 in case the input is a prime). This

interval-valued algorithm works in polynomial number of steps within this paradigm.

1. Introduction

There are intractable problems that traditional, i.e., Neumann-type archi-

tecture, computers cannot solve efficiently. For some classes of problems, such

as NP-complete, PSPACE etc. it seems that there will not be any method to

solve every instance in deterministic polynomial time depending on the length of

the input. In number theory, there are also some hard problems, such as prime

factorization. Although prime testing is in P, i.e., the decision whether a given

number is a prime, or not, can be solved in traditional computers in polynomial

time [1]; the factorization problem, i.e., to give a proper divisor if the number is

not prime, cannot be solved in such an effective way (at least, recently we does

not have such an algorithm). These number theoretic problems are effectively

Mathematics Subject Classification: 68Q05 (Models of computation).
Key words and phrases: unconventional computing, interval-valued computing, factorization.

540 Benedek Nagy and Sándor Vályi

used in applications such as cryptography. There are various new computing pa-

radigms that attack these hard problems with success, at least in theory. There

are methods based on inspiration from Biology (e.g., DNA-computing [2], memb-

rane computing [12]), from Physics (e.g., Quantum computing [4]) and from other

phenomena of the Nature. It is known that quantum computing, in theory, is able

to solve prime factorization in polynomial time. In [13] a result is published: 15 is

factorized in practice. Unfortunately there is not known any newer results about

this topic. There are algorithms for P-systems (i.e., membrane computing) also,

that solve factorization effectively, in theory [11], [3]. The efficiency of most of

these new paradigms come from a massive parallelism built in the system. In this

paper we use the Interval-valued paradigm which was introduced in [5]. This par-

adigm is close to the classical paradigm, but dropping the bound of the number

of bits in a byte. The basic data unit is the interval-value that is a finite union

of subintervals (components) over the unit interval [0, 1). Logical operations are

straightforward generalizations of the classical operations, moreover shift opera-

tions is also used to carry some pieces of information to other parts of the unit

interval. The product operation allows to raise the density of information. This

operation is analogous with the zoom operation of the optical computing [15].

With this paradigm NP-complete problems can be solved by polynomial number

of steps (SAT in [5] in linear number of steps, the tripartite matching in [14]), the

PSPACE-complete quantified SAT is also solved in a linear number of steps in [6].

The connection between interval-valued computing system and the class PSPACE

is established in [9]. The system can also be used to visualize computations or

can be used as a visual computing system [7], [8]. [10] provides on overview of

this paradigm.

By this paper we also demonstrate that elegant, easily comprehensible solu-

tion can be given for other difficult problems. Moreover, the proof of correctness

of that interval-valued computations is not really harder than the proof of cor-

rectness of corresponding classical algorithms.

In the next section we recall the interval-valued paradigm in a formal way

and we extend it to allow computations of discrete functions, not only decision

problems. In Section 3 we present our algorithm to solve the prime factorization

problem, finally in Section 4 there are some concluding remarks.

Prime factorization by interval-valued computing 541

2. Preliminaries: interval-valued computations

To have a self-contained paper, in this section, we recall the definitions of

[9] needed to read the following sections of this paper. First we define what an

interval-value means. Then we present the allowed operations which can be used

to build and evaluate computation sequences. We also give the notions concerning

decidability and computational complexity. Moreover we extend the notion to

compute discrete functions.

2.1. Interval-values. We note in advance that we do not distinguish interval-

values (specific functions from [0, 1) into {0, 1}) from their subset representations

(subsets of [0, 1)) and we always use the more convenient notation.

Definition 1. The set V of interval-values coincides with the set of finite

unions of [)-type subintervals of [0, 1).

Definition 2. The set V0 of specific interval-values coincides with

{
k⋃

i=1

[
li
2m

,
1 + li
2m

)
: m ∈ N, k ≤ 2m, 0 ≤ l1 < . . . < lk < 2m

}
. (∗)

Similarly, let Vn be the set of interval-values that can be represented by (∗)
in a way that for the used maximal value m the condition m ≤ n holds.

We note that the set of finite unions includes the empty set (k = 0), that is,

∅ is also an allowed interval-value.

2.2. Operators on interval-values. If we consider interval-values as subsets

of [0, 1), then the set-theoretical operations such as complementation (A), union

(A ∪ B) and intersection (A ∩ B) on V are included. (V,̄ ,∪,∩) forms an infinite

Boolean set algebra with these operations, V0 is one of its infinite subalgebra,

while the systems based on Vn (n > 0) are finite subalgebras.

Definition 3. The first component of an interval value A ∈ V, A 6= ∅, is

defined as interval value [t, s) where t and s ∈ [0, 1] satisfy that [0, t) ∩ A = ∅,
[t, s) ⊂ A and ∀s′ > s : [t, s′) 6⊂ A. Now the function Flength : V→ R is defined

as follows. If A = ∅, then Flength(A) = 0. Otherwise Flength(A) = s− t, where

[t, s) is the first component of A.

Intuitively, this function provides the length of the left-most component (inc-

luded maximal subinterval) of an interval-value A. Flength helps us to define the

binary shift operators on V. The left-shift operator will shift the first interval-

value to the left by the first-length of the second operand and remove the part

542 Benedek Nagy and Sándor Vályi

which is shifted out of the interval [0, 1). As opposed to this, the right-shift ope-

rator is defined in a circular way, i.e. the parts shifted above 1 will appear at the

lower end of [0, 1). In this definition we write interval-values in their “character-

istic function” notation.

Definition 4. The binary operators Lshift and Rshift on V are defined in

the following way. If x ∈ [0, 1) and A,B ∈ V then

Lshift(A,B)(x) =

{
A(x+ Flength(B)) if 0 ≤ x+ Flength(B) < 1,

0 in other cases;

and Rshift(A,B)(x) = A(frac(x− Flength(B))).

Here the function frac gives the fractional part of a real number, i.e., frac(x) =

x− bxc, where bxc is the greatest integer which is not greater than x.

Definition 5. Let A and B be interval-values and x ∈ [0, 1). Then the (frac-

talian) product B ∗ A includes x if and only if B(x) = 1 and A(x−xB

xB−xB
) = 1,

where xB denotes the lower end-point of the B-component including x, and xB

denotes the upper end-point of this component, that is, [xB , x
B) is the maximal

subinterval of B containing x.

We can give this operation in a more descriptive manner. If A contains k

interval components with ends ai,1, ai,2 (1 ≤ i ≤ k) and B contains l components

with ends bi,1, bi,2 (1 ≤ i ≤ l), then we determine the value of C = A ∗ B as

follows: we set the number of components of C to be k · l. For this process we can
use double indices for the components of C. The lower and higher end-points of

the ij-th component are ai1 + bj1(ai2 − ai1) and ai1 + bj2(ai2 − ai1), respectively.

The idea and the role of this operation is similar to the unlimited shrinking of

2-dimensional images in [15]. It will be used to connect interval-values of different

resolution (i.e, increase n in the actually used Vn).

2.3. Syntax and semantics of computation sequences. This formalism is

of Boolean network style. As usual, the length of a sequence S is denoted by |S|
and its i-th element by Si. If j ≤ |S| then the j-length prefix of S is denoted by

S→j .

Definition 6. An interval-valued computation sequence is a nonempty finite

sequence S satisfying S1 = FIRSTHALF and further, for any i ∈ {2, . . . , |S|},
Si is (op, l,m) for some op ∈ {AND, OR, LSHIFT, RSHIFT, PRODUCT} or

Si is (NOT, l) or (OUTPUT, l) where {l,m} ⊆ {1, . . . , i− 1}.

Prime factorization by interval-valued computing 543

One of the complexity measures of a given computation is the bit height of

a computation. It is the minimal value n such that all the interval-values of the

computation are in Vn.

The semantics of interval-valued computation sequences is defined by induc-

tion on the length of the sequences. The interval-value of such a sequence S

is denoted by ‖S‖ and defined by induction on the length of the computation

sequence, as follows.

Definition 7. First, we fix ‖(FIRSTHALF)‖ as
[
0, 1

2

)
. Second, if S is an

interval-valued computation sequence and |S| is its length, then

‖S‖ =





‖S→j‖ ∩ ‖S→k‖, if S|S| = (AND, j, k),

‖S→j‖ ∪ ‖S→k‖, if S|S| = (OR, j, k),

‖S→j‖ ∗ ‖S→k‖, if S|S| = (PRODUCT, j, k),

Rshift(‖S→j‖, ‖S→k‖), if S|S| = (RSHIFT, j, k),

Lshift(‖S→j‖, ‖S→k‖), if S|S| = (LSHIFT, j, k),

‖S→j‖, if S|S| = (OUTPUT, j),

‖S→j‖, if S|S| = (NOT, j).

Here the system of [9] is extended with an instruction to write (i.e., generate)

the output as we detail below.

2.4. Computing a discrete function by interval-values. We fix a possible

formulation which is suitable for the present purpose. The semantics of writing the

output is the following. The output sequence is an element of {0, 1}∗, initially
the empty sequence. Let S1 . . . Sn denote the computation sequence. If Sj =

(OUTPUT, i) where i < j then ‖S→j‖ = ‖S→i‖ and as a side effect, 1 is appended

to the the output sequence if Sj is nonempty, otherwise 0 is appended to it. The

answer of a computation sequence is its output sequence produced during the

computation. Let f : {0, 1}∗ → {0, 1}∗. We say that f is computable by an

interval-valued computation if and only if there exists a logspace algorithm B
that for each possible input (w ∈ {0, 1}∗) constructs a computation sequence

that generates the output sequence f(w).

544 Benedek Nagy and Sándor Vályi

3. Prime factorization by interval-values

In this section we solve the integer factorization problem, i.e., we give interval-

valued computation sequence that give, as the output, a proper divisor of an input

integer N or the result is 1 in case N is a prime number.

Theorem 1. The prime factorization can be computed by an interval-valued

computation of quadratic size.

Further in this section we prove this theorem in a constructive way:

Let b1 . . . bn be the binary representation of the input integer N . (One can

assume that N ≥ 4 and n ≥ 3.) We give a logspace algorithm B that constructs

an interval-valued computation sequence S from N with an output bit sequence

d1 . . . dn that is the binary representation of the greatest divisor of N different

from N .

B starts its work by writing the following. First, fix S1 as FIRSTHALF and

S2 as (RIGHT, 1, 1). Then, for each i ∈ {1, . . . , n}, if bi = 1 then put S2+i :=

(OR, 1, 2) else S2+i := (AND, 1, 2). We denote the indices of the subsequence

S3, S4, . . . , S2+n by i(1), i(2), . . . , i(n). In this way we have represented the input:

Lemma 1. For each k ∈ {1, . . . , n}:

‖S→i(k)‖ =

{
[0, 1) if bk = 1 and

∅ if bk = 0.

Proof. It is straightforward: ‖S→1‖ =
[
0, 1

2

)
, ‖S→2‖ =

[
1
2 , 1

)
and the union

of the last two interval-value is [0, 1) while their intersection is ∅. ¤

B continues its job. It defines S2+n+1, . . . , S2+n+(3n−2) as follows. S2+n+1 =

(AND, 1, 1). For all positive integers k < 2n,

S2+n+3k−1 = (PRODUCT, 2 + n+ 3k − 2, 1),

S2+n+3k = (RSHIFT, 2 + n+ 3k − 2, 2 + n+ 3k − 1) and

S2+n+3k+1 = (OR, 2 + n+ 3k, 2 + n+ 3k − 1).

The index sequence 2+n+1, 2+n+4, . . . , 2+n+(6n−2) will be denoted by

a(1), a(2), . . . , a(2n). By induction on k one can establish the following statement.

Lemma 2. For all integer k ∈ {1, . . . , 2n}:

‖S→a(k)‖ = ‖S→2+n+(3k−2)‖ =

2k−1−1⋃

l=0

[
2l

2k
,
2l + 1

2k

)
.

Prime factorization by interval-valued computing 545

Proof. The proof goes by induction. Base of the induction: k = 1:

‖S→2+n+1‖ = ‖FIRSTHALF‖ ∩ ‖FIRSTHALF‖

=

[
0,

1

2

)
=

0⋃

l=0

[
2l

2
,
2l + 1

2

)
=

20−1⋃

l=0

[
2l

21
,
2l + 1

21

)
.

Now, for the induction we assume that the statement holds for all positive

integers up to k (k < 2n). Let us prove it for k + 1:

‖S→a(k)+1‖ =

2k−1−1⋃

l=0

[
2l

2k
,
2l + 1

2k

)
∗
[
0,

1

2

)
=

2k−1−1⋃

l=0

[
2l

2k
,
2l

2k
+

1

2k+1

)
;

‖S→a(k)+2‖ = Rshift
(‖S→a(k)+1‖, ‖S→a(k)‖

)

= Rshift




2k−1−1⋃

l=0

[
2l

2k
,
2l

2k
+

1

2k+1

)
,

[
0,

1

2k

)


=

2k−1−1⋃

l=0

[
2l + 1

2k
,
2l + 1

2k
+

1

2k+1

)
; finally

‖S→a(k+1)‖ = ‖S→a(k)+3‖

=

2k−1−1⋃

l=0

[
2l

2k
,
2l

2k
+

1

2k+1

)
∪

2k−1−1⋃

l=0

[
2l + 1

2k
,
2l + 1

2k
+

1

2k+1

)

=

2k−1⋃

j=0

[
j

2k
,
j

2k
+

1

2k+1

)
=

2k−1⋃

i=0

[
2i

2k+1
,
2i+ 1

2k+1

)
. ¤

In this way all variations of 2n independent bits can be represented simulta-

neously by the interval-values ‖S→a(1)‖, ‖S→a(2)‖, . . . , ‖S→a(2n)‖ in the following

sense:

Lemma 3. For each bit sequence x1 . . . x2n there exists r ∈ [0, 1) that for

any k ∈ {1, . . . , 2n}: r ∈ ‖S→a(k)‖ if and only if xk = 1.

Proof. We show that r =
∑2n

i=1
1−xi

2i is a right choice.

2n∑

i=1

1− xi

2i
∈

2k−1−1⋃

l=0

[
2l

2k
,
2l + 1

2k

)
⇔

k−1∑

i=1

2k−i · (1− xi)

2k
+

1− xk

2k
+

2n∑

i=k+1

1− xi

2i
∈

2k−1−1⋃

l=0

[
2l

2k
,
2l + 1

2k

)
⇔

(1− xk) is even ⇔ xk = 1. ¤

546 Benedek Nagy and Sándor Vályi

Definition 8. For k ∈ {1, . . . , n}, xk(r) := (r ∈ ‖S→a(k)‖) and yk(r) :=

(r ∈ ‖S→a(n+k)‖). Let the bit sequence x1(r) . . . xn(r) be denoted by X(r),

similarly, y1(r) . . . yn(r) be denoted by Y (r). For any bit sequence BS = b1 . . . bn,

let #BS denote the integer whose binary representation is BS.

The algorithm B continues the construction of the computation sequence

by pointwise simulating an n-bit sequence multiplication Boolean circuit. This

part needs (at most) a quadratic amount of operations, moreover, it does not

apply PRODUCT or SHIFT : only pointwise Boolean operations are used. Let

m(1), . . . ,m(2n) denote the sequence of the indices of the produced interval-values

that represent the bits of the result of the multiplication (the most significant

value m(1) is on the left).

Lemma 4. ∀r ∈ [0, 1) ∀k ∈ {1, . . . , 2n} : r ∈ ‖S→m(k)‖ if and only if the

k-th bit in the 2n-length binary representation of #X(r) ·#Y (r) is 1.

Proof. The standard schoolbook multiplication algorithm of binary num-

bers is appropriate to this computation. ¤

Thereafter, B appends to the constructed computation sequence the par-

tial and the final results of a pointwise testing for r 6∈ ‖S→m(2n)‖ and . . . r 6∈
‖S→m(n+1)‖, then also checking r ∈ ‖S→m(n+k)‖ ⇔ r ∈ ‖Si(k)‖, for all k ∈
{1, . . . , n}.

More definitively, we give the computation sequence.

For any k ∈ {1, . . . , n}, let
Sm(n)+k = (NOT,m(n+ k)),

Sm(n)+n+1 = (AND,m(n) + 1,m(n) + 2).

Further, for any k ∈ {2, . . . , n− 1},
Sm(n)+n+k = (AND,m(n) + k + 1,m(n) + n+ k − 1),

Sm(n)+2n = (OR, 1, 2).

For any k ∈ {1, . . . , n}:
Sm(n)+2n+(5k−4) = (AND, i(k),m(k)),

Sm(n)+2n+(5k−3) = (NOT, i(k)),

Sm(n)+2n+(5k−2) = (NOT,m(k)),

Sm(n)+2n+(5k−1) = (AND,m(n) + 2n+ (5k − 2),m(n) + 2n+ (5k − 3)),

Sm(n)+2n+5k = (OR,m(n) + 2n+ (5k − 1),m(n) + 2n+ (5k − 4)).

Prime factorization by interval-valued computing 547

Finally, Sm(n)+7n+1 = (AND,m(n) + 2n − 1,m(n) + 2n + 5) and for all

k ∈ {2, . . . , n}: Sm(n)+7n+k = (AND,m(n) + 7n+ k − 1,m(n) + 2n+ 5k).

The final index (m(n) + 8n) will be denoted by e – the e-th element of the

computation sequence satisfies then the following property:

Lemma 5. ∀r ∈ [0, 1) : r ∈ ‖S→e‖ if and only if #X(r) ·#Y (r) = N .

Proof.

∀k ∈ {1, . . . , n}∀r ∈ [0, 1) : r ∈ ‖S→m(n)+k‖ ⇔ r 6∈ ‖S→m(k)‖.

∀k ∈ {1, . . . , n− 1}∀r ∈ [0, 1) : r ∈ ‖S→m(n)+n+k‖ ⇔ r 6∈
k+1⋃

i=1

‖S→m(i)‖.

‖S→m(n)+2n‖ = [0, 1).

∀k∈{1, . . . , n}∀r∈ [0, 1) : r ∈ ‖S→m(n)+2n+5k‖ ⇔ (r∈‖S→m(k)‖ ⇔ r∈‖S→i(k)‖).
∀k ∈ {1, . . . , n}∀r ∈ [0, 1) : r ∈ ‖S→m(n)+7n+k‖ ⇔ ∀j ∈ {1, . . . , k}

(r ∈ ‖S→m(j)‖ ⇔ r ∈ ‖S→i(j)‖) ∧ ∀u ∈ {1, . . . , n}r /∈ ‖S→m(u+j)‖.

As a special case of the last statement,

∀r ∈ [0, 1) r ∈ ‖S→m(n)+8n‖ ⇔ ∀j ∈ {1, . . . , n}
(r ∈ ‖S→m(j)‖ ⇔ r ∈ ‖S→i(j)‖) ∧ ∀u ∈ {1, . . . , n}r /∈ ‖S→m(u+j)‖.

This fact combined with Lemma 4 provides the result of Lemma 5. ¤

Lemma 6. ∀r1, r2 ∈ [0, 1) : (r1 ≤ r2 ⇔ #X(r1) ≥ #X(r2)). Further, if

|r1 − r2| > 1
2n then #X(r1) 6= #X(r2).

Proof. It follows from the fact that for any bit sequence x1 . . . xn and all

r ∈ [0, 1), X(r) = x1 . . . xn if and only if r ∈ [∑n
i=1

1−xi

2i ,
∑n

i=1
1−xi

2i + 1
2n

)
. ¤

Now the concept of first component is used from Definition 3, actually we

compute it for some interval-values:

Lemma 7. For arbitrary nonempty starting interval value A ∈ V of index k,

the following computation ends with the first component of A if 0 /∈ A but A is

nonempty. That is, if ‖S→k‖ = A then ‖S→k+7‖ is the first component of A if

548 Benedek Nagy and Sándor Vályi

A 6= ∅.
k + 1 : (NOT, k),

k + 2 : (LSHIFT, k, k + 1),

k + 3 : (LSHIFT, k + 2, k + 2),

k + 4 : (RSHIFT, k + 3, k + 2),

k + 5 : (RSHIFT, k + 4, k + 1),

k + 6 : (NOT, k + 5),

k + 7 : (ANDk, k + 6).

Proof. If A = [a, 1) with an a > 0, then ∅ = ‖S→k+3‖ = . . . = ‖S→k+5‖,
‖S→k+6‖ = [0, 1) so ‖S→k+7‖ = [a, 1). If the first component of A is [a, b) and

b < 1, then there is c > b that [b, c) ∩A = ∅. In this case we denote A ∩ [c, 1) by

X. So, A = [a, b) ∪X and b < c and X ∩ [0, c) = ∅. In this case

‖S→k‖ = [a, b) ∪X,

‖S→k+1‖ = [0, a) ∪ [b, 1) \X, so its first component [0, a),

‖S→k+2‖ = [0, b− a) ∪ (X − a) where (X − a) denotes {x− a|x ∈ X}
‖S→k+3‖ = X − b,

‖S→k+4‖ = X − a,

‖S→k+5‖ = X,

‖S→k+7‖ = ([a, b) ∪X) ∩ ([0, 1) \X) = [a, b). ¤

Lemma 8. (1) If A is the first component of ‖S→e‖, then A 6= ∅ but 0 /∈ A.

Further, if r ∈ A, then #X(r) = N .

(2) ‖S→e‖ \ A is also nonempty and not including 0. Further, for the least

r ∈ ‖S→e‖ \A holds that #X(r) is the largest divisor of N different from N .

Proof. (1) A is nonempty since always N ∗ 1 = N but 0 /∈ A because N

cannot be the square of the number whose binary representation is of the same

length than N , particularly if all of the bits of that number is 1. (X(0) = 1n.)

The third part follows from Lemma 4, 5, 6 and 7.

(2) ‖S→e‖ \ A is nonempty by 1 ∗ N = N . Of course, it cannot include 0.

#X(r) is the largest divisor of N different from N because N − 1 does not

divide N . Thus, if #X(r) divides N and less than N , then by Lemma 6 there

exists some s < r such that s is not an element of the first component but greater

than the endpoint of this component. ¤

Prime factorization by interval-valued computing 549

B appends to the above constructed computation sequence of length e the 7

operations described in Lemma 7 with a starting index k = e. So, by this lemma,

‖Se+7‖ is the first component of ‖Se‖. Then ‖Se+16‖ will be the second component

of ‖Se‖ if B sets the computation steps below:

e+ 8 : (NOT, e+ 7)

e+ 9 : (AND, e, e+ 8)

and then applies again the steps e + 10, . . . , e + 16 of Lemma 7 with k = e + 9.

Finally, B appends the following steps:

e+ 16 + k : (AND, e+ 16, a(k)), for all k ∈ {1, . . . , n} and

e+ 16 + n+ k : (OUTPUT, e+ 16 + k), for all k ∈ {1, . . . , n}.

By the definition of output, ‖S→e+16+k‖ 6= ∅ if and only if the k-th output

bit is 1.

We remark, that neither e nor the values a(k), i(k) and m(k) depend in any

way on the observation of the computation steps but only on N . By the last

lemma, we can show that for all k ∈ {1, . . . , n} holds that ‖Se+16+k‖ 6= ∅ if

and only if the k-th bit of the binary representation of the greatest divisor of N

(different from N) is 1. That is, the prime factorization, formulated as a function,

is computed by the given interval-valued computation algorithm B.
The proof of Theorem 1 is finished.

4. Concluding remarks

The algorithm used for prime factorization is a uniform algorithm in the

following sense. It generally produces the factorization of all numbers that can

be represented on (at most) n bits. Only the parts at the beginning (coding

the input N) should be changed for a new test; and only the linear part in the

end from the equality test till the output generation should be recomputed (the

middle, quadratic size part is independent of the input number in this sense, only

the size of the input: n does matter.)

In the other side, it is clear that the given interval-valued implementation is

not the most effective one but already this construction gives the aimed quadratic

size upper limit. For example, implementing more sophisticated multiplication

algorithms (like Karatsuba’s algorithm) will improve efficiency.

550 Benedek Nagy and Sándor Vályi

Acknowledgements. The main result of this paper was initially presented

at the conference NTA 2010: Number Theory and its Applications: An Internati-

onal Conference Dedicated to Kálmán Győry, Attila Pethő, János Pintz

and András Sárközy. The first author is supported by the TÁMOP 4.2.1/B-

09/1/KONV-2010-0007 project. The project is implemented through the New

Hungary Development Plan co-financed by the European Social Fund, and the

European Regional Development Fund.

References

[1] Manindra Agrawal, Neeraj Kayal and Nitin Saxena, PRIMES is in P, Ann. of Math.
160 (2004), 781–793.

[2] Martyn Amos, Theoretical and Experimental DNA Computation, Natural Computing
Series, Springer, 2005.

[3] Erzsébet Csuhaj-Varjú, On the factorization problem and membrane computing, pre-
sented in NTA 2010: Number Theory and its Applications, Debrecen, 2010.

[4] Mika Hirvensalo, Quantum Computing, Natural Computing Series, (2nd edition), Sprin-
ger, 2003.

[5] Benedek Nagy, An interval-valued computing device, CiE 2005, Computability in Europe:
New Computational Paradigms, Amsterdam, Netherlands, 2005, 166–177.

[6] Benedek Nagy and Sándor Vályi, Solving a PSPACE-complete problem by a linear
interval-valued computation, CiE 2006, Computability in Europe: Logical Approaches to
Computational Barriers, University of Wales Swansea, UK, 2006, 216–225.

[7] Benedek Nagy and Sándor Vályi, Interval-valued computing as a visual reasoning sys-
tem, DMS 2007, The Thirteenth International Conference on Distributed Multimedia Sys-
tems – VLC 2007, International Workshop on Visual Languages and Computing, San Fran-
cisco, CA, USA, 2007, 247–250.

[8] Benedek Nagy and Sándor Vályi, Visual reasoning by generalized interval-values and
interval temporal logic, VLL 2007, Workshop on Visual Languages and Logic – VL/HCC 07,
IEEE Symposium on Visual Languages and Human Centric Computing, CEUR Workshop
Proceedings Vol-274, Coeur d’Aléne, Idaho, USA, 2007, 13–26.

[9] Benedek Nagy and Sándor Vályi, Interval-valued computations and their connection
with PSPACE, Theoret. Comput. Sci. 394 (2008), 208–222.

[10] Benedek Nagy, Effective Computing by Interval-values, INES 2010, 14th IEEE Internati-
onal Conference on Intelligent Engineering Systems, Las Palmas of Gran Canaria, Spain,
2010, 91–96.

[11] Adam Obtulowicz, On P Systems with Active Membranes Solving the Integer Factori-
zation Problem in a Polynomial Time, Multiset Processing, Lecture Notes in Computer
Science 2235, 2001, 267–285.

[12] Gheorghe Paun, Membrane Computing, An Introduction, Springer-Verlag, Berlin, 2002.

[13] Peter Shor, Algorithms for quantum computation: discrete logarithms and factoring,
35th FOCS, Annual Symposium on Foundations of Computer Science, 1994, 124–134.

Prime factorization by interval-valued computing 551

[14] Ákos Tajti and Benedek Nagy, Solving Tripartite Matching by Interval-valued Comp-
utation in Polynomial Time, CiE 2008, Fourth Conference on Computability in Europe:
Logic and Theory of Algorithms, Local Proceedings, Athens, Greece, 2008, 435–444.

[15] Damien Woods and Thomas J. Naughton, An optical model of computation, Theoret.
Comput. Sci. 334 (2005), 227–258.

BENEDEK NAGY

DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF INFORMATICS

UNIVERSITY OF DEBRECEN

H-4010 DEBRECEN, P.O. BOX 12

HUNGARY

E-mail: nbenedek@inf.unideb.hu
URL: http://www.inf.unideb.hu/~nbenedek

SÁNDOR VÁLYI

INSTITUTE OF MATHEMATICS AND INFORMATICS

COLLEGE OF NYÍREGYHÁZA

SÓSTÓI ÚT 31/B.

H-4410 NYÍREGYHÁZA, HUNGARY

E-mail: valyis@nyf.hu

(Received February 7, 2011; revised October 25, 2011)

