Characterization of additive functions with values in the circle group II.

By Z. DARÓCZY (Debrecen) and I. KÁTAI (Budapest)

1. This paper is a continuation of [1], consequently we shall use the terminology and notations that were used there. By a topological group we mean a T_{0} group that guarantees the existence of a translation invariant metric.

Our aim is to determine all $\varphi \in \mathcal{A}_{G}^{*}(D[2,-1])$, where G is a metrically compact Abelian topological group.

Assume that $\varphi \in \mathcal{A}_{G}^{*}(D[2,-1])$.
Let $X_{0}^{+}\left(\right.$resp. $\left.X_{0}^{-}\right)$denote the set of limit points of $\{\varphi(4 n+1) \mid n \in \mathbb{N}\}$ (resp. $\{\varphi(4 n-1) \mid n \in \mathbb{N}\})$. Since the natural numbers $m \equiv 1(\bmod 4)$ form a semigroup, therefore $\{\varphi(4 n+1) \mid n \in \mathbb{N}\}$ is a semigroup as well, therefore X_{0}^{+}has to be a closed semigroup, and by a known theorem (see[2]), X_{0}^{+}is a compact subgroup in G. Hence we get immediately that $\varphi(n) \in X_{0}^{+}$if $n \equiv 1(\bmod 4)$. Let m_{ν} be an arbitrary sequence of positive integers from the residue class $\equiv-1(\bmod 4)$, such that $\varphi\left(m_{\nu}\right) \rightarrow g$. Then $g \in X_{0}^{-}$. Then for $(\mathrm{d}, 2)=1$ the limit $\varphi\left(d m_{\nu}\right) \rightarrow g+\varphi(d)$ exists as well, furthermore $g+\varphi(d) \in X_{0}^{+}$if $d \equiv-1(\bmod 4)$ and $g+\varphi(d) \in X_{0}^{-}$if $d \equiv 1(\bmod 4)$. This implies immediately that $X_{0}^{-}+X_{0}^{-} \subseteq X_{0}^{+}, X_{0}^{-}+X_{0}^{+} \subseteq X_{0}^{-}$, whence we get that $X_{0}^{-}=X_{0}^{+}+\varphi(3)$.

Furthermore, it is clear that $L\left[X_{0}\right]=X_{0}^{+}, S\left[X_{0}\right]=X_{0}^{-}$. Since $0 \in$ X_{0}^{+}, therefore there exists a $\gamma \in X_{0}$ such that $L(\gamma)=0$. But from (2.14) ([1]) stating that $S(\tau-L(\tau))=0 \forall \tau \in X$, it follows that $S(\gamma)=0$, i.e. $0 \in X_{0}^{-}$. Then $X_{0}^{-}=X_{0}^{+}=X_{0}$.

By using the relation $S(\tau-L(\tau))=0 \forall \tau \in X$ again, we have immediately

Lemma 1. If $n_{\nu} \rightarrow \infty$ is a sequence of odd integers for which $\varphi\left(n_{\nu}\right) \rightarrow 0$, then $\varphi\left(n_{\nu}+2\right) \rightarrow 0$, and consequently $\varphi\left(n_{\nu}+2 s\right) \rightarrow 0$ for each $s \in \mathbb{N}$.

Let k be an odd integer. Then $\varphi(k) \in X_{0}$, and X_{0} being a group, $-\varphi(k) \in X_{0}$, consequently there exists a suitable sequence of odd integers
$n_{\nu} \rightarrow \infty$, such that $\varphi\left(n_{\nu}\right) \rightarrow-\varphi(k)$. Let n_{ν} be such a sequence. Then $\varphi\left(k n_{\nu}\right) \rightarrow 0$, and so by Lemma 1, $\varphi\left(k n_{\nu}+2 s\right) \rightarrow 0$, in particular $\varphi\left(k n_{\nu}+\right.$ $2 k) \rightarrow 0, \varphi\left(n_{\nu}+2\right) \rightarrow-\varphi(k)$. So we have proved

Lemma 2. Let $k \in \mathbb{N}$ be an arbitrary odd integer. If $n_{\nu} \rightarrow \infty$ is such a sequence of odd integers for which $\varphi\left(n_{\nu}\right) \rightarrow-\varphi(k)$, then $\varphi\left(n_{\nu}+2 s\right) \rightarrow$ $-\varphi(k)$ for each $s \in \mathbb{N}$.

As an obvious consequence of Lemma 2, we get that $\varphi\left(2 n_{\nu}+4 s-1\right) \rightarrow$ $L(-\varphi(k)), \varphi\left(2 n_{\nu}+4 s+1\right) \rightarrow S(-\varphi(k))$.

In other words, if $\varphi\left(n_{\nu}\right) \rightarrow-\varphi(k)$, k odd, then

$$
\varphi\left(2 n_{\nu}+m\right) \rightarrow \begin{cases}L(-\varphi(k)) & \text { for } m \equiv-1(\bmod 4) \tag{1.1}\\ S(-\varphi(k)) & \text { for } m \equiv 1(\bmod 4)\end{cases}
$$

Let now $p, k \in \mathbb{N}$ be odd integers, and let N_{ν} be such a sequence of odd integers, for wich $\varphi\left(N_{\nu}\right) \rightarrow-\varphi(p k)$, i.e. $\varphi\left(p N_{\nu}\right) \rightarrow-\varphi(k)$.

Assume first that $p \equiv 1(\bmod 4)$. Then $p m \equiv m(\bmod 4)$. Apply (1.1) first with $n_{\nu}=N_{\nu}$ and with an arbitrary odd $m \in \mathbb{N}$, then with $n_{\nu}=p N_{\nu}$ and with $p m$ instead of m. From (1.1) we get that

$$
\begin{align*}
& \varphi(p)+S(-\varphi(p)-\varphi(k))=S(-\varphi(k)) \tag{1.2}\\
& \varphi(p)+L(-\varphi(p)-\varphi(k))=L(-\varphi(k)) \tag{1.3}
\end{align*}
$$

In the case $p \equiv-1(\bmod 4)$ we get similary that

$$
\begin{align*}
& \varphi(p)+S(-\varphi(p)-\varphi(k))=L(-\varphi(k)) \tag{1.4}\\
& \varphi(p)+L(-\varphi(p)-\varphi(k))=S(-\varphi(k)) \tag{1.5}
\end{align*}
$$

Let us fix p, and let k run over all the odd integers. Taking into account that $\{-\varphi(k) \mid(k, 2)=1, k \in \mathbb{N}\}$ is everywhere dense in X_{0}, furthermore that L, S are continuous, we get that

$$
\begin{equation*}
S(g)=S(g-\varphi(p))+\varphi(p), L(g)=L(g-\varphi(p))+\varphi(p) \tag{1.6}
\end{equation*}
$$

if $p \equiv 1(\bmod 4)$, and that

$$
\begin{equation*}
S(g)=L(g-\varphi(p))+\varphi(p), L(g)=S(g-\varphi(p))+\varphi(p) \tag{1.7}
\end{equation*}
$$

if $p \equiv-1(\bmod 4)$.
Since $\{\varphi(p) \mid p \equiv 1(\bmod 4)\}$ is everywhere dense in $X_{0}^{+}=X_{0}$, from (1.6) we have:

$$
\begin{equation*}
S(g)=S(g+h)-h, L(g)=L(g+h)-h, \forall g, h \in X_{0} \tag{1.8}
\end{equation*}
$$

Similarly, $\{\varphi(p) \mid p \equiv-1(\bmod 4)\}$ is everywhere dense in $X_{0}^{-}=X_{0}$, consequently from (1.7) we have

$$
\begin{equation*}
S(g)=L(g+h)-H, L(g)=S(g+h)-h, \forall g, h \in X_{0} \tag{1.9}
\end{equation*}
$$

Hence we deduce immediately

Lemma 3. If $g \in X_{0}$, then $L(g)=S(g), L(g)=g+L(0), S(g)=$ $g+L(0)$.

In [1] (Lemma 4) it was proved that

$$
\begin{equation*}
L(g)=S(g) \forall g \in X_{0} \Rightarrow L(g)=S(g) \forall g \in X \tag{1.10}
\end{equation*}
$$

From (1.10), by using an argument based upon a suitable rarefaction of sequences, we get immediately

Lemma 4. We have $\varphi(2 n-1)-\varphi(2 n+1) \rightarrow 0$ as $n \rightarrow \infty$.
With some unimportant modification in the proof of Wirsing's theorem and in that of ours (see[3]) we have

Lemma 5. There exists a continuous homomorphism $\Psi: \mathbb{R}_{x} \rightarrow G$, such that $\Psi(n)=\varphi(n) \forall n \in \mathbb{N},(n, 2)=1$.

Let $\varphi \in \mathcal{A}_{G}^{*}(D[2,-1])$ and let Ψ be the continuous homomorphism corresponding to it. Let $u(n):=\varphi(n)-\Psi(n)$. Then $u \in \mathcal{A}_{G}^{*}, u(n)=0$ for each odd n. Let Γ be the closed group generated by $\{k u(2) \mid k \in \mathbb{N}\}$. If $u(2)=0$, then $\Gamma=\{0\}$ is the trivial group.

Lemma 6. We have $\Gamma \cap X_{0}=\{0\}$.
Proof. Since Γ, X_{0} are subgroups in G, therefore $0 \in \Gamma \cap X_{0}$. Let us assume that $\sigma \neq 0, \sigma \in \Gamma \cap X_{0}$. Let k_{ℓ} be such a sequence of positive integers for which $u\left(2^{k_{\ell}}\right)=k_{\ell} u(2) \rightarrow \sigma$. Let us choose an arbitrary $\lambda \in$ X_{0} and two sequences $\left\{m_{\nu}\right\} ;\left\{N_{\nu}\right\}$ of odd integers so that $\varphi\left(m_{\nu}\right) \rightarrow$ $\lambda, \varphi\left(N_{\nu}\right) \rightarrow \lambda+\sigma$. Then we have $\varphi\left(2^{k_{\nu}} m_{\nu}\right) \rightarrow \lambda+\sigma$, and so for the composed sequence

$$
\left\{M_{1}, M_{2}, \ldots\right\}=\left\{2^{k_{1}} m_{1}, N_{1}, 2^{k_{2}} m_{2}, N_{2}, \ldots\right\}
$$

we have that $\varphi\left(M_{\ell}\right) \rightarrow \lambda+\sigma$, and that $u\left(M_{\ell}\right)$ does not have a limit. From our assumption, $\varphi\left(2 M_{\ell}-1\right) \rightarrow L(\lambda+\sigma)$. Since $\varphi=\Psi$ for odd integers, therefore $\varphi\left(2 M_{\ell}-1\right)=\Psi\left(2 M_{\ell}-1\right)$, consequently $\Psi\left(2 M_{\ell}-1\right) \rightarrow L(\lambda+\sigma)$. Since Ψ is a continuous homomorphism, therefore $\Psi\left(M_{\ell}\right) \rightarrow L(\lambda+\sigma)-$ $-\Psi(2)$, wich by $\varphi\left(M_{\ell}\right) \rightarrow \lambda+\sigma$ implies that $u\left(M_{\ell}\right)$ has a limit. This is a contradiction.

From the definition of X_{0}, Γ, X it is clear that $X=\Gamma+X_{0}$. Consequently each $\xi \in X$ can be written as $\gamma+\eta, \gamma \in \Gamma, \eta \in X_{0}$. Furthermore, this representation is unique, since from $\gamma_{1}+\eta_{1}=\gamma_{2}+\eta_{2}, \gamma_{1} \neq \gamma_{2}$ it would follow that $\gamma_{1}-\gamma_{2}=\eta_{2}-\eta_{1} \in \Gamma \cap X_{0}$.

Let now $u(2)$ be so chosen that $\Gamma \cap X_{0}=\{0\}$. Then a sequence $\xi_{n}=\gamma_{n}+\eta_{n} \in X, \gamma_{n} \in \Gamma, \eta_{n} \in X_{0}$. has a limit if and only if the sequences γ_{n} and η_{n} are convergent.

Let Ψ be a continuous homomorphism, $\Psi: \mathbb{R}_{x} \rightarrow G$, and let $u(2)$ be so chosen that $\Gamma \cap X_{0}=\{0\}$. Let $\varphi(n):=\Psi(n)+u(n) \in \mathcal{A}_{G}^{*}$.

Assume that for some subsequence of integers n_{ν} the sequence $\varphi\left(n_{\nu}\right)$ converges. Then, with the notation $\xi_{\nu}=\varphi\left(n_{\nu}\right)=u\left(n_{\nu}\right)+\Psi\left(n_{\nu}\right)=\gamma_{\nu}+\eta_{\nu}$, we have that the sequences γ_{ν}, η_{ν} are convergent, consequently $\lim \varphi\left(2 n_{\nu}-\right.$ 1) $=\lim \Psi\left(2 n_{\nu}-1\right)=\Psi(2)+\lim \eta_{\nu}$ exists as well. So we have that $\varphi \in \mathcal{A}_{G}^{*}(D[2,-1])$.
2. We have proved the following

Theorem. Let $\varphi \in \mathcal{A}_{G}^{*}(D[2,-1])$, where G is a metrically compact Abelian group. Then there exists a continuous homomorphism $\Psi: \mathbb{R}_{x} \rightarrow G$, such that $\Psi(n)=\varphi(n) \forall n \in \mathbb{N},(n, 2)=1$. Let $u(2)=\varphi(2)-\Psi(2)$, and let Γ be the smallest closed group generated by $u(2)$. Let $u(n):=\varphi(n)-\Psi(n)$ be extended as a completely additive function.

Then $\Gamma \cap X_{0}=\{0\}$.
Conversely, let Ψ be an arbitrary continuous homomorphism, Ψ : $\mathbb{R}_{x} \rightarrow G$, and let X_{0} be the smallest compact subgroup generated by $\Psi(\mathbb{N})$. Let $\alpha \in G$ be so chosen that the smallest closed group Γ generated by α has the property $\Gamma \cap X_{0}=\{0\}$. Let $u \in \mathcal{A}_{G}^{*}$ be so that $u(2)=\alpha$ and $u(n)=0 \forall n,(n, 2)=1$. Then the function $\varphi(n)=\Psi(n)+u(n)$ belongs to $\mathcal{A}_{G}^{*}(D[2,-1])$.

References

[1] Z. Daróczy and I. Kátai, Characterization of additive functions with values in the circle group, Publ. Math. Debrecen 36 (1989), 1-7.
[2] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer, Berlin, 1963.
[3] Z. Daróczy and I. KÁtai, On additive arithmetical functions with values in topological groups, Publ. Math. Debrecen 34 (1987), 307-312.
Z. DARÓCZY

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF L. KOSSUTH
DEBRECEN 4010, HUNGARY

