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The difference graph of S-units

By IMRE Z. RUZSA (Budapest)

To my esteemed friends Kálmán, András, János, Attila

Abstract. For a given finite set S of primes we construct a graph on Z by con-

necting two integers if their difference is an S-unit. We investigate finite subgraphs of

this graph. We show that the average degree is always small. We also meditate on the

possible cycles that arise as induced subgraphs.

1. Introduction

In the Schweitzer competition of 2009, the following problem was proposed

by Kálmán Győry:

Let S be a finite set of primes. We make a graph on Z by connecting m, n

if m− n is an S-unit, that is, an integer composed exclusively of primes p ∈ S.

Find the possible sizes of

(a) complete subgraphs,

(b) induced paths.

Though this problem was an easy one, it points towards two basic directions

in understanding the structure of the S-unit graph defined above: to show that

certain subgraphs are impossible, and to find some subgraphs that do exist. We

make some further steps in both directions. We find the possible lengths of
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induced cycles, and we show that in a subgraph on n points the average degree

is O(nε) for every ε > 0.

While my direct motivation came from the competition problem, it should

be remarked that these graphs were introduced by Győry earlier and in a more

general form, see [3], [4] and references therein, for a general finitely generated

integral domain R over Z and more general multiplicative subgroups of R in the

place of S-units. He described the component structure of the complement of our

graph. Among others, he showed that these more general graphs do not contain

large cliques either. He (and others) applied these results and this graph method

to certain diophantine problems.

2. Preparation: equations in S-units

We fix our concepts and notations as follows. Given a finite nonempty set S

of primes, U ⊂ Q will be the set of S-units, that is, those rational numbers whose

numerator and denominator is composed only of primes p ∈ S. We make a graph

G on Q by connecting x, y if x− y ∈ U .

Since we are interested only in finite subgraphs, we could restrict our at-

tention to integers; indeed, given a finite collection of rational numbers, we can

multiply them by a common denominator denominator to get a set of integers

which induces an isomorphic graph. Sometimes it will be more convenient to

work with rational numbers.

We shall consider the equation

x1 + x2 + · · ·+ xk = a, xi ∈ U, (2.1)

for a ∈ Q. We call a solution (x1, . . . , xk) degenerate, if there is a nonempty

proper zero subsum

xi1 + · · ·+ xim = 0, 1 ≤ i1 < · · · < im ≤ k, 0 < m < k,

and nondegenerate otherwise.

There are many results on equations in S-units. For us the following form

will be most convenient.

Lemma 2.1. The number of nondegenerate solutions of equation (2.1) is

bounded by a number C(k, S) for all a 6= 0, independent of the number a on the

right hand side.

This is essentially a deep theorem of Evertse[1] and van der Poorten and

Schlickewei [5]. More general results and explicit bounds are available; we shall

stay with this simple form.
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In the above papers and other works dealing with this subject often super-

ficially different versions are stated. It may be useful to clarify the connection

between them. These versions sound as follows.

Version 1. The number of nondegenerate solutions of the equation

x1 + x2 + · · ·+ xk = 1, xi ∈ U (2.2)

is finite.

We denote this number by C1(k, S) .

Version 0. The nondegenerate solutions of the equation

x1 + x2 + · · ·+ xk = 0, xi ∈ U (2.3)

lie in finitely many homothety classes. (The class of a solution (x1, . . . , xk) con-

tains the solutions (tx1, . . . , txk) with t 6= 0.)

We denote the number of these classes by C0(k, S) .

Statement 2.2. Version 1, Version 0 and Lemma 2.1 are equivalent.

Proof. A possible way to select a representative from a homothety class is

to fix xk = −1. In this way equation (2.3) becomes

x1 + x2 + · · ·+ xk−1 = 1. (2.4)

A solution of (2.3) is nondegenerate exactly if the corresponding solution of (2.4)

is nondegenerate. This shows the equivalence of Versions 1 and 0 with

C0(k, S) = C1(k − 1, S).

Version 1 is the case a = 1 of Lemma 2.1, so an implication between them

and the inequality C1(k, S) ≤ C(k, S) is clear. Now we deduce the Lemma from

Version 0.

To this end fix a nondegenerate solution of (2.1), say xi = bi. The equation

can be rewritten as

x1 + · · ·+ xk = b1 + · · ·+ bk.

This is equivalent to the equation

x1 + x2 + · · ·+ xk + xk+1 + · · ·+ x2k = 0, xi ∈ U (2.5)

under the restrictions xk+j=−bj and the assumption that no subsum of x1, . . . , xk

vanishes.
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Such a solution may be degenerate. Let I1, . . . , Im be a partition of the set

of subscripts {1, . . . , 2k} into disjoint nonempty sets such that

∑

i∈Ij

xi = 0 (2.6)

for all j, with the maximal possible value of m. We show that each fixed partition

induces only a finite number of solutions.

The maximality of m implies that the induced solutions of (2.6) are nonde-

generate, so they lie in C0(|Ij |, S) homothety classes. As (x1, . . . , xk) has no zero

subsum, each Ij must intersect {k + 1, . . . , 2k}. If r ∈ Ij , r > k, then the fixed

value of xr = br−k admits at most one solution from each class. This gives at

most
m∏

j=1

C0(|Ij |, S)

solutions for a given partition, and summing this over all partitions we obtain a

bound for C(k, S). ¤

3. Cycles

As above, S is a fixed finite set of primes, U ⊂ Q is the set of S-units and G
is the graph on Q obtained by connecting x, y if x− y ∈ U .

Theorem 3.1. If 2 ∈ S, then there are cycles of every length among induced

subgraphs of G.
If 2 /∈ S, then there are cycles of every even length (and only even, as the

graph is bipartite).

Proof. We will work with integers. Observe first that always there is a

cycle of length 4, say

0 → 1 → u+ 1 → u → 0,

with an arbitrary u ∈ U . This will be an induced cycle if u− 1 /∈ U ; such values

of u exist simply because both U and its complement are infinite. If 2 ∈ S, we

can also find a cycle of length 3, namely

0 → 1 → 2 → 0.

Next we show how to make a cycle longer by 2. Let the cycle be

a1 → a2 → · · · → an → a1.
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Take an u ∈ U , and shift a segment by u; the new cycle will be

a1 → a1 + u → a2 + u → · · · → ak + u → ak → · · · → an → a1.

To avoid coincidences we need that u 6= ai − aj , and to ensure that it is an

induced subgraph we need that u + ai − aj /∈ U for all i 6= j. By Lemma 2.1 all

but finitely many u ∈ U are good (in fact, this follows already from a much older

result of Pólya). I remark that for our aims the weaker fact that there are good

values of u is sufficient, and this can be shown elementarily, using nothing more

advanced than the Fermat–Euler congruence theorem. ¤

Given a cycle

a1 → a2 → · · · → an → a1.

the numbers “sitting” on the edges, ui = ai+1 − ai for i = 1, . . . , n − 1 and

un = a1 − an satisfy

u1 + u2 + · · ·+ un = 0.

We say that the cycle is nondegenerate, if the above representation is nondegene-

rate. The description of nondegenerate cycles seems to be less obvious.

Theorem 3.2. If 2 ∈ S, then there are nondegenerate cycles of every length

among induced subgraphs of G.
If 2 /∈ S but 3 ∈ S, then there are nondegenerate cycles of every even length

(and only even, as the graph is bipartite).

Theorem 3.2 follows from the following result.

Theorem 3.3. If 2 ∈ S, then for every k there are S-units u1, . . . , uk > 0

such that

u1 + · · ·+ uk = 1 (3.1)

and

ui + ui+1 + · · ·+ uj /∈ U, 1 ≤ i < j ≤ k, (i, j) 6= (1, k). (3.2)

If 2 /∈ S but 3 ∈ S, then for every odd k there are S-units u1, . . . , uk > 0

satisfying (3.1) and (3.2).

Proof. There is at least one k-tuple satisfying (3.1) with positive elements:

1 = 1/2 + 1/4 + · · ·+ 1/2k−1 + 1/2k−1

for 2 ∈ S, k arbitrary, and

1 = 1/3 + 1/3 + 1/9 + 1/9 · · ·+ 1/3(k−1)/2 + 1/3(k−1)/2 + 1/3(k−1)/2
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for 2 /∈ S, 3 ∈ S, k odd.

Arrange each k-tuple decreasingly:

u1 ≥ u2 ≥ · · · ≥ uk > 0.

From the k-tuples select the lexicographically last (maximal u1; for this u1, ma-

ximal u2, . . . ). Such a last one exists, since the total number of these tuples is

finite by Lemma 2.1 (now best used as Variant 1).

This may not satisfy our requirement (3.2), but it has the following related

property: if a subsum is in U , say

v =
∑

i∈I

ui ∈ U, |I| ≥ 2,

then necessarily I = {j, j + 1, . . . , k}, a final segment.

Indeed, if j is the minimal element of I, and there is anm /∈ I, j <m≤ k, then

we can make a lexicographically later representation by the following transforma-

tions. First replace uj by v and delete all ui, i ∈ I; this is a later representation

since we increased uj , but a shorter one, having only k − |I| + 1 summands.

Next we make it longer, via replacing um by um/2, um/4, . . . , if 2 ∈ S, and by

um/3, um/3, um/9, um/9, . . . , if 2 /∈ S, 3 ∈ S. In this way we obtain a new

representation of the same length which is lexicographically later, contradiction.

To ensure property (3.2) we need only to rearrange this sequence so as to

separate uk from uk−1. A possible new sequence is u′
1 = u2, u′

2 = u3, . . . ,

u′
k−1 = uk, u

′
k = u1. ¤

If the smallest element of S is at least 5, then the above simple arguments

do not work.

Conjecture 3.4. If 2 /∈ S, then there are nondegenerate induced cycles of

every sufficiently large even length.

Definitely a proof of this conjecture cannot proceed as that of Theorem 3.2.

Indeed, write

m = gcd{p− 1 : p ∈ S}. (3.3)

By considering congruences modulo m we see immediately that a represen-

tation of the form (3.1) is possible only if m|k.
Conjecture 3.5. Assume 2 /∈ S and 3 /∈ S, and define m by (3.3). For every

sufficiently large k such that m|k there are S-units u1, . . . , uk > 0 such that

u1 + · · ·+ uk = 1 and

ui + ui+1 + · · ·+ uj /∈ U, 1 ≤ i < j ≤ k, (i, j) 6= (1, k).
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Problem 3.6. In the above arguments the main difficulty arose because we

wanted our cycles to be induced subgraphs. Is this necessary? Is there a finite

subgraph of G such that there is no isomorphic induced subgraph?

I expect a positive answer.

The next step beyond cycles would be graphs where the degree of each vertex

is at most 3.

Problem 3.7. Assume 2 ∈ S. Is there a constant k with the property that

every finite graph with maximal degree 3 and girth > k occurs among the sub-

graphs of G?

4. Upper estimate for the average degree

It is easy to see, and was part of the Schweitzer problem mentioned in the

Introduction, that a complete subgraph of G cannot have more than p elements,

where p is the smallest prime outside S. We show that large subgraphs will be

very far from complete.

Theorem 4.1. For any ε > 0, any subgraph of G on n vertices has average

degree < cε,Sn
ε.

Proof. LetDn be the maximum of the average degrees of n-point subgraphs

of G, and let dn be the maximum of the minimal degrees of n-point subgraphs

of G. We first estimate dn, and use this estimate to find a bound for Dn. This

will be achieved by giving a lower and upper estimate for the number of certain

paths in such graphs.

Let H be a subgraph of G on n vertices. Given an integer k ≤ n, by a path of

length k we mean a sequence a0, a1, . . . , ak of distinct vertices (rational numbers)

such that each ai is connected to ai+1, that is, ui = ai−ai−1 ∈ U . These S-units

ui clearly satisfy

u1 + u2 + · · ·+ uk = ak − a0 6= 0.

We call this path nondegenerate, if the above equality is a nondegenerate repres-

entation of ak − a0.

By Lemma 1, the number of nondegenerate paths of length k between any

two fixed vertices is at most C(k, S) in G, and a fortiori the same estimate holds

in H. Since there are < n2 ways to fix the endpoints a0, ak, the total number of

nondegenerate paths of length k in H is

< C(k, S)n2.
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Next we give a lower estimate for this quantity. Let H be a subgraph for

which the minimal degree is equal to its maximal possible value dn. We claim

that if dn > 2k−1, then from each start-point a0 there are at least

dn(dn − 1)(dn − 3) . . . (dn − (2k−1 − 1))

nondegenerate paths of length k in H.

Indeed, as a0 has degree ≥ dn, there are at least dn choices for a1. We

show that given a nondegenerate path a0, . . . , ai with i < k, there are at least

dn− (2i−1) possible choices for ai+1. There are altogether at least dn edges from

ai to some ai+u, u ∈ U . Some choices will not produce a path as ai+u = aj for

some j < i, and some choices make the representation degenerate. These events

happen exactly if there is a vanishing nonempty subsum of the sum

(a1 − a0) + · · ·+ (ai − ai−1) + u.

This means that u is equal to the negative of one of the 2i−1 nonempty subsums

formed from the numbers aj − aj−1, 1 ≤ j ≤ i.

By comparing the lower and upper estimate we see that

(
dn − 2k−1

)k
< C(k, S)n2,

consequently

dn < C(k, S)1/kn2/k + 2k−1.

This estimate also trivially holds if the assumption dn > 2k−1 fails, so this is a

universal bound for every value of n.

Now we estimate Dn. Take an n-point graph with this average degree. This

means that the total number of edges is nDn/2. Take a vertex with minimal deg-

ree; removing this vertex decreases the number of edges by at most dn. Removing

a vertex from the remaining graph again decreases the number of vertices by at

mos dn−1. Repeating this operation we see that the number of vertices is at most

dn + dn−1 + · · ·+ d1.

Consequently we have

Dn ≤ 2

n
(dn + dn−1 + · · ·+ d1) < 2C(k, n)1/kn2/k + 2k.

Theorem 4.1 follows by taking k = 1 + [2/ε]. ¤
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If for the vertices we take the first n integers, the average degree will be

of order (log n)|S|. One is inclined to expect that this is not very far from the

maximum, which supports the following conjecture.

Conjecture 4.2. With a suitable constant c depending on the set S we have

Dn = O ((log n)c) .

Remark 4.3. A referee directed my attention to the following way to make

the ε explicit. Theorem 3 of Evertse [2] gives the estimate

C1(k, S) ≤
(
235k2

)k3(|S|+1)
.

Following the argument described in Section 2 one can obtain an estimate of type

C0(k, S) ≤ kck
3

,

with a constant c depending on |S|. With the choice

k ∼ (logn/ log log n)1/3

this leads to a bound

Dn < exp
(
c′(log n)2/3(log log n)1/3

)
.

If Evertse’s bound could be improved to ck
2

, the bound of Dn would also

improve to ec
′√logn. Any further improvement would, however, only minimally

affect our bound, so this conjecture definitely cannot be established by this simple

path-counting argument.

We can establish the simplest case when S consists of a single prime.

Theorem 4.4. Let p be a prime and S = {p}. The number of edges of an

n-point subgraph of G is at most

f(n) =

[(logn)/ log 2]∑

i=0

(n− 2i) ∼ n logn

log 2
.

Equality holds if p = 2 and the vertices are n consecutive integers.
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Proof. Let g(n) be the maximal possible number of edges. Our aim is to

prove g(n) ≤ f(n). Clearly g(1) = f(1) = 0, g(2) = f(2) = 1, g(3) ≤ f(3) = 3.

For larger values we shall use induction on n.

Let A be a set for which this maximum is attained. By multiplying with

a proper power of p we can ensure that the smallest power of p occurring as a

difference between elements of A is p0 = 1. Divide A into congruence classes

modulo p; there must be at least two classes. Let A1 be the smallest class, and

A2 the union of the others, and write |Ai| = ni. We have n1 ≤ n2.

Within each set Ai there are at most f(ni) edges by the induction hypothesis.

Between A1 and A2 the only possible edges come from a difference 1. From an

a ∈ A1 there are two possibilities, a+1 and a−1, so we get 2n1 as an upper bound

for the number of such edges. If n1 = n2, we can reduce this bound by 1. Indeed,

let a∗ be the smallest element of A. We have a∗ ∈ Ai with i = 1 or 2. From each

a ∈ Ai there may be at most 2 edges, and from a∗ only 1, as a∗ − 1 /∈ A. This

gives 2ni − 1 = 2n1 − 1 possibilities.

Hence we have

g(n) ≤ f(n1) + f(n2) + 2n1 − δ

where n1, n2 are integers such that 1 ≤ n1 ≤ n2, n1 + n2 = n, and δ = 1 if

n1 = n2, δ = 0 otherwise. This easily implies g(n) ≤ f(n). ¤

I proposed a version of this problem for the 2008 Kürschák competition (this

is for freshmen and secondary school students).

Problem 4.5. Determine the exact value of g(n) for primes p > 2.

For p ≥ 5 the extremal configuration is not the first n integers. The first

integers yield about (n logn)/ log p edges. The following configuration is better.

For 1 ≤ i ≤ n, write i in base 2 as

i =
∑

ej2
j ,

and put

ai =
∑

ejp
j .

The set A = {ai : 1 ≤ i ≤ n} produces about (n logn)/ log 4 edges.
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[3] K. Győry, On certain graphs associated with an integral domain and their applications to
diophantine problems, Publ. Math. Debrecen 29 (1982), 79–94.
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