On the counting function of sets with even partition functions

By FETHI BEN SAÏD (Monastir) and JEAN-LOUIS NICOLAS (Villeurbanne)

To Kálmán Győry, Attila Pethő, János Pintz and András Sárközy
for their nice works in number theory

Abstract

Let q be an odd positive integer and $P \in \mathbb{F}_{2}[z]$ be of order q and such that $P(0)=1$. We denote by $\mathcal{A}=\mathcal{A}(P)$ the unique set of positive integers satisfying $\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n} \equiv P(z)(\bmod 2)$, where $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}. In [5], it is proved that if $A(P, x)$ is the counting function of the set $\mathcal{A}(P)$ then $A(P, x) \ll x(\log x)^{-r / \varphi(q)}$, where r is the order of 2 modulo q and φ is the Euler's function. In this paper, we improve on the constant $c=c(q)$ for which $A(P, x) \ll$ $x(\log x)^{-c}$.

1. Introduction

Let \mathbb{N} be the set of positive integers and $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a subset of \mathbb{N}. For $n \in \mathbb{N}$, we denote by $p(\mathcal{A}, n)$ the number of partitions of n with parts in \mathcal{A}, i.e. the number of solutions of the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots=n
$$

in non-negative integers x_{1}, x_{2}, \ldots We set $p(\mathcal{A}, 0)=1$.
Let \mathbb{F}_{2} be the field with two elements and $f=1+\epsilon_{1} z+\cdots+\epsilon_{N} z^{N}+\cdots \in$ $\mathbb{F}_{2}[[z]]$. NiCOLAS et al. proved (see [13], [4] and [11]) that there is a unique subset

[^0]$\mathcal{A}=\mathcal{A}(f)$ of \mathbb{N} such that
\[

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n} \equiv f(z)(\bmod 2) \tag{1.1}
\end{equation*}
$$

\]

When f is a rational fraction, it has been shown in [11] that there is a polynomial U such that $\mathcal{A}(f)$ can be easily determined from $\mathcal{A}(U)$. When f is a general power series, nothing about the behaviour of $\mathcal{A}(f)$ is known. From now on, we shall restrict ourselves to the case $f=P$, where

$$
P=1+\epsilon_{1} z+\cdots+\epsilon_{N} z^{N} \in \mathbb{F}_{2}[z]
$$

is a polynomial of degree $N \geq 1$.
Let $A(P, x)$ be the counting function of the set $\mathcal{A}(P)$, i.e.

$$
\begin{equation*}
A(P, x)=|\{n: 1 \leq n \leq x, n \in \mathcal{A}(P)\}| . \tag{1.2}
\end{equation*}
$$

In [10], it is proved that

$$
\begin{equation*}
A(P, x) \geq \frac{\log x}{\log 2}-\frac{\log (N+1)}{\log 2} \tag{1.3}
\end{equation*}
$$

More attention was paid on upper bounds for $A(P, x)$. In [5, Theorem 3], it was observed that when P is a product of cyclotomic polynomials, the set $\mathcal{A}(P)$ is a union of geometric progressions of quotient 2 and so $A(P, x)=\mathcal{O}(\log x)$.

Let the decomposition of P into irreducible factors over $\mathbb{F}_{2}[z]$ be

$$
P=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{l}^{\alpha_{l}} .
$$

We denote by $\beta_{i}, 1 \leq i \leq l$, the order of $P_{i}(z)$, that is the smallest positive integer such that $P_{i}(z)$ divides $1+z^{\beta_{i}}$ in $\mathbb{F}_{2}[z]$; it is known that β_{i} is odd (cf. [12]). We set

$$
\begin{equation*}
q=q(P)=\operatorname{lcm}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right) . \tag{1.4}
\end{equation*}
$$

If $q=1$ then $P(z)=1+z$ and $\mathcal{A}(P)=\left\{2^{k}, k \geq 0\right\}$, so that $A(P, x)=\mathcal{O}(\log x)$. We may suppose that $q \geq 3$. Now, let

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sum_{d \mid n, d \in \mathcal{A}} d=\sum_{d \mid n} d \chi(\mathcal{A}, d), \tag{1.5}
\end{equation*}
$$

where $\chi(\mathcal{A},$.$) is the characteristic function of the set \mathcal{A}$,

$$
\chi(\mathcal{A}, d)= \begin{cases}1 & \text { if } d \in \mathcal{A} \\ 0 & \text { otherwise }\end{cases}
$$

In [6] (see also [3] and [2]), it is proved that for all $k \geq 0, q$ is a period of the sequence $\left(\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod 2^{k+1}\right)_{n \geq 1}$, i.e.

$$
\begin{equation*}
n_{1} \equiv n_{2}(\bmod q) \Rightarrow \sigma\left(\mathcal{A}, 2^{k} n_{1}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{2}\right)\left(\bmod 2^{k+1}\right) \tag{1.6}
\end{equation*}
$$

and q is the smallest integer such that (1.6) holds for all $k^{\prime} s$. Moreover, if n_{1} and n_{2} satisfy $n_{2} \equiv 2^{a} n_{1}(\bmod q)$ for some $a \geq 0$, then

$$
\begin{equation*}
\sigma\left(\mathcal{A}, 2^{k} n_{2}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{1}\right)\left(\bmod 2^{k+1}\right) \tag{1.7}
\end{equation*}
$$

If m is odd and $k \geq 0$, let

$$
\begin{equation*}
S_{\mathcal{A}}(m, k)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+\ldots+2^{k} \chi\left(\mathcal{A}, 2^{k} m\right) \tag{1.8}
\end{equation*}
$$

It follows that for $n=2^{k} m$, one has

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sigma\left(\mathcal{A}, 2^{k} m\right)=\sum_{d \mid m} d S_{\mathcal{A}}(d, k) \tag{1.9}
\end{equation*}
$$

which, by Möbius inversion formula, gives

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k)=\sum_{d \mid m} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right) \tag{1.10}
\end{equation*}
$$

where μ is the Möbius's function and $\bar{m}=\prod_{p \mid m} p$ is the radical of m, with $\overline{1}=1$.
In [7] and [9], precise descriptions of the sets $\mathcal{A}\left(1+z+z^{3}\right)$ and $\mathcal{A}\left(1+z+z^{3}+\right.$ $\left.z^{4}+z^{5}\right)$ are given and asymptotics to the related counting functions are obtained,

$$
\begin{array}{ll}
A\left(1+z+z^{3}, x\right) \sim c_{1} \frac{x}{(\log x)^{\frac{3}{4}}}, & x \rightarrow \infty \\
A\left(1+z+z^{3}+z^{4}+z^{5}, x\right) \sim c_{2} \frac{x}{(\log x)^{\frac{1}{4}}}, & x \rightarrow \infty \tag{1.12}
\end{array}
$$

where $c_{1}=0.937 \ldots, c_{2}=1.496 \ldots$ In [1], the sets $\mathcal{A}(P)$ are considered when P is irreducible of prime order q and such that the order of 2 in $(\mathbb{Z} / q \mathbb{Z})^{*}$ is $\frac{q-1}{2}$. This situation is similar to that of $\mathcal{A}\left(1+z+z^{3}\right)$, and formula (1.11) can be extended to $A(P, x) \sim c^{\prime} x(\log x)^{-3 / 4}, x \rightarrow \infty$, for some constant c^{\prime} depending on P.

Let $P=Q R$ be the product of two coprime polynomials in $\mathbb{F}_{2}[z]$. In [4], the following is given

$$
\begin{equation*}
A(P, x) \leq A(Q, x)+A(R, x) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
|A(P, x)-A(R, x)| \leq \sum_{0 \leq i \leq \frac{\log x}{\log 2}} A\left(Q, \frac{x}{2^{i}}\right) \tag{1.14}
\end{equation*}
$$

As an application of (1.14), choosing $Q=1+z+z^{3}, R=1+z+z^{3}+z^{4}+z^{5}$ and $P=Q R$, we get from (1.11)-(1.14),

$$
A(P, x) \sim A(R, x) \sim c_{2} x(\log x)^{-1 / 4}, \quad x \rightarrow \infty
$$

In [5], a claim of Nicolas and SÁrközy [15], that some polynomials with $A(P, x) \asymp x$ may exist, was disapproved. More precisely, the following was obtained

Theorem 1.1. Let $P \in \mathbb{F}_{2}[z]$ be such that $P(0)=1, \mathcal{A}=\mathcal{A}(P)$ be the unique set obtained from (1.1) and q be the odd number defined by (1.4). Let r be the order of 2 modulo q, that is the smallest positive integer such that $2^{r} \equiv 1$ $(\bmod q)$. We shall say that a prime $p \neq 2$ is a bad prime if

$$
\begin{equation*}
\exists i, \quad 0 \leq i \leq r-1 \text { and } p \equiv 2^{i}(\bmod q) . \tag{1.15}
\end{equation*}
$$

(i) If p is a bad prime, we have $\operatorname{gcd}(p, n)=1$ for all $n \in \mathcal{A}$.
(ii) There exists an absolute constant c_{3} such that for all $x>1$,

$$
\begin{equation*}
A(P, x) \leq 7\left(c_{3}\right)^{r} \frac{x}{(\log x)^{\frac{r}{\varphi(q)}}}, \tag{1.16}
\end{equation*}
$$

where φ is Euler's function.

2. The sets of bad and semi-bad primes

Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us call "bad classes" the elements of

$$
\begin{equation*}
\mathcal{E}(q)=\left\{1,2, \ldots, 2^{r-1}\right\} \subset(\mathbb{Z} / q \mathbb{Z})^{*} \tag{2.1}
\end{equation*}
$$

From (1.15), we know that an odd prime p is bad if $p \bmod q$ belongs to $\mathcal{E}(q)$. The set of bad primes will be denoted by \mathcal{B}. The fact that no element of $\mathcal{A}(P)$ is divisible by a bad prime (cf. Theorem 1.1 (i)) has given (cf. [5]) the upper bound (1.16). Two other sets of primes will be used to improve (1.16) cf. Theorem 2.1 below.

Remark 2.1. 2 is not a bad prime although it is a bad class.
Definition 2.1. A class of $(\mathbb{Z} / q \mathbb{Z})^{*}$ is said semi-bad if it does not belong to $\mathcal{E}(q)$ and its square does. A prime p is called semi-bad if its class modulo q is semi-bad. We denote by $\mathcal{E}^{\prime}(q)$ the set of semi-bad classes, so that

$$
p \text { semi-bad } \Longleftrightarrow p \bmod q \in \mathcal{E}^{\prime}(q)
$$

We denote by $\left|\mathcal{E}^{\prime}(q)\right|$ the number of elements of $\mathcal{E}^{\prime}(q)$.

Lemma 2.1. Let q be an odd integer $\geq 3, r$ be the order of 2 modulo q and

$$
q_{2}= \begin{cases}1 & \text { if } 2 \text { is a square modulo } q \\ 0 & \text { if not. }\end{cases}
$$

The number $\left|\mathcal{E}^{\prime}(q)\right|$ of semi-bad classes modulo q is given by

$$
\begin{align*}
\left|\mathcal{E}^{\prime}(q)\right| & =2^{\omega(q)}\left(\left\lfloor\frac{r+1}{2}\right\rfloor+q_{2}\left\lfloor\frac{r}{2}\right\rfloor\right)-r \\
& = \begin{cases}r\left(2^{\omega(q)-1}-1\right) & \text { if } r \text { is even and } q_{2}=0 \\
r\left(2^{\omega(q)}-1\right) & \text { otherwise, }\end{cases} \tag{2.2}
\end{align*}
$$

where $\omega(q)$ is the number of distinct prime factors of q and $\lfloor x\rfloor$ is the floor of x.
Proof. We have to count the number of solutions of the r congruences

$$
E_{i}: x^{2} \equiv 2^{i}(\bmod q), \quad 0 \leq i \leq r-1
$$

which do not belong to $\mathcal{E}(q)$. The number of solutions of E_{0} is $2^{\omega(q)}$. The contribution of E_{i} when i is even is equal to that of E_{0} by the change of variables $x=2^{i / 2} \xi$, so that the total number of solutions, in $(\mathbb{Z} / q \mathbb{Z})^{*}$, of the $E_{i}^{\prime} s$ for i even is equal to $\left\lfloor\frac{r+1}{2}\right\rfloor 2^{\omega(q)}$.

The number of odd $i^{\prime} s, 0 \leq i \leq r-1$, is equal to $\left\lfloor\frac{r}{2}\right\rfloor$. The contribution of all the $E_{i}^{\prime} s$ for these $i^{\prime} s$ are equal and vanish if $q_{2}=0$. When $q_{2}=1, E_{1}$ has $2^{\omega(q)}$ solutions in $(\mathbb{Z} / q \mathbb{Z})^{*}$. Hence the total number of solutions, in $(\mathbb{Z} / q \mathbb{Z})^{*}$, of the $E_{i}^{\prime} s$ for i odd is equal to $q_{2}\left\lfloor\frac{r}{2}\right\rfloor 2^{\omega(q)}$.

Now, we have to remove those solutions which are in $\mathcal{E}(q)$. But any element $2^{i}, 0 \leq i \leq r-1$, from $\mathcal{E}(q)$ is a solution of the congruence $x^{2} \equiv 2^{j}(\bmod q)$, where $j=2 i \bmod r$. Hence

$$
\left|\mathcal{E}^{\prime}(q)\right|=2^{\omega(q)}\left(\left\lfloor\frac{r+1}{2}\right\rfloor+q_{2}\left\lfloor\frac{r}{2}\right\rfloor\right)-r .
$$

The second formula in (2.2) follows by noting that $q_{2}=1$ when r is odd.
Definition 2.2. A set of semi-bad classes is called a coherent set if it is not empty and if the product of any two of its elements is a bad class.

Lemma 2.2. Let b be a semi-bad class; then

$$
\mathcal{C}_{b}=\left\{b, 2 b, \ldots, 2^{r-1} b\right\}
$$

is a coherent set. There are no coherent sets with more than r elements.

Proof. First, we observe that, for $0 \leq u \leq r-1,2^{u} b$ is semi-bad and, for $0 \leq u<v \leq r-1,\left(2^{u} b\right)\left(2^{v} b\right)$ is bad so that \mathcal{C}_{b} is coherent.

Further, let \mathcal{F} be a set of semi-bad classes with more than r elements; there exists in \mathcal{F} two semi-bad classes a and b such that $a \notin \mathcal{C}_{b}$. Let us prove that $a b$ is not bad. Indeed, if $a b \equiv 2^{u}(\bmod q)$ for some u, we would have $a \equiv$ $2^{u} b^{-1}(\bmod q)$. But, as b is semi-bad, b^{2} is bad, i.e. $b^{2} \equiv 2^{v}(\bmod q)$ for some v, which would imply $b \equiv 2^{v} b^{-1}(\bmod q), b^{-1} \equiv b 2^{-v}(\bmod q), a \equiv$ $2^{u-v} b(\bmod q)$ and $a \in \mathcal{C}_{b}$, a contradiction. Therefore, \mathcal{F} is not coherent.

Lemma 2.3. If $\omega(q)=1$ and $\varphi(q) / r$ is odd, then $\mathcal{E}^{\prime}(q)=\emptyset$; while if $\varphi(q) / r$ is even, the set of semi-bad classes $\mathcal{E}^{\prime}(q)$ is a coherent set of r elements.

If $\omega(q) \geq 2$, then $\mathcal{E}^{\prime}(q) \neq \emptyset$ and there exists a coherent set \mathcal{C} with $|\mathcal{C}|=r$.
Proof. If $\omega(q)=1, q$ is a power of a prime number and the group $(\mathbb{Z} / q \mathbb{Z})^{*}$ is cyclic. Let g be some generator and d be the smallest positive integer such that $g^{d} \in \mathcal{E}(q)$, where $\mathcal{E}(q)$ is given by (2.1). We have $d=\varphi(q) / r$, since d is the order of the $\operatorname{group}(\mathbb{Z} / q \mathbb{Z})^{*} / \mathcal{E}(q)$. The discrete logarithms of the bad classes are $0, d, 2 d, \ldots,(r-1) d$. The set $\mathcal{E}^{\prime}(q) \cup \mathcal{E}(q)$ is equal to the union of the solutions of the congruences

$$
\begin{equation*}
x^{2} \equiv g^{a d} \quad(\bmod q) \tag{2.3}
\end{equation*}
$$

for $0 \leq a \leq r-1$. By the change of variable $x=g^{t}$, (2.3) is equivalent to

$$
\begin{equation*}
2 t \equiv a d \quad(\bmod \varphi(q)) \tag{2.4}
\end{equation*}
$$

Let us assume first that d is odd so that r is even. If a is odd, the congruence (2.4) has no solution while, if a is even, say $a=2 b$, the solutions of (2.4) are $t \equiv b d(\bmod \varphi(q) / 2)$ i.e.

$$
t \equiv b d \quad(\bmod \varphi(q)) \quad \text { or } \quad t \equiv b d+(r / 2) d \quad(\bmod \varphi(q)),
$$

which implies

$$
\mathcal{E}^{\prime}(q) \cup \mathcal{E}(q)=\left\{g^{0}, g^{d}, \ldots, g^{(r-1) d}\right\}=\mathcal{E}(q)
$$

and $\mathcal{E}^{\prime}(q)=\emptyset$.
Let us assume now that d is even. The congruence (2.4) is equivalent to

$$
t \equiv a d / 2 \quad(\bmod \varphi(q) / 2)
$$

which implies $\mathcal{E}^{\prime}(q) \cup \mathcal{E}(q)=\left\{g^{\alpha d / 2}, 0 \leq \alpha \leq 2 r-1\right\}$ yielding

$$
\mathcal{E}^{\prime}(q)=\left\{g^{\frac{d}{2}}, g^{3 \frac{d}{2}}, \ldots, g^{(2 r-1) \frac{d}{2}}\right\}=\mathcal{C}_{b}
$$

(with $b=\left(g^{\frac{d}{2}}\right)$), which is coherent by Lemma 2.2 .
If $\omega(q) \geq 2$, then, by Lemma 2.1, $\mathcal{E}^{\prime}(q) \neq \emptyset$. Let $b \in \mathcal{E}^{\prime}(q)$; by Lemma 2.2, the set \mathcal{C}_{b} is a coherent set of r elements.

Let us set

$$
c(q)= \begin{cases}\frac{3}{2} & \text { if } \mathcal{E}^{\prime}(q) \neq \emptyset \tag{2.5}\\ 1 & \text { if } \mathcal{E}^{\prime}(q)=\emptyset\end{cases}
$$

We shall prove
Theorem 2.1. Let $P \in \mathbb{F}_{2}[z]$ with $P(0)=1, q$ be the odd integer defined by (1.4) and r be the order of 2 modulo q. We denote by $\mathcal{A}(P)$ the set obtained from (1.1) and by $A(P, x)$ its counting function. When x tends to infinity, we have

$$
\begin{equation*}
A(P, x)<_{q} \frac{x}{(\log x)^{c(q) \frac{r}{\varphi(q)}}} \tag{2.6}
\end{equation*}
$$

where $c(q)$ is given by (2.5).
When P is irreducible, q is prime and $r=\frac{q-1}{2}$, the upper bound (2.6) is best possible; indeed in this case, from [1], we have $A(P, x) \asymp \frac{x}{(\log x)^{3 / 4}}$. As $\varphi(q) / r=2$, Lemma 2.3 implies $\mathcal{E}^{\prime}(q) \neq \emptyset$ so that $c=3 / 2$ and in (2.6), the exponent of $\log x$ is $3 / 4$. Moreover, formula (1.12) gives the optimality of (2.6) for some prime ($q=31$) satisfying $r=\frac{q-1}{6}$.

Theorem 2.2. Let $P \in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and $P=P_{1} P_{2} \cdots P_{j}$, where the $P_{i}^{\prime} s$ are irreducible polynomials in $\mathbb{F}_{2}[z]$. For $1 \leq i \leq j$, we denote by q_{i} the order of P_{i}, by r_{i} the order of 2 modulo q_{i} and we set $c=$ $\min _{1 \leq i \leq j} c\left(q_{i}\right) r_{i} / \varphi\left(q_{i}\right)$, where $c\left(q_{i}\right)$ is given by (2.5). When x tends to infinity, we have

$$
\begin{equation*}
A(P, x) \ll \frac{x}{(\log x)^{c}} \tag{2.7}
\end{equation*}
$$

where the symbol \ll depends on the $q_{i}^{\prime} s, 1 \leq i \leq j$.
Let \mathcal{C} be a coherent set of semi-bad classes modulo q. Let us associate to \mathcal{C} the set of primes \mathcal{S} defined by

$$
\begin{equation*}
p \in \mathcal{S} \quad \Longleftrightarrow \quad p \bmod \quad q \in \mathcal{C} \tag{2.8}
\end{equation*}
$$

We define $\omega_{\mathcal{S}}$ as the additive arithmetic function

$$
\begin{equation*}
\omega_{\mathcal{S}}(n)=\sum_{p \mid n, p \in \mathcal{S}} 1 \tag{2.9}
\end{equation*}
$$

Lemma 2.4. Let m be an odd positive integer, not divisible by any bad prime. If $\omega_{\mathcal{S}}(m)=k+2 \geq 2$ then $2^{h} m \notin \mathcal{A}(P)$ for all $h, 0 \leq h \leq k$. In other words, if $2^{h} m \in \mathcal{A}(P)$, then $h \geq \omega_{\mathcal{S}}(m)-1$ holds.

Proof. Let us write $\bar{m}=m^{\prime} m^{\prime \prime}$, with $m^{\prime}=\prod_{p \mid \bar{m}, p \in \mathcal{S}} p$ and $m^{\prime \prime}=\prod_{p \mid \bar{m}, p \notin \mathcal{S}} p$. From (1.10), if $n=2^{k} m$ then

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d^{\prime} \mid m^{\prime}} \sum_{d^{\prime \prime} \mid m "} \mu\left(d^{\prime}\right) \mu\left(d^{\prime \prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) . \tag{2.10}
\end{equation*}
$$

Let us write $d^{\prime}=p_{i_{1}} \cdots p_{i_{j}}$ and take some $p_{\mathcal{S}}$ from \mathcal{S}. If j is even then $\mu\left(d^{\prime}\right)=1$ and, from the definition of a coherent set, $d^{\prime} \equiv 2^{t}(\bmod q)$ for some t (depending on $\left.d^{\prime}\right), 0 \leq t \leq r-1$. Whereas, if j is odd then $\mu\left(d^{\prime}\right)=-1$ and $d^{\prime} \equiv 2^{t^{\prime}} p_{\mathcal{S}}^{-1}(\bmod q)$ for some t^{\prime} (depending on d^{\prime}), $0 \leq t^{\prime} \leq r-1$. From (1.7), we obtain

$$
\begin{array}{ll}
\mu\left(d^{\prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) \equiv \sigma\left(\mathcal{A}, \frac{n}{d^{\prime \prime}}\right)\left(\bmod 2^{k+1}\right) & \text { if } j \text { is even, } \\
\mu\left(d^{\prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) \equiv-\sigma\left(\mathcal{A}, \frac{n p_{\mathcal{S}}}{d^{\prime \prime}}\right)\left(\bmod 2^{k+1}\right) & \tag{2.12}\\
\text { if } j \text { is odd. }
\end{array}
$$

Since $\alpha=\omega_{\mathcal{S}}(\bar{m})=k+2>0$, the number of d^{\prime} with odd j is equal to that with even j and is given by

$$
1+\binom{\alpha}{2}+\binom{\alpha}{4}+\cdots=\binom{\alpha}{1}+\binom{\alpha}{3}+\cdots=2^{\alpha-1}
$$

From (2.10), we obtain

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k) \equiv 2^{\alpha-1} \sum_{d^{\prime \prime} \mid m "} \mu\left(d^{\prime \prime}\right)\left(\sigma\left(\mathcal{A}, \frac{n}{d "}\right)-\sigma\left(\mathcal{A}, \frac{n p_{\mathcal{S}}}{d^{\prime \prime}}\right)\right)\left(\bmod 2^{k+1}\right) \tag{2.13}
\end{equation*}
$$

which, as $\alpha=\omega_{\mathcal{S}}(m)=k+2$, gives $S_{\mathcal{A}}(m, k) \equiv 0\left(\bmod 2^{k+1}\right)$, so that from (1.8),

$$
\begin{equation*}
\chi(\mathcal{A}, m)=\chi(\mathcal{A}, 2 m)=\cdots=\chi\left(\mathcal{A}, 2^{k} m\right)=0 . \tag{2.14}
\end{equation*}
$$

Let us assume that $\mathcal{E}^{\prime}(q) \neq \emptyset$ so that there exists a coherent set \mathcal{C} with r semi-bad classes modulo q; we associate to \mathcal{C} the set of primes \mathcal{S} defined by (2.8) and we denote by $\mathcal{Q}=\mathcal{Q}(q)$ and $\mathcal{N}=\mathcal{N}(q)$ the sets

$$
\mathcal{Q}=\{p \text { prime }, p \mid q\} \quad \text { and } \quad \mathcal{N}=\{p \text { prime, } p \notin \mathcal{B} \cup \mathcal{S} \text { and } \operatorname{gcd}(p, 2 q)=1\}
$$

so that the whole set of primes is equal to $\mathcal{B} \cup \mathcal{S} \cup \mathcal{N} \cup \mathcal{Q} \cup\{2\}$. For $n \geq 1$, let us define the multiplicative arithmetic function

$$
\delta(n)= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \notin \mathcal{B} \quad \text { (i.e. } p \in \mathcal{S} \cup \mathcal{N} \cup \mathcal{Q} \cup\{2\}) \\ 0 & \text { otherwise }\end{cases}
$$

and for $x>1$,

$$
\begin{equation*}
V(x)=V_{q}(x)=\sum_{n \geq 1, n 2^{\omega_{\mathcal{S}}(n)} \leq x} \delta(n) . \tag{2.15}
\end{equation*}
$$

Lemma 2.5. Under the above notation, we have

$$
\begin{equation*}
V(x)=V_{q}(x)=\mathcal{O}_{q}\left(\frac{x}{(\log x)^{c(q) \frac{r}{\varphi(q)}}}\right) \tag{2.16}
\end{equation*}
$$

where $c(q)$ is given by (2.5).
Proof. To prove (2.16), one should consider, for complex s with $\mathcal{R}(s)>1$, the series

$$
\begin{equation*}
F(s)=\sum_{n \geq 1} \frac{\delta(n)}{\left(n 2^{\omega_{\mathcal{S}}(n)}\right)^{s}} \tag{2.17}
\end{equation*}
$$

This Dirichet series has an Euler's product given by

$$
\begin{equation*}
F(s)=\prod_{p \in \mathcal{N} \cup \mathcal{Q} \cup\{2\}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2^{s}\left(p^{s}-1\right)}\right) \tag{2.18}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
F(s)=H(s) \prod_{p \in \mathcal{N}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1-\frac{1}{p^{s}}\right)^{-\frac{1}{2^{s}}} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
H(s)=\prod_{p \in \mathcal{Q} \cup\{2\}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2^{s}\left(p^{s}-1\right)}\right)\left(1-\frac{1}{p^{s}}\right)^{\frac{1}{2^{s}}} \tag{2.20}
\end{equation*}
$$

By applying Selberg-Delange's formula (cf. [8], Théorème 1 and [9], Lemma 4.5), we obtain some constant c_{4} such that

$$
\begin{equation*}
V(x)=c_{4} \frac{x}{(\log x)^{c(q) \frac{r}{\varphi(q)}}}+\mathcal{O}_{q}\left(\frac{x \log \log x}{\log x}\right) . \tag{2.21}
\end{equation*}
$$

The constant c_{4} is somewhat complicated, it is given by

$$
\begin{equation*}
c_{4}=\frac{C H(1)}{\Gamma\left(1-c(q) \frac{r}{\varphi(q)}\right)}, \tag{2.22}
\end{equation*}
$$

where Γ is the gamma function,

$$
\begin{equation*}
H(1)=\frac{2 q}{\varphi(q)} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2(p-1)}\right)\left(1-\frac{1}{p}\right)^{\frac{1}{2}} \tag{2.23}
\end{equation*}
$$

and

$$
C=\prod_{p \in \mathcal{N}}\left(1-\frac{1}{p}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1-\frac{1}{p}\right)^{\frac{-1}{2}} \prod_{p}\left(1-\frac{1}{p}\right)^{1-c(q) \frac{r}{\varphi(q)}}
$$

where in the third product, p runs over all primes.

3. Proof of the results

Proof of Theorem 2.1. If $r=\varphi(q)$ then 2 is a generator of $(\mathbb{Z} / q \mathbb{Z})^{*}$, all primes are bad but 2 and the prime factors of q; hence by Theorem 2 of [5], $A(P, x)=\mathcal{O}\left((\log x)^{\kappa}\right)$ for some constant κ, so that we may remove the case $r=\varphi(q)$.

If $\mathcal{E}^{\prime}(q)=\emptyset$, from (2.5), $c=1$ holds and (2.6) follows from (1.16).
We now assume $\mathcal{E}^{\prime}(q) \neq \emptyset$, so that, from Lemma 2.2 , there exists a coherent set \mathcal{C} satisfying $|\mathcal{C}|=r$. We define the set of primes \mathcal{S} by (2.8). Let us write $V(x)$ defined in (2.15) as
with

$$
\begin{equation*}
V(x)=V^{\prime}(x)+V^{\prime \prime}(x) \tag{3.1}
\end{equation*}
$$

$V^{\prime}(x)=\sum_{n \geq 1, n 2^{\omega_{\mathcal{S}}(n)} \leq x, \omega_{\mathcal{S}}(n)=0} \delta(n) \quad$ and $\quad V^{\prime \prime}(x)=\sum_{n \geq 1, n 2^{\omega_{\mathcal{S}}(n)} \leq x, \omega_{\mathcal{S}}(n) \geq 1} \delta(n)$.
Similarly, we write $A(P, x)=\sum_{a \in \mathcal{A}(P), a \leq x} 1=A^{\prime}+A^{\prime}$, with

$$
A^{\prime}=\sum_{a \in \mathcal{A}(P),} 1 \text { and } A^{\prime \prime}=\sum_{a \in \mathcal{A}(P), \omega_{\mathcal{S}}(a)=0} 1
$$

An element a of $\mathcal{A}(P)$ counted in A^{\prime} is free of bad and semi-bad primes, so that

$$
\begin{equation*}
A^{\prime} \leq V^{\prime}(x) \leq V^{\prime}(2 x) \tag{3.2}
\end{equation*}
$$

By Lemma 2.4, an element a of $\mathcal{A}(P)$ counted in A " is of the form $n 2^{\omega_{\mathcal{S}}(n)-1}$ with $\omega_{\mathcal{S}}(n)=\omega_{\mathcal{S}}(a) \geq 1$; hence

$$
\begin{equation*}
A " \leq V^{\prime \prime}(2 x) \tag{3.3}
\end{equation*}
$$

Therefore, from (3.1)-(3.3), we get

$$
A(P, x)=A^{\prime}+A^{\prime \prime} \leq V^{\prime}(2 x)+V^{\prime \prime}(2 x)=V(2 x)
$$

and (2.6) follows from Lemma 2.5.
Proof of Theorem 2.2. Just use Theorem 2.1 and (1.13).
Acknowledgements. It is a great pleasure for us to thank András SÁrKÖZY for initiating the study of the sets $\mathcal{A}(P)$ and for all the mathematics that we have learnt from him.

References

[1] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on, Int. J. Number Theory 5, no. 3 (2009), 1-22.
[2] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions, Acta Math. Hungar. 112(1-2) (2006), 25-37.
[3] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions, J. Number Theory 95 (2002), 209-226.
[4] F. Ben Saïd, On some sets with even valued partition function, Ramanujan J. 9 (2005), 63-75.
[5] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts \mathcal{A} such that the partition function $p(\mathcal{A}, n)$ takes even values for n large enough, Discrete Math. 306 (2006), 1115-1125.
[6] F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even, Acta Arith. 106 (2003), 183-196.
[7] F. Ben Saïd and J.-L. Nicolas, Even partition functions, Séminaire Lotharingien de Combinatoire (http//www.mat.univie.ac.at/~slc/), Vol. 46, 2002, B 46 i.
[8] F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange, Colloq. Math. 98, no. 2 (2003), 223-247.
[9] F. Ben Saïd, J.-L. Nicolas and A. Zekraoui, On the parity of generalised partition function III, J. Théor. Nombres Bordeaux 22 (2010), 51-78.
[10] Li-Xia Dai and Yong-Gao Chen, On the parity of the partition function, J. Number Theory 122 (2007), 283-289.
11] H. Lahouar, Fonctions de partitions à parité périodique, European J. of Combin. 24 (2003), 1089-1096.
[12] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, 1994, revised edition.
[13] J.-L. Nicolas, I. Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory 73 (1998), 292-317.
[14] J.-L. Nicolas and A. Sárközy, On the parity of partition functions, Illinois J. Math. 39 (1995), 586-597.
[15] J.-L. Nicolas and A. Sárközy, On the parity of generalised partition functions, in: Number theory for the millenium, III (Urbana, Il, 2000), 55-72, A. K. Peters, Natick, MA, 2002.

FETHI BEN SAÏD
UNIVERSITE DE MONASTIR
FACULTÉ DES SCIENCES DE MONASTIR
AVENUE DE L'ENVIRONNEMENT
5000 MONASTIR
TUNISIE
E-mail: Fethi.BenSaid@fsm.rnu.tn
JEAN-LOUIS NICOLAS
UNIVERSITÉ DE LYON
UNIVERSITÉ LYON 1, CNRS
INSTITUT CAMILE JORDAN, MATHÉMATIQUES
BATIMENT DOYEN JEAN BRACONNIER
UNIVERSITÉ CLAUDE BERNARD
21 AVENUE CLAUDE BERNARD
F-69622 VILLEURBANNE CEDEX
FRANCE
E-mail: jlnicola@in2p3.fr

[^0]: Mathematics Subject Classification: 11P83.
 Key words and phrases: sets with even partition functions, bad and semi-bad primes, order of a polynomial, Selberg-Delange formula.

