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Characterization of additive functions
with values in the circle group II.

By Z. DARÓCZY (Debrecen) and I. KÁTAI (Budapest)

1. This paper is a continuation of [1], consequently we shall use the
terminology and notations that were used there. By a topological group we
mean a T0 group that guarantees the existence of a translation invariant
metric.

Our aim is to determine all ϕ ∈ A∗G (D[2,−1]), where G is a metrically
compact Abelian topological group.

Assume that ϕ ∈ A∗G (D[2,−1]).
Let X+

0 (resp. X−
0 ) denote the set of limit points of {ϕ(4n+1)|n ∈ N}

(resp. {ϕ(4n−1)|n ∈ N}). Since the natural numbers m ≡ 1 (mod 4) form
a semigroup, therefore {ϕ(4n + 1)|n ∈ N} is a semigroup as well, therefore
X+

0 has to be a closed semigroup, and by a known theorem (see[2]), X+
0 is

a compact subgroup in G. Hence we get immediately that ϕ(n) ∈ X+
0 if

n ≡ 1 (mod 4). Let mν be an arbitrary sequence of positive integers from
the residue class ≡ −1 (mod 4), such that ϕ(mν) → g. Then g ∈ X−

0 .
Then for (d, 2)=1 the limit ϕ(dmν) → g +ϕ(d) exists as well, furthermore
g + ϕ(d) ∈ X+

0 if d ≡ −1 (mod 4) and g + ϕ(d) ∈ X−
0 if d ≡ 1 (mod 4).

This implies immediately that X−
0 +X−

0 ⊆ X+
0 , X−

0 +X+
0 ⊆ X−

0 , whence
we get that X−

0 = X+
0 + ϕ(3).

Furthermore, it is clear that L[X0] = X+
0 , S[X0] = X−

0 . Since 0 ∈
X+

0 , therefore there exists a γ ∈ X0 such that L(γ) = 0. But from (2.14)
([1]) stating that S(τ − L(τ)) = 0 ∀τ ∈ X, it follows that S(γ) = 0, i.e.
0 ∈ X−

0 . Then X−
0 = X+

0 = X0.
By using the relation S(τ − L(τ)) = 0 ∀τ ∈ X again, we have imme-

diately

Lemma 1. If nν→∞ is a sequence of odd integers for which ϕ(nν)→0,
then ϕ(nν + 2) → 0, and consequently ϕ(nν + 2s) → 0 for each s ∈ N.

Let k be an odd integer. Then ϕ(k) ∈ X0, and X0 being a group,
−ϕ(k) ∈ X0, consequently there exists a suitable sequence of odd integers
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nν → ∞, such that ϕ(nν) → −ϕ(k). Let nν be such a sequence. Then
ϕ(knν) → 0, and so by Lemma 1, ϕ(knν + 2s) → 0, in particular ϕ(knν +
2k) → 0, ϕ(nν + 2) → −ϕ(k). So we have proved

Lemma 2. Let k ∈ N be an arbitrary odd integer. If nν →∞ is such
a sequence of odd integers for which ϕ(nν) → −ϕ(k), then ϕ(nν + 2s) →
−ϕ(k) for each s ∈ N.

As an obvious consequence of Lemma 2, we get that ϕ(2nν +4s−1) →
L(−ϕ(k)), ϕ(2nν + 4s + 1) → S(−ϕ(k)).

In other words, if ϕ(nν) → −ϕ(k), k odd, then

(1.1) ϕ(2nν + m) →
{

L(−ϕ(k)) for m ≡ −1 (mod 4)
S(−ϕ(k)) for m ≡ 1 (mod 4)

Let now p, k ∈ N be odd integers, and let Nν be such a sequence of
odd integers, for wich ϕ(Nν) → −ϕ(pk), i.e. ϕ(pNν) → −ϕ(k).

Assume first that p ≡ 1 (mod 4). Then pm ≡ m (mod 4). Apply (1.1)
first with nν = Nν and with an arbitrary odd m ∈ N, then with nν = pNν

and with pm instead of m. From (1.1) we get that

(1.2) ϕ(p) + S(−ϕ(p)− ϕ(k)) = S(−ϕ(k))

(1.3) ϕ(p) + L(−ϕ(p)− ϕ(k)) = L(−ϕ(k))

In the case p ≡ −1 (mod 4) we get similary that

(1.4) ϕ(p) + S(−ϕ(p)− ϕ(k)) = L(−ϕ(k)),

(1.5) ϕ(p) + L(−ϕ(p)− ϕ(k)) = S(−ϕ(k)).
Let us fix p, and let k run over all the odd integers. Taking into

account that {−ϕ(k)|(k, 2) = 1, k ∈ N} is everywhere dense in X0, fur-
thermore that L, S are continuous, we get that
(1.6) S(g) = S(g − ϕ(p)) + ϕ(p), L(g) = L(g − ϕ(p)) + ϕ(p)

if p ≡ 1 (mod 4), and that

(1.7) S(g) = L(g − ϕ(p)) + ϕ(p), L(g) = S(g − ϕ(p)) + ϕ(p)

if p ≡ −1 (mod 4).
Since {ϕ(p)|p ≡ 1 (mod 4)} is everywhere dense in X+

0 = X0 , from
(1.6) we have:

(1.8) S(g) = S(g + h)− h, L(g) = L(g + h)− h, ∀g, h ∈ X0

Similarly, {ϕ(p)|p ≡ −1 (mod 4)} is everywhere dense in X−
0 = X0,

consequently from (1.7) we have

(1.9) S(g) = L(g + h)−H, L(g) = S(g + h)− h, ∀g, h ∈ X0.

Hence we deduce immediately
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Lemma 3. If g ∈ X0, then L(g) = S(g), L(g) = g + L(0), S(g) =
g + L(0).

In [1] (Lemma 4) it was proved that

(1.10) L(g) = S(g) ∀g ∈ X0 ⇒ L(g) = S(g) ∀g ∈ X.

From (1.10), by using an argument based upon a suitable rarefaction
of sequences, we get immediately

Lemma 4. We have ϕ(2n− 1)− ϕ(2n + 1) → 0 as n →∞.

With some unimportant modification in the proof of Wirsing’s theo-
rem and in that of ours (see[3]) we have

Lemma 5. There exists a continuous homomorphism Ψ : Rx → G,
such that Ψ(n) = ϕ(n) ∀n ∈ N, (n, 2) = 1.

Let ϕ ∈ A∗G(D[2,−1]) and let Ψ be the continuous homomorphism
corresponding to it. Let u(n) := ϕ(n) − Ψ(n). Then u ∈ A∗G, u(n) = 0
for each odd n. Let Γ be the closed group generated by {ku(2)|k ∈ N}. If
u(2) = 0, then Γ = {0} is the trivial group.

Lemma 6. We have Γ ∩X0 = {0}.
Proof. Since Γ, X0 are subgroups in G, therefore 0 ∈ Γ ∩X0. Let

us assume that σ 6= 0, σ ∈ Γ ∩X0. Let k` be such a sequence of positive
integers for which u(2k`) = k`u(2) → σ. Let us choose an arbitrary λ ∈
X0 and two sequences {mν}; {Nν} of odd integers so that ϕ(mν) →
λ, ϕ(Nν) → λ + σ. Then we have ϕ(2kν mν) → λ + σ, and so for the
composed sequence

{M1,M2, ...} = {2k1m1, N1, 2k2m2, N2, ...}
we have that ϕ(M`) → λ+σ, and that u(M`) does not have a limit. From
our assumption, ϕ(2M` − 1) → L(λ + σ). Since ϕ = Ψ for odd integers,
therefore ϕ(2M`−1) = Ψ(2M`−1), consequently Ψ(2M`−1) → L(λ+σ).
Since Ψ is a continuous homomorphism, therefore Ψ(M`) → L(λ + σ) −
−Ψ(2), wich by ϕ(M`) → λ + σ implies that u(M`) has a limit. This is a
contradiction.

From the definition of X0, Γ, X it is clear that X = Γ + X0. Conse-
quently each ξ ∈ X can be written as γ + η, γ ∈ Γ, η ∈ X0. Furthermore,
this representation is unique, since from γ1 + η1 = γ2 + η2, γ1 6= γ2 it
would follow that γ1 − γ2 = η2 − η1 ∈ Γ ∩X0.

Let now u(2) be so chosen that Γ ∩ X0 = {0}. Then a sequence
ξn = γn + ηn ∈ X, γn ∈ Γ, ηn ∈ X0. has a limit if and only if the
sequences γn and ηn are convergent.

Let Ψ be a continuous homomorphism, Ψ : Rx → G, and let u(2) be
so chosen that Γ ∩X0 = {0}. Let ϕ(n) := Ψ(n) + u(n) ∈ A∗G.
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Assume that for some subsequence of integers nν the sequence ϕ(nν)
converges. Then, with the notation ξν = ϕ(nν) = u(nν)+Ψ(nν) = γν +ην ,
we have that the sequences γν , ην are convergent, consequently limϕ(2nν−
1) = limΨ(2nν − 1) = Ψ(2) + lim ην exists as well. So we have that
ϕ ∈ A∗G(D[2,−1]).

2. We have proved the following

Theorem. Let ϕ ∈ A∗G(D[2,−1]), where G is a metrically compact
Abelian group. Then there exists a continuous homomorphism Ψ:Rx→G,
such that Ψ(n) = ϕ(n)∀n ∈ N, (n, 2) = 1. Let u(2) = ϕ(2)−Ψ(2), and let
Γ be the smallest closed group generated by u(2). Let u(n) := ϕ(n)−Ψ(n)
be extended as a completely additive function.

Then Γ ∩X0 = {0}.
Conversely, let Ψ be an arbitrary continuous homomorphism, Ψ :

Rx → G, and let X0 be the smallest compact subgroup generated by
Ψ(N). Let α ∈ G be so chosen that the smallest closed group Γ generated
by α has the property Γ∩X0 = {0}. Let u ∈ A∗G be so that u(2) = α and
u(n) = 0 ∀n, (n, 2) = 1. Then the function ϕ(n) = Ψ(n) + u(n) belongs
to A∗G(D[2,−1]).

References

[1] Z. Dar�oczy and I. K�atai, Characterization of additive functions with values in
the circle group, Publ. Math. Debrecen 36 (1989), 1–7.

[2] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer, Berlin, 1963.
[3] Z. Dar�oczy and I. K�atai, On additive arithmetical functions with values in topo-

logical groups, Publ. Math. Debrecen 34 (1987), 307–312.

Z. DARÓCZY
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EÖTVÖS LÓRÁND UNIVERSITY
COMPUTER CENTER
BUDAPEST, H–1117.
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