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On the counting function of sets with even partition functions
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Abstract. Let ¢ be an odd positive integer and P € Fz[z] be of order ¢ and such

that P(0) = 1. We denote by A = A(P) the unique set of positive integers satisfying

o oP(A,n)z" = P(z) (mod 2), where p(A,n) is the number of partitions of n with

parts in A. In [5], it is proved that if A(P,z) is the counting function of the set A(P)

then A(P,z) < z(logz)~"/#@ where r is the order of 2 modulo ¢ and ¢ is the Euler’s

function. In this paper, we improve on the constant ¢ = c¢(q) for which A(P,z) <
z(logx)~°.

1. Introduction

Let N be the set of positive integers and A = {a1, a2, ...} be a subset of N.
For n € N, we denote by p(A,n) the number of partitions of n with parts in A,
i.e. the number of solutions of the equation

121 + a2 + - =M,

in non-negative integers x, zs,.... We set p(A4,0) = 1.
Let Fy be the field with two elements and f =1+ ez + - +enzV +--- €
F3[[2]]. NI1COLAS et al. proved (see [13], [4] and [11]) that there is a unique subset
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A = A(f) of N such that
> p(An)z" = f(2) (mod 2). (1.1)
n=0

When f is a rational fraction, it has been shown in [11] that there is a polynomial
U such that A(f) can be easily determined from A(U). When f is a general
power series, nothing about the behaviour of A(f) is known. From now on, we
shall restrict ourselves to the case f = P, where

P:1+61z—|—--~+6NzN€]F2[z]

is a polynomial of degree N > 1.
Let A(P,x) be the counting function of the set A(P), i.e.

APz)=|{n:1<n<z, ne A(P)}. (1.2)
In [10], it is proved that

logz  log(N +1)
> — . .
A(Pz) 2 log 2 log 2 (13)

More attention was paid on upper bounds for A(P,z). In [5, Theorem 3], it was
observed that when P is a product of cyclotomic polynomials, the set A(P) is a
union of geometric progressions of quotient 2 and so A(P,z) = O(log x).

Let the decomposition of P into irreducible factors over Fy[z] be

P=PMp...p,

We denote by §;, 1 < i <1, the order of P;(2), that is the smallest positive integer
such that P;(z) divides 1 + 2% in Fy[2]; it is known that 3; is odd (cf. [12]). We
set

q=q(P) =lem(B1, Ba,...., B). (1.4)
If g =1 then P(z) =1+ z and A(P) = {2¥, k > 0}, so that A(P,z) = O(log z).
We may suppose that ¢ > 3. Now, let

o(An)= ) d=) dx(Ad), (15)

d|n, deA d|n
where x(A, .) is the characteristic function of the set A,

1 ifde A

0 otherwise.

X(A7 d) = {
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In [6] (see also [3] and [2]), it is proved that for all K > 0, ¢ is a period of the
sequence (o(A,2%n) mod 28F1), 5, ie.

n1 =ng (mod q) = o(A,2n;) = 0(A,25n,) (mod 28F1) (1.6)

and ¢ is the smallest integer such that (1.6) holds for all £’s. Moreover, if ny and
ng satisty no = 2%n; (mod g¢) for some a > 0, then

0(A,25ny) = 0(A,2%n;) (mod 2FH1). (1.7)
If m is odd and k > 0, let
Sa(m, k) = x(A,m) 4+ 2x(A,2m) + ... + 28 (A, 2"m). (1.8)
It follows that for n = 2*m, one has

o(A,n) =o(A,2"m) = ZdSAdk: (1.9)
d|m
which, by Mobius inversion formula, gives

mSa(m, k) Z,u ( ,%) = Zu(d)a (.A, %) , (1.10)
dm

where p is the Mobius’s function and m = lemp is the radical of m, with 1 = 1.
In [7] and [9], precise descriptions of the sets A(1+ 2+ 2%) and A(1+2z+ 23+
24+ 25) are given and asymptotics to the related counting functions are obtained,

A4 z+ 23 2) ~ e a

T T — 00, (1.11)
4

(log 2)

A+ 2+ 23+ 24+ 25 1) ~ o ) T — 00, (1.12)

(log )%
where ¢; =0.937..., co = 1.496.... In [1], the sets A(P) are considered when P
is irreducible of prime order ¢ and such that the order of 2 in (Z/qZ)* is "5—1. This
situation is similar to that of A(1 + z + 2?), and formula (1.11) can be extended
to A(P,z) ~ cz(logz)~3/*, 2 — oo, for some constant ¢ depending on P.
Let P = QR be the product of two coprime polynomials in Fa[z]. In [4], the
following is given
A(P,z) < A(Q,z) + A(R, x) (1.13)

and

AP2) - AR < > 4(Q5) (1.14)

._logx
0<i<ieEs
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As an application of (1.14), choosing Q =1+ 2+ 23, R=1+2z+ 2% + 24+ 2°
and P = QR, we get from (1.11)—(1.14),

A(P,z) ~ A(R, x) ~ coz(logz)~ Y4, 2 — .

In [5], a claim of N1coLAs and SARKOzY [15], that some polynomials with
A(P,z) < x may exist, was disapproved. More precisely, the following was obta-
ined

Theorem 1.1. Let P € Fy[z] be such that P(0) = 1, A = A(P) be the
unique set obtained from (1.1) and q be the odd number defined by (1.4). Let r
be the order of 2 modulo q, that is the smallest positive integer such that 2"=1
(mod ¢). We shall say that a prime p # 2 is a bad prime if

Ji, 0<i<r—1andp=2"(mod q). (1.15)

(i) If p is a bad prime, we have ged(p,n) = 1 for all n € A.

(ii) There exists an absolute constant cs such that for all z > 1,

T

A(P,x) <7(c3)" , (1.16)

(log x) P )
where ¢ is Euler’s function.

2. The sets of bad and semi-bad primes

Let ¢ be an odd integer > 3 and r be the order of 2 modulo g. Let us call
“bad classes” the elements of

Elq)={1,2,...,2"" 'Y c (Z/qz)*. (2.1)

From (1.15), we know that an odd prime p is bad if p mod ¢ belongs to £(q).
The set of bad primes will be denoted by B. The fact that no element of A(P) is
divisible by a bad prime (cf. Theorem 1.1 (i)) has given (cf. [5]) the upper bound
(1.16). Two other sets of primes will be used to improve (1.16) cf. Theorem 2.1
below.

Remark 2.1. 2 is not a bad prime although it is a bad class.

Definition 2.1. A class of (Z/qZ)* is said semi-bad if it does not belong to
£(q) and its square does. A prime p is called semi-bad if its class modulo ¢ is
semi-bad. We denote by £’(¢) the set of semi-bad classes, so that

p semi-bad <= p mod ¢ € &(q).
We denote by |£'(¢)| the number of elements of £'(q).
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Lemma 2.1. Let q be an odd integer > 3, r be the order of 2 modulo q and

1 if 2 is a square modulo g
q2 =
0 if not.

The number |E'(q)| of semi-bad classes modulo q is given by

@ =20 (|| +a[3]) -+

B {r(2“’(q)1 —1) ifriseven and g =0

r(2@@ — 1) otherwise,

(2.2)

where w(q) is the number of distinct prime factors of q and || is the floor of x.

PROOF. We have to count the number of solutions of the r congruences
E;:2?=2" (mod ¢), 0<i<r—1,

which do not belong to €(g). The number of solutions of Ey is 2¢(4). The cont-
ribution of E; when i is even is equal to that of Ey by the change of variables
x = 2"/2¢, 50 that the total number of solutions, in (Z/qZ)*, of the E/s for i even
is equal to L%J 2w(a),

The number of odd i's, 0 < i < r — 1, is equal to ng The contribution of
all the E!s for these i's are equal and vanish if go = 0. When ¢o = 1, F; has 2+(9)
solutions in (Z/qZ)*. Hence the total number of solutions, in (Z/¢Z)*, of the E!s
for ¢ odd is equal to go L%J 2w(a),

Now, we have to remove those solutions which are in £(¢). But any element
200 < i <r—1, from £(q) is a solution of the congruence 2% = 27 (mod ¢),
where 7 = 2¢ mod r. Hence

@ =20 (|5 +a5]) -n

The second formula in (2.2) follows by noting that go = 1 when r is odd. (]

Definition 2.2. A set of semi-bad classes is called a coherent set if it is not
empty and if the product of any two of its elements is a bad class.

Lemma 2.2. Let b be a semi-bad class; then
Cp = {b,2b,...,2" '}

is a coherent set. There are no coherent sets with more than r elements.
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PROOF. First, we observe that, for 0 < u < r — 1, 2%b is semi-bad and, for
0<u<wv<r-—1,(2"b)(2"b) is bad so that Cp is coherent.

Further, let F be a set of semi-bad classes with more than r elements; there
exists in F two semi-bad classes a and b such that a ¢ C,. Let us prove that
ab is not bad. Indeed, if ab = 2% (mod ¢) for some u, we would have a =
2up~! (mod ¢q). But, as b is semi-bad, b* is bad, i.e. b* = 2Y (mod gq) for
some v, which would imply b = 2°6~! (mod ¢q), b=! = b27% (mod gq), a =
2%7%h (mod ¢) and a € Cp, a contradiction. Therefore, F is not coherent. O

Lemma 2.3. If w(q) =1 and ¢(q)/r is odd, then &'(q) = (); while if p(q)/r
is even, the set of semi-bad classes £'(q) is a coherent set of r elements.
If w(q) > 2, then £'(q) # () and there exists a coherent set C with |C| = r.

Proor. If w(q) =1, ¢ is a power of a prime number and the group (Z/qZ)*
is cyclic. Let g be some generator and d be the smallest positive integer such
that g% € £(q), where £(q) is given by (2.1). We have d = ¢(q)/r, since d is the
order of the group (Z/qZ)*/¢ (). The discrete logarithms of the bad classes are
0,d,2d,...,(r—1)d. The set £'(¢) UE(q) is equal to the union of the solutions of
the congruences

22 = ¢ (mod q) (2.3)
for 0 < a < r — 1. By the change of variable x = g%, (2.3) is equivalent to
2t =ad (mod ¢(q)). (2.4)

Let us assume first that d is odd so that r is even. If a is odd, the congruence
(2.4) has no solution while, if a is even, say a = 2b, the solutions of (2.4) are
t =bd (mod p(q)/2) i.e.

t=bd (mod ¢(q)) or t=bd+ (r/2)d (mod ¢(q)),
which implies
E'(q)UE(Q) ={g"g",....g" D} =E(q)
and &'(¢q) = 0.
Let us assume now that d is even. The congruence (2.4) is equivalent to
t=ad/2 (mod p(g)/2)
which implies £’(q) U&(q) = {g°¥2,0 < a < 2r — 1} yielding

£(q)={g*,6°%,....d* D5} =C,
(with b = (¢2)), which is coherent by Lemma 2.2.
If w(q) > 2, then, by Lemma 2.1, £'(q) # 0. Let b € £'(q); by Lemma 2.2,
a

the set Cp is a coherent set of r elements. [l
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Let us set

if &'
() = (q) #

=Nl w

0
(2.5)
0

We shall prove

Theorem 2.1. Let P € Fy[z] with P(0) = 1, ¢ be the odd integer defined
by (1.4) and r be the order of 2 modulo q. We denote by A(P) the set obtained
from (1.1) and by A(P,x) its counting function. When x tends to infinity, we
have

A(P,z) <, (2.6)

. r
(log z)* @%@’
where ¢(q) is given by (2.5).

When P is irreducible, ¢ is prime and r = %1, the upper bound (2.6) is best
possible; indeed in this case, from [1], we have A(P, z) < W. As p(q)/r = 2,
Lemma 2.3 implies £'(q) # 0 so that ¢ = 3/2 and in (2.6), the exponent of logx
is 3/4. Moreover, formula (1.12) gives the optimality of (2.6) for some prime

aticfvi — g1
(q = 31) satisfying r = 45—,

Theorem 2.2. Let P € Fy[z] be such that P(0) =1 and P = P, P,--- Pj,
where the P/s are irreducible polynomials in Folz]. For 1 < i < j, we de-
note by q; the order of P;, by r; the order of 2 modulo q; and we set ¢ =
ming<i<; ¢(qi)ri/p(q:), where c(q;) is given by (2.5). When x tends to infinity,

we have
T

(logz)°
where the symbol < depends on the q.s, 1 <1i < j.

A(Pz) < (2.7

Let C be a coherent set of semi-bad classes modulo q. Let us associate to C
the set of primes S defined by

peS <= p mod ge€eC. (2.8)

We define wg as the additive arithmetic function
ws(n)= > 1. (2.9)
pln, p€S

Lemma 2.4. Let m be an odd positive integer, not divisible by any bad
prime. If ws(m) = k+2 > 2 then 2"m ¢ A(P) for all h, 0 < h < k. In other
words, if 2"m € A(P), then h > ws(m) — 1 holds.
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PROOF. Let us write m=m'm”, with m’= Hp\mpesp and m”= lempgs p.
From (1.10), if n = 2¥m then

mSa(m, k) Zu ( ) Z Z w(d”)o (A, ﬁ) . (2.110)
dfm &'\’ d”m?
Let us write d’ = p;, ---p;; and take some ps from S. If j is even then pu(d’) =1
and, from the definition of a coherent set, d’ = 2! (mod ¢) for some ¢ (depending
ond), 0<t<r—1. Whereas, if j is odd then p(d')= —1 and d'= 2tlp§1 (mod q)
for some t' (depending on d’), 0 < ¢ < r — 1. From (1.7), we obtain

' L n k1 i 7 s

wu(d)o (.A, d’d”) =0 (A, d”) (mod 2771 if j is even, (2.11)
y n _ nps k1 e

w(d)o (A, o d,,) = J(A, = ) (mod 2¥1)  if j is odd. (2.12)

Since @ = ws(m) = k + 2 > 0, the number of d’ with odd j is equal to that with
even j and is given by

(=) (e

From (2.10), we obtain
mSa(m, k) =271 Z (d) ( (A,%) -0 (.A, n;?,s)) (mod 2FF1)) (2.13)

&’ |m”
which, as a = ws(m) = k+2, gives S4(m, k) =0 (mod 2**1), so that from (1.8),
O

Let us assume that £'(¢) # 0 so that there exists a coherent set C with r
semi-bad classes modulo ¢; we associate to C the set of primes S defined by (2.8)
and we denote by @ = Q(q) and N' = N (q) the sets

Q= {pprime, p|q} and N = {pprime, p¢ BUS and ged(p,2q) = 1},
so that the whole set of primes is equal to BUSUN UQU{2}. For n > 1, let us
define the multiplicative arithmetic function

5(n) {1 ifpln=pgB (ie.pe SUNUQU{2})
n)=

0 otherwise.

and for z > 1,

V(z) = Vy(z) = > 5(n). (2.15)

n>1, n2vs(M<g
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Lemma 2.5. Under the above notation, we have

Viz) = Vy(z) = oq<a’>, (2.16)

(log m)c(q)ﬁ
where ¢(q) is given by (2.5).
PROOF. To prove (2.16), one should consider, for complex s with R(s) > 1,

F(s) =) <5(”) (2.17)

et nzws(n))s

the series

This Dirichet series has an Euler’s product given by
Fis)= ][ <11>1 1T (1+1) (2.18)
ps 92s (ps _ 1) ’ !
pENUQU{2}

which can be written as

F(s)=H(s) [ <1 - 1>1 I (1 - ;) 7 (2.19)

His)= ] (1 - pls)l 11 (1 + 2(1)1_1)> (1 - pl) o (2.20)

pEQU{2} peES

By applying Selberg—Delange’s formula (cf. [8], Théoréme 1 and [9], Lemma 4.5),
we obtain some constant ¢4 such that

T zlog logx)
Vi) =cp——— + 0, | =227 . 2.21
e o= (221)
The constant ¢4 is somewhat complicated, it is given by

CH(1)

==t (2.22)
I'(1 —cla) 55)
where I' is the gamma function,
2 1 1\?
H1) =] (1 + ) (1 — ) (2.23)
v(9) Sos 2(p—1) p
and . w
-1 =1 1—c(q) =2
1 1\ 2 1 »(a)
e-IL(-) Il-5) me-)
peEN p pES p 2 p

where in the third product, p runs over all primes. ([
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3. Proof of the results

PROOF OF THEOREM 2.1. If » = ¢(q) then 2 is a generator of (Z/qZ)*, all
primes are bad but 2 and the prime factors of ¢; hence by Theorem 2 of [5],
A(P,z) = O((logx)") for some constant k, so that we may remove the case

r=¢(q).

If &'(q) = 0, from (2.5), ¢ = 1 holds and (2.6) follows from (1.16).

We now assume &’(q) # 0, so that, from Lemma 2.2, there exists a coherent
set C satisfying |C| = r. We define the set of primes S by (2.8). Let us write V(z)
defined in (2.15) as

with Viz)=V'(z)+ V" (z), (3.1)

V'(z) = Z d(n) and V7 (z)= Z d(n).
n>1, n2¢s(™ <z, ws(n)=0 n>1, n2vs(M <z, ws(n)>1
Similarly, we write A(P,z) = ZaGA(P), a<a 1= A"+ A", with
Al = > 1 and A" = > 1.
a€A(P), alz, ws(a)=0 a€A(P), a<lz, ws(a)>1
An element a of A(P) counted in A’ is free of bad and semi-bad primes, so that
A" <V'(z) <V'(22). (3.2)

By Lemma 2.4, an element a of A(P) counted in A” is of the form n2%s(™~1 with
ws(n) = ws(a) > 1; hence
A < V7 (2z). (3.3)

Therefore, from (3.1)-(3.3), we get
A(Pjz)=A"+ A7 <V'(22) + V7 (22) = V(2x)
and (2.6) follows from Lemma 2.5. O
PROOF OF THEOREM 2.2. Just use Theorem 2.1 and (1.13). O
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