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Geometric group theory and arithmetic diameter
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Abstract. Let X be a group with identity e, let A be an infinite set of generators

for X, and let (X, dA) be the metric space with the word metric dA induced by A. If

the diameter of the space is infinite, then for every positive integer h there are infinitely

many elements x ∈ X with dA(e, x) = h. It is proved that if P is a nonempty finite set

of prime numbers and A is the set of positive integers whose prime factors all belong

to P, then the metric space (Z, dA) has infinite diameter. Let λA(h) denote the smallest

positive integer x with dA(e, x) = h. It is an open problem to compute λA(h) and

estimate its growth rate.

1. Word metrics on infinitely generated groups

There is a nice interaction between geometric group theory and additive

number theory, and concepts from each have fruitful analogs in the other. Indeed,

a large part of geometric group theory can be considered as a kind of “nonabelian

additive number theory.” We shall consider growth in groups with a fixed infinite

set of generators. The group of integers, of course, is of unique interest to number

theorists, and we describe some problems and results about additive bases of

infinite order that arise in geometry.

Let N0 denote the nonnegative integers and Z the integers.
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Let X be a group, written multiplicatively, with identity e. For A ⊆ X,

we define A−1 = {a−1 : a ∈ A}. A subset A of X is a generating set for X if

every element of X can be written as a finite product of elements of A and their

inverses. Equivalently, A generates X as a group if and only if A∪A−1 generates

X as a semigroup. The length of an element x ∈ X with respect to A is

`A(x) = min{k : x = aε11 aε22 · · · aεkk : ai ∈ A and εi ∈ {1,−1} for i = 1, 2, . . . , k}
= min{k : x = a1a2 · · · ak : ai ∈ A ∪A−1 for i = 1, 2, . . . , k}.

Thus, in a group, `A(x) is the number of letters in the shortest word in the

alphabet A ∪ A−1 that spells x.The length function of a group has the following

properties:

(i) `A(x) ≥ 0 for all x ∈ X

(ii) `A(x) = 0 if and only if x = e

(iii) For all x, y ∈ X,

`A(xy) ≤ `A(x) + `A(y)

(iv) For all x ∈ X,

`A
(
x−1

)
= `A(x).

These properties of the length function imply that the function dA : X×X → N0

defined by

dA(x, y) = `A
(
x−1y

)

is a distance function on the group X. We call dA the word metric induced by A.

Geometric properties of the metric space (X, dA) are often related to combinato-

rial and additive number theoretic properties of the set A.

The definition of the length function also implies that, for all x ∈ X and

a ∈ A ∪A−1,

`A(x)− 1 ≤ `A(ax) ≤ `A(x) + 1 (1)

`A(x)− 1 ≤ `A(xa) ≤ `A(x) + 1 (2)

and, if `A(x) = h and x = a1a2 · · · ah with ai ∈ A ∪A−1 for i = 1, 2, . . . , h, then

`A(aj+1aj+2 · · · ak) = k − j (3)

for all 0 ≤ j < k ≤ h.

For every nonnegative integer h, the sphere of radius h with respect to A is

the set

SA(h) = {x ∈ X0 : `A(x) = h} (4)
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and the closed ball of radius h with respect to A is the set

BA(h) = {x ∈ X0 : `A(x) ≤ h} =

h⋃

h1=0

SA(h1). (5)

Most research in geometric group theory concerns finitely generated groups.

In number theory, however, it is often important to study a group X with an

infinite set A of generators. The generating set A is not necessarily minimal, and

it is irrelevant whether or not the group can be finitely generated.

The following theorem is fundamental for the geometry of groups with an

infinite number of generators. Recall that the diameter of a metric space (X, d) is

diam(X) = sup{d(x, y) : x, y ∈ X}.

Theorem 1 (Nathanson [5]). Let X be a group and let A be an infinite

generating set for X. If the sphere SA(h) is finite for some positive integer h,

then SA(k) = ∅ for all k > h. Equivalently, if diam(X) = ∞, then SA(h) is an

infinite set for every positive integer h.

Proof. Let `A be the length function associated with the generating set A.

Let h be a positive integer such that SA(h) is finite. The sphere SA(1) =(
A ∪A−1

) \ {e} is infinite, and so h ≥ 2. If SA(k) 6= ∅ for some integer k > h,

then there exist elements a1, . . . , ak ∈ A ∪A−1 such that

`A(a1a2 · · · ak) = k.

We define a function f : A → {1, . . . , k} as follows. By (1) and (2), for every

a ∈ A we have

`A(aa1a2 · · · ak) ≥ k − 1 ≥ h

and so there is at least one integer t ∈ {1, . . . , k} such that

`A(aa1a2 · · · at) = h.

Choose any t with `A(aa1a2 · · · at) = h and let f(a) = t. Because the set A

is infinite and A =
⋃k

i=1 f
−1(i), it follows from the pigeonhole principle that

f−1(t) is an infinite set for some t ∈ {1, . . . , k}, and so there exist infinitely many

elements a ∈ A such that aa1a2 · · · at has length h. If a 6= a′, then aa1a2 · · · at 6=
a′a1a2 · · · at and the finite set SA(h) must contain the infinite subset {aa1a2 · · · at :
a ∈ f−1(t)}, which is absurd. Thus, if SA(h) is finite for some h ≥ 2, then

SA(k) = ∅ for all k > h. This completes the proof. ¤
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2. Sum and difference sets for additive groups

If X is an additive abelian group with identity 0, then for every subset A

of X and for every positive integer h, we define the h-fold sum and difference set

h±A =

{
h∑

i=1

εiai : εi ∈ {1,−1} and ai ∈ A for i = 1, . . . , h

}
.

We define 0±A = {0}. If A generates the group X, then, in geometric group

theory, the set

BA(h) =
⋃

h1≤h

h±
1 A = h±(A ∪ {0})

is the closed ball of radius h in the metric space (X, dA) with respect to the word

metric dA induced by the generating set A. The generating set A is called a basis

of order h for X if BA(h) = X. The set A is a basis of finite order for X if

BA(h) = X for some positive integer h.

The sum and difference sets h±A are finite for all positive integers h if and

only if the set A is finite. Moreover, if A is finite, then

|h±A| ≤
(
2|A|+ h− 1

h

)
≤ (2|A|)h (6)

and ∣∣BA(h)
∣∣ ≤

(
2|A|+ h

h

)
≤ (2|A|+ 1)h (7)

where |A| denotes the cardinality of the set A.

Theorem 2. Let A be a generating set for the group X. The set A is a

basis of finite order for X if and only if the diameter of the metric space (X, dA)

is finite.

Proof. The diameter of the metric space (X, dA) is finite if and only if

B̄A(h) = X for some positive integer h. ¤

3. Arithmetic diameter

A nonempty subset A of the additive abelian group Z is a generating set for

Z if and only if gcd(A) = 1. The arithmetic diameter of a set A of relatively prime

integers is the diameter of the metric space (Z, dA). It is, in general, a difficult
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problem to compute or to estimate the arithmetic diameter of a generating set, or

even to describe the infinite generating sets whose arithmetic diameters are finite.

In this section we prove that if P is a nonempty finite set of prime numbers and

if A is the set of positive integers all of whose prime factors belong to A, then

diam(Z, dA) = ∞. We need the following beautiful result from analytic number

theory.

Prachar’s Theorem. Let δ(n) denote the number of prime numbers p such

that p − 1 divides n. For every positive real number c < (log 2)/2 and for every

positive integer k0, there exist infinitely many positive integers n such that

δ(n) > exp

(
c log n

log log n

)
+ k0.

Proof. See Prachar [7], or Adleman, Pomerance, and Rumely [1,

Proposition 10]. ¤

Theorem 3. Let P be a nonempty finite set of prime numbers and let A be

the set of positive integers that are products of primes in P, that is,

A =

{ ∏

p∈P
pvp : vp ∈ N0

}
.

Let dA be the word metric induced by A on the group Z. The diameter of the

metric space (Z, dA) is infinite. Equivalently, h
±(A ∪ {0}) 6= Z for every positive

integer h.

Proof. Let Q be a finite set of prime numbers that is disjoint from P, and

let

Q =
∏

q∈Q
q.

If a ∈ A and q ∈ Q, then gcd(a, q) = 1 and

aq−1 ≡ 1 (mod q).

Let n is an integer that is divisible by q − 1 for all q ∈ Q. Then

an ≡ 1 (mod q)

for all q ∈ Q, and so

an ≡ 1 (mod Q). (8)
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Let Z/QZ be the ring of congruence classes modulo Q. For every integer r,

we denote the congruence class of r modulo Q by r = r+QZ. For every set R of

integers, we define

R = {r : r ∈ R} ⊆ Z/QZ.

Consider the set of integers

RQ =

{ ∏

p∈P
pjp : jp ∈ {0, 1, . . . , n− 1}

}
.

We have RQ ⊆ A and so RQ ⊆ A.

Let a =
∏

p∈P pvp ∈ A. By the division algorithm, for each prime p ∈ P
there are integers wp and jp with jp ∈ {0, 1, . . . , n− 1} such that

vp = wpn+ jp.

Defining

a1 =
∏

p∈P
pwp ∈ A

and

r =
∏

p∈P
pjp ∈ RQ

we obtain

a =
∏

p∈P
pvp =

∏

p∈P
pwpn+jp =

( ∏

p∈P
pwp

)n ∏

p∈P
pjp = an1 r.

Congruence (8) implies that

a ≡ r (mod Q)

and so a = r ∈ RQ for all a ∈ A, that is, A ⊆ RQ, hence A = RQ. Let

|P| = k0.

Then

|A| = |RQ| ≤ |RQ| = nk0

and, by (7),

∣∣h± (
RQ ∪ {0})

∣∣ ≤ (
2|RQ|+ 1

)h ≤ (
2nk0 + 1

)h
< c0n

k0h
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for c0 = 3h. If diam(Z, dA) = h, then

h±(A ∪ {0}) = Z

and so

Z/QZ = h±(A ∪ {0}) = h± (
A ∪ {0}) = h± (

RQ ∪ {0})

and

Q = |Z/QZ| = ∣∣h± (
RQ ∪ {0})∣∣ < c0n

k0h.

Conversely, if we can construct a finite set Q of prime numbers that is disjoint

from P and an integer n that is divisible by q − 1 for every q ∈ Q such that

c0n
k0h < Q, then diam(Z, dA) 6= h. This is what we shall do.

Applying Prachar’s theorem with k0 = |P| and any positive number c <

(log 2)/2, we obtain arbitrarily large integers n with the property that there are

at least

δ(n)− k0 > exp

(
c log n

log log n

)

prime numbers q such that q − 1 divides n and q /∈ P. For each such n, let Qn

be the set of these primes and let Qn be the product of the primes in Qn. Then

Qn ≥ 2δ(n)−k0 > exp

(
log 2 exp

(
c logn

log log n

))
> c0n

k0h

for n sufficiently large. This completes the proof. ¤

Theorem 4. Let P be a nonempty finite set of prime numbers and let A be

the set of positive integers that are products of primes in P. Let h be a positive

integer and let SA(h) = {n ∈ Z : `A(n) = h}. Then SA(h) contains infinitely

many integers for every positive integer h.

Proof. This follows immediately from Theorem 1. ¤

Lemma 1. Let A and A′ be generating sets for Z, with induced word metrics

dA and dA′ , respectively. If A ⊆ A′, then dA(x, y) ≥ dA′(x, y) for all x, y ∈ Z. In

particular, if the arithmetic diameter of the set A′ is infinite, then the arithmetic

diameter of the set A is infinite.

Proof. This follows immediately from the definitions of word metric and

diameter. ¤

Theorem 5. Let {a1, . . . , ak} be a set of positive integers. The arithmetic

diameter of the set A =
⋃k

i=1

{
aji : j ∈ N0

}
is infinite. Moreover, {n ∈ Z :

`A(n) = h} is infinite for every positive integer h.
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Proof. Let P be the finite set consisting of all prime numbers p such that

that p divides ai for some i = 1, . . . , k. Let A′ be the set of positive integers

all of whose prime factors belong to P. Then A ⊆ A′. The set A′ has infinite

arithmetic diameter by Theorem 3, and so A has infinite arithmetic diameter by

Lemma 1. The sphere SA(h) = {n ∈ Z : `A(n) = h} is infinite for every positive

integer h by Theorem 4. This completes the proof. ¤

4. Open problems

The following result is a special case of Theorem 5.

Theorem 6. For every positive integer h there are infinitely many positive

integers N such that, for some nonnegative integers j and k with h = j + k, the

exponential diophantine equation

N = ±2v1 ± 2v2 ± · · · ± 2vj ± 3w1 ± 3w2 · · · ± 3wk

has a solution in nonnegative integers v1, . . . , vj , w1, . . . , wk, but the corresponding

equations with h replaced by any positive integer h′ < h have no solution.

Proof. Apply Theorem 5 to the set {2, 3}. ¤

Problem 1. Theorem 6 implies that for every positive integer h there is

a smallest number N = λ2,3(h) that can be written as the sum or difference of

exactly h but no fewer powers of 2 and 3. For example, λ2,3(1) = 1, λ2,3(2) = 5,

and λ2,3(3) = 21. Satyanand Singh proved that λ2,3(4) = 150. It is difficult to

compute the function λ2,3(h), and it is an open problem to determine its rate of

growth.

Problem 2. Let P be a nonempty finite set of prime numbers, and let A

be the set of positive integers that are products of powers of primes in P. By

Theorem 3, for every positive integer h there are infinitely many positive integers

of length h. Let λP(h) denote the smallest positive integer of length h. Determine

the properties of this function. Estimate its growth rate.

Problem 3. Let (ai)
∞
i=1 be a strictly increasing sequence of positive integers,

and let

A =

∞⋃

i=1

{aji : j = i, i+ 1.i+ 2, . . .}.

Is A a basis of finite order for Z? The condition j ≥ i is used to avoid Waring’s

problem.
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Problem 4. Let a and b be integers with a ≥ 2 and b ≥ 2, and let (Z, da)

and (Z, db) be the metric spaces with the word metrics induced by the generating

sets {ai : i ∈ N0} and {bi : i ∈ N0}, respectively. Nathanson [4] proved that

the word metrics da and db are bi-Lipschitz equivalent if and only if there exist

positive integers m and n such that am = bn. It is not know, however, under what

conditions the metric spaces (Z, da) and (Z, db) are bi-Lipschitz equivalent. It is

a problem of Richard E. Schwartz in metric geometry to determine if the metric

spaces (Z, da) and (Z, db) are quasi-isometric. This is unknown even in the case

a = 2 and b = 3.

Problem 5. Let A and B be infinite generating sets for Z. Determine

necessary and sufficient conditions for the metric spaces (Z, dA) and (Z, dB) to

be quasi-isometric.

5. Notes

Theorem 1 appears in Nathanson [5]. Hannah Alpert informed me that

essentially the same result, but written in the language of graph theory, was

proved by Wesley Pegden [6].

L. Hajdu and R. Tijdeman [2] have obtained a nontrivial upper bound for

the function λ2,3(h). They observed that Theorem 3 was first proved by Jarden

and Narkiewicz [3] in the language of algebraic number theory.

It is useful to be polylingual in mathematics.

Theorem 6 was proved by Gautam Chinta (personal communication), and

the elementary proof of Theorem 3 in this paper is based on Chinta’s method.
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