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Characterization of additive functions
with values in the circle group II.

By Z. DAROCZY (Debrecen) and I. KATAI (Budapest)

1. This paper is a continuation of [1], consequently we shall use the
terminology and notations that were used there. By a topological group we
mean a Ty group that guarantees the existence of a translation invariant
metric.

Our aim is to determine all ¢ € Ag, (D[2, —1]), where G is a metrically
compact Abelian topological group.

Assume that ¢ € A% (D[2, —1]).

Let X (resp. X, ) denote the set of limit points of {p(4n+1)|n € N}
(resp. {¢(4n—1)|n € N}). Since the natural numbers m = 1 (mod 4) form
a semigroup, therefore {¢(4n + 1)|n € N} is a semigroup as well, therefore
X has to be a closed semigroup, and by a known theorem (see[2]), X is
a compact subgroup in G. Hence we get immediately that p(n) € X if
n =1 (mod 4). Let m, be an arbitrary sequence of positive integers from
the residue class = —1 (mod 4), such that ¢(m,) — ¢g. Then g € X .
Then for (d, 2)=1 the limit p(dm,) — g+ ¢(d) exists as well, furthermore
g+ p(d) € X; ifd=—1 (mod 4) and g + ¢(d) € X if d =1 (mod 4).
This implies immediately that Xj + X5 C XSL, Xy +XS' C X, whence
we get that X; = X + ¢(3).

Furthermore, it is clear that L[X,] = Xg, S[Xo] = X; . Since 0 €
X", therefore there exists a v € X such that L(y) = 0. But from (2.14)
([1]) stating that S(r7 — L(7)) = 0 V7 € X, it follows that S(v) = 0, i.e.
0€ X, . Then X; = X = Xo.

By using the relation S(7 — L(7)) = 0 V7 € X again, we have imme-
diately

Lemma 1. Ifn,—o0 is a sequence of odd integers for which ¢(n, )—0,
then ¢(n, +2) — 0, and consequently ¢(n, + 2s) — 0 for each s € N.

Let k be an odd integer. Then (k) € Xo, and Xy being a group,
—p(k) € Xo, consequently there exists a suitable sequence of odd integers
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n, — oo, such that ¢(n,) — —p(k). Let n, be such a sequence. Then
p(kn,) — 0, and so by Lemma 1, ¢p(kn, + 2s) — 0, in particular ¢(kn, +
2k) — 0, p(n, +2) — —p(k). So we have proved

Lemma 2. Let k € N be an arbitrary odd integer. If n,, — oo is such
a sequence of odd integers for which ¢(n,) — —p(k), then ¢(n, + 2s) —
—(k) for each s € N.

As an obvious consequence of Lemma 2, we get that ¢(2n, +4s—1) —
L(—p(k)), p(2n, + 4s + 1) — S(—p(k)).
In other words, if p(n,) — —p(k), k odd, then

L(—p(k)) for m=—1 (mod 4)

(1.1) o(2n, +m) — { S(—¢(k)) for m =1 (mod 4)

Let now p,k € N be odd integers, and let N,, be such a sequence of
odd integers, for wich p(N,)) — —p(pk), i.e. ©(pN,) — —p(k).

Assume first that p = 1 (mod 4). Then pm = m (mod 4). Apply (1.1)
first with n, = N, and with an arbitrary odd m € N, then with n,, = pN,
and with pm instead of m. From (1.1) we get that

(1.2) p(p) +5(=p(p) — (k) = S(—p(k))
(1.3) p(p) + L(—¢(p) — (k) = L(—¢(k))
In the case p = —1 (mod 4) we get similary that
(1.4) p(p) + S(—¢(p) — (k) = L(=¢(k)),
(1.5) p(p) + L(=¢(p) — (k) = S(—p(k))

Let us fix p, and let k& run over all the odd integers. Taking into
account that {—¢(k)|(k,2) = 1,k € N} is everywhere dense in Xy, fur-
thermore that L,.S are continuous, we get that

(1.6) S(g9) = S(g— ) +¢(p), L(g) = L(g — ¢(p)) + »(p)
if p=1 (mod 4), and that
(1.7) S(g) = L(g — (p)) +»(p), L(g) = S5(g — »()) + »(p)

if p=—1 (mod 4).
Since {¢o(p)|p = 1 (mod 4)} is everywhere dense in X = X , from
(1.6) we have:

(1.8) S(g)=S(g+h)—h, L(g) =L(g+h) —h, Vg,h € Xq
Similarly, {¢(p)|p = —1 (mod 4)} is everywhere dense in X; = Xo,

consequently from (1.7) we have

(1.9) S(g)=L(g+h)—H, L(g) =S(g+h)—h, Vg,h € Xp.
Hence we deduce immediately
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Lemma 3. If g € X,, then L(g) = S(g), L(g) = g+ L(0), S(g) =
g+ L(0).

In [1] (Lemma 4) it was proved that
(1.10) L(g) = S(g) Vg € Xo = L(g) = S(g) Vg € X.

From (1.10), by using an argument based upon a suitable rarefaction
of sequences, we get immediately

Lemma 4. We have p(2n —1) —p(2n+1) — 0 as n — oc.

With some unimportant modification in the proof of Wirsing’s theo-
rem and in that of ours (see[3]) we have

Lemma 5. There exists a continuous homomorphism ¥ : R, — G,
such that U(n) = p(n) Vn € N, (n,2) = 1.

Let ¢ € A% (D[2,—1]) and let ¥ be the continuous homomorphism
corresponding to it. Let u(n) := ¢(n) — ¥(n). Then u € AF,, u(n) =0
for each odd n. Let I' be the closed group generated by {ku(2)|k € N}. If
u(2) =0, then I" = {0} is the trivial group.

Lemma 6. We have I' N Xy = {0}.

PRrooF. Since I', X are subgroups in G, therefore 0 € I' N X;. Let
us assume that o # 0, 0 € I' N Xy. Let k; be such a sequence of positive
integers for which u(2%¢) = ksu(2) — o. Let us choose an arbitrary \ €
Xo and two sequences {m,}; {N,} of odd integers so that ¢(m,) —
A, ©(N,) — XA+ 0. Then we have ¢(2¥*m,) — X + o, and so for the
composed sequence

{Ml,Mg, } = {leml,N1,2k2m2,N2, }

we have that p(M;) — A+ o, and that u(M,) does not have a limit. From
our assumption, ¢(2My — 1) — L(A + o). Since ¢ = V¥ for odd integers,
therefore p(2My—1) = W(2M, — 1), consequently W(2M, —1) — L(A+0).
Since ¥ is a continuous homomorphism, therefore W(M,) — L(A + o) —
—U(2), wich by ¢(My) — A+ o implies that u(My) has a limit. This is a
contradiction.

From the definition of Xy, I', X it is clear that X =T + X. Conse-
quently each £ € X can be written as y+1n, v € I', n € Xy. Furthermore,
this representation is unique, since from v; + 71 = Y2 + 12, 71 # Y2 it
would follow that 4 — 2 =ns —m1 € I'N Xp.

Let now wu(2) be so chosen that I' N Xy = {0}. Then a sequence
¢n = Y+ € X, 7 €1, n, € Xog. has a limit if and only if the
sequences 7, and 7, are convergent.

Let ¥ be a continuous homomorphism, ¥ : R, — G, and let u(2) be
so chosen that I' N Xy = {0}. Let ¢(n) := ¥(n) + u(n) € Ag,.
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Assume that for some subsequence of integers n, the sequence (n,)
converges. Then, with the notation &, = ¢(n,) = u(n,)+¥(n,) = v, +n.,
we have that the sequences 7,,, 7, are convergent, consequently lim p(2n,, —
1) = limW¥(2n, — 1) = ¥(2) + limn, exists as well. So we have that
v € AL(D]2,—1)).

2. We have proved the following

Theorem. Let ¢ € A}, (D[2,—1]), where G is a metrically compact
Abelian group. Then there exists a continuous homomorphism V:R,—G,
such that U(n) = p(n)¥n € N, (n,2) = 1. Let u(2) = ¢(2) — ¥(2), and let
I be the smallest closed group generated by u(2). Let u(n) := ¢(n) —V¥(n)
be extended as a completely additive function.

Then I' N Xy = {0}.

Conversely, let U be an arbitrary continuous homomorphism, V¥ :
R, — G, and let Xy be the smallest compact subgroup generated by
U(N). Let oo € G be so chosen that the smallest closed group I' generated
by a has the property I' N Xy = {0}. Let u € A}, be so that u(2) = a and
u(n) =0 Vn, (n,2) = 1. Then the function p(n) = ¥(n) + u(n) belongs
to AL (D2, —1]).
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