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Conjecture of Pomerance for some even integers
and odd primorials

By N. SARADHA (Mumbai)

Dedicated to Professors K. Győry, A. Pethő, J. Pintz and A. Sárközy

Abstract. We solve some cases of a conjecture of Pomerance concerning reduced

residue systems modulo k consisting of the first ϕ(k) primes not dividing k when k is

even or when k is an odd primorial, thus extending a recent result of Hajdu and Saradha.

1. Introduction

Let k > 1 be an integer. We denote by ϕ(k), Euler’s totient function and by

ω(k), the number of distinct prime divisors of k. We say that k is a P–integer if

the first ϕ(k) primes coprime to k form a reduced residue system modulo k. In

1980, Pomerance [5] proved the finiteness of P–integers and conjectured that

if k is a P–integer, then k ≤ 30.

This conjecture is still open. It is easy to check that the only P–integers less

than or equal to 30 are 2, 4, 6, 12, 18, 30. In fact, it has been verified by Hajdu

and Saradha [3] that

there are no other P–integers up to 5.5× 105.

Further it was shown that

the only prime P– integer is 2. (1)

This follows from the following general result proved in [3]. Let `(k) denote the

least prime divisor of k and we put `(1) = 1.
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If k is an integer with `(k) > log(k), then k is a P–integer if and only if

k ∈ {2, 4, 6}.
This result depends on explicit computations done by Hagedorn [2] on the

values of the Jacobsthal function. Note that this result does not include even

integers > 8 since 2 < log 8. In this note we extend the above result as follows.

Let α ≥ 0 be an integer. We write k = 2αk1 with 2 - k1.

Theorem 1.1. Let k = 2αk1 > 1 with k1 = 1 or `(k1) > (.88) log(k). Then k

is a P–integer if and only if k ∈ {2, 4, 6, 12, 18, 30}.
The following corollary is immediate and it extends (1).

Corollary 1.1. Let q be an odd prime.

(i) The only P–integers which are powers of 2 are 2 and 4.

(ii) Any integer of the form qβ with β < 1.136 q
log q is not a P–integer. In parti-

cular, none of the integers of the form q, q2 or q3 is a P–integer.

(iii) The only P–integers of the form 2q, 22q, 23q, 2q2 are 6, 12, 18.

Let Nh = p1 . . . ph i.e., product of the first h primes. These are called pri-

morials. In Theorem 3 of [3], it was shown that all primorials are not P–integers

except 2, 6 and 30. Here we consider odd primorials i.e.,

N ′
h = p2 . . . ph.

We show that

Theorem 1.2. All odd primorials are not P–integers.

2. Lemmas

We record some lemmas required for the proofs of Theorems 1.1 and 1.2. As

the proofs are similar to the proof of Theorem 2 of [3], we will be brief at many

places and give details only where the arguments are different. Let 2 = p1 < p2 <

. . . denote the sequence of all primes. For any positive real x, let log1 x = log(x)

and for t ≥ 2, logt(x) = log(logt−1(x)). We denote by P (k) the maximum of the

least primes in the reduced residue classes mod k. For any integer n > 1, let g(n)

denote the Jacobsthal function i.e., the least integer such that in any sequence of

g(n) consecutive integers there is an integer coprime to n. For the properties of

g(n), we refer to [1], [3] and [4] and the references mentioned therein. We begin

with some properties of g(n) that we need in this article.
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Lemma 2.1. For any integer n > 1, let N(n) denote its radical. Then

g(n) = g(N(n)). For any prime p, we have g(pα) = 2. If n is an odd integer, then

g(2n) = 2g(n). Further if `(n) > ω(n) + 1, then g(n) = ω(n) + 1.

The first two assertions follow from the definition of g(n). For the proof of

the third assertion we refer to Lemma 2.2 of [4] or the argument in Proposition 2.8

of [2]. The last assertion was an observation of Jacobsthal, see Erdős [1]. The

next lemma is due to Stevens [7] in which an explicit upper bound for g(k) is

given.

Lemma 2.2. We have g(k) ≤ 2ω(k)2+2e log(ω(k)) for all k > 1.

The next lemma gives estimates from Prime Number Theory due to Rosser

and Schoenfeld [6].

Lemma 2.3. Let pn denote the n-th prime. Then

(i) pn > n
(
log(n) + log2(n)− 3

2

)
for n > 1;

(ii) pn < n(log(n) + log2(n)) for n ≥ 6;

(iii) For x ≥ 2 write ϑ(x) =
∑

p≤x log(p). For any x ≥ 563 we have

x

(
1− 1

2 log(x)

)
< ϑ(x) < x

(
1 +

1

2 log(x)

)
.

It is well known that the normal order of ω(n) is log2(n). For the purpose

of this article we use the following explicit estimate for ω(k). Let k = 2αk1 with

k1 = 1 or `(k1) > (.88) log(k). Suppose k > 5.5 × 105. Then for k1 6= 1, we see

that

ω(k) = ω(k1)+1 <
log(k)

log2(k)− (.12)
+1 <

1.25 log(k)

log2(k)
< (.49) log(k) < `(k1). (2)

From the definition of P–integers and a result of Pomerance [5], we get the

following estimates for P (k).

Lemma 2.4. Let k be given. Suppose m is an integer such that gcd(m, k)=1

and 1 < m ≤ k
1+g(k) . Then k is a P–integer if and only if

(g(m)− 1)k < P (k) ≤ pϕ(k)+ω(k).

Let

δ1 =

{
0 if α > 0

1 if α = 0
and δ2 =

{
1 if α > 0

0 if α = 0.
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Suppose it is possible to choose m in Lemma 2.4 as the product of the first h

primes if k is odd and first h− 1 odd primes if k is even i.e.,

m = 2δ1p2p3 . . . ph. (3)

Then by Proposition 1.1 of Hagedorn [2] we get

g(m) ≥ 2ph−1 if δ1 = 1.

Hence by Lemma 2.1, if δ1 = 0 i.e., when m is odd, we get

g(m) =
1

2
g(2m) ≥ ph−1.

Thus for the choice of m as in (3), we have

g(m) ≥ 2δ1ph−1.

Now by Lemmas 2.4 and 2.3, we have

pϕ(k)+ω(k) > (2δ1ph−1 − 1)k > 2δ1(h log(h))k for h ≥ 8. (4)

When k = 2αk1 with `(k1) > (.88) log(k) and k > 5.5 × 105 we observe by (2)

and Lemma 2.1 that

g(k) = g(N(k)) = g(2δ2N(k1)) = 2δ2(ω(k1) + 1).

Also if k1 = 1, then g(k) = g(2α) = 2. Hence we have

g(k) = 2δ2(ω(k1) + 1) = 2δ2ω(k) for k > 5.5× 105. (5)

Further ϕ(k) < k
2δ2

. Hence using ϕ(k)+ω(k) ≤ k, the upper estimate for pn from

Lemma 2.3 (ii) and (2), we get

pϕ(k)+ω(k) ≤ p k

2δ2
+1+

1.25 log(k)
log2(k)

≤
(

k

2δ2
+1+

1.25 log(k)

log2(k)

)
(log(k)+ log2(k)) . (6)

Thus we have

pϕ(k)+ω(k) ≤
1.026

2δ2
k log(k) for k ≥ 1090. (7)

Applying (4) and (7) in Lemma 2.4, we obtain the following lemma.
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Lemma 2.5. Let k ≥ 1090, k = 2αk1 with k1 = 1 or `(k1) > (.88) log(k).

Then k is not a P–integer.

Proof. Let k ≥ 1090 and m = 2δ1p2 . . . ph with

h =

[
.85 log(k)

log2(k)

]
+ 1.

Then
.85 log(k)

log2(k)
< h <

.88 log(k)

log2(k)
.

Hence

ph < .88 log(k) < `(k1)

showing that gcd(m, k) = 1 and also using (2) and (5) we get

m < e.88 log(k) <
k log2(k)

2.5 log(k) + log2(k)
≤ k

1 + 2ω(k)
≤ k

1 + g(k)
.

On the other hand, using (4) and (7) in Lemma 2.4, we get

log(k) > 2δ1+δ2(.974)h log(h) > 1.948h log(h)

>
1.65 log(k)

log2(k)
{log2 k − .17− log3 k} > 1.07 log(k),

a contradiction. ¤

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We take k=2αk1 with k1=1 or `(k1)> .88 log(k).

By Lemma 2.5 and the computations made in [3] we may assume that

5.5× 105 < k < 1090. (8)

As in [3] we use “boot-strapping” technique and the explicit values of g(m) given

by the work of Hagedorn [2] to cover this range.

First, we take k odd. Then k = k1 > 1 and by (2), we have `(k) = `(k1) >

ω(k1)+1 = ω(k)+1. Hence by Lemma 2.1 we have g(k) = ω(k)+1 < log(k)+1.

Now we follow the argument exactly as in [3] (see pages 22-23) to show that no
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odd value of k in (8) is a P–integer. Next we take k even in the range given by

(8). Then by (5) and (2) we have,

g(k) ≤ 2ω(k) ≤ 2.5 log(k)

log2(k)
.

Suppose β1 < k ≤ β2. Let m = p2 . . . ph with a suitable h such that

ph < .88 log(β1) (9)

and

1 < m <
β1 log2(β1)

2.5 log(β1) + log2(β1)
. (10)

Then gcd(m, k) = 1 since `(k) > .88 log(k) > .88 log β1 > ph and we also have

m <
k log2 k

2.5 log(k) + log2(k)
≤ k

1 + g(k)
.

Then by Lemma 2.4 and (6), we find that k is a P–integer only if

g(m)− 1 < log(β2)

(
1

2
+

1

β2
+

1.25 log(β2)

β2 log2(β2)

)(
1 +

log2(β2)

log(β2)

)
. (11)

Thus when (11) is contradicted, then no value of k in (β1, β2] is a P–integer. We

begin with β1 = 5.5 × 105 and β2 = 107. Then ω(k) ≤ 1.25 log(β2)
log2(β2)

≤ 7.3 giving

g(k) ≤ 8. We choose h = 6. Then m = 3 · 5 · 7 · 11 · 13 and hence m < 5.5× 105/9

and g(m) = 1
2 × 22 = 11 so that the left hand side of (11) equals 10. On the

other hand, the right hand side of (11) does not exceed 9.5 giving the necessary

contradiction. Proceeding successively from 10α1 = 107, we give in Table 1, the

value αi = α for i > 1 such that k is taken in the range (10αi−1 , 10αi ], the value of

h such that m = p2 . . . ph satisfies (10) and the exact value of g(m) = 1
2g(2m) as

provided by Hagedorn (see Table 1 of [2]). One checks that (11) is contradicted

in each of the range specified, thereby proving the assertion of the theorem. ¤

h 7 8 10 13 20 23

g(m) 13 17 23 37 87 108

α 9 12 17 29 72 90

Table 1
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Proof of Theorem 1.2. We follow the argument as in the proof of The-

orem 3 of [3]. First we take ph > 1000 and we choose m = 2ph+1 . . . ph+θ with

ph+θ ≤ 1.777ph and such that

(i) m ≤ k

1 + g(k)
(ii) (g(m)− 1)k ≥ pϕ(k)+ω(k).

This would imply that k is not a P–integer. Condition (i) requires that

g(k) + 1 ≤ 1

2
(exp(2ϑ(ph))− exp(ϑ(ph+θ))) .

Using the upper bound for g(k) from Lemma 2.2, this amounts to checking

2 + 4h2+2e log(h) ≤ exp(2ϑ(ph))− exp(ϑ(ph+θ)).

As in [3] this inequality is verified by using approximate values of ϑ(x) given by

Lemma 2.3(iii) for x = ph ≥ 12000 and exact values of ϑ(ph) for 1000 < ph <

12000. The second condition (ii) leads to showing

g(m)− 1 ≥ ω(m) ≥ θ ≥ π(1.777ph)− h

≥ (

h∏

i=1

(
1− 1

pi

)
+

h

k
) (ϑ(ph) + log(ϑ(ph))) .

This is checked to be valid for ph > 1000. Thus no odd primorial with ph > 1000

is a P–integer. Now we assume that ph < 1000. In order to check all those

k = p2 . . . ph with ph < 1000, we proceed as follows. For each such k we find a

power of 2, say 2q < k and 0 ≤ i < j such that ik + 2q and jk + 2q are both

primes and

jk + 2q < (ϕ(k) + h− 1) log(ϕ(k) + h− 1). (12)

This implies that both the primes ik + 2q and jk + 2q belong to the set of first

ϕ(k) primes coprime to k, but they belong to the same residue class 2q (mod k).

Hence k is not a P–integer. We give two examples to illustrate the above pro-

cedure. Let k = 3 · 5 . . . 29. Then k + 2 is a prime and it is one of the first

ϕ(k) primes coprime to k, but it falls in the residue class 2 (mod k). Hence by

the above procedure with i = 0, j = 1 and q = 1, we conclude that k is not a

P–integer. Let k = 3 · 5 . . . p39. Then 3k + 232 and 5k + 232 are primes, 232 < k

and (12) is satisfied by taking i = 3, j = 5 and q = 32. Hence we conclude that k

is not a P–integer. ¤
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[1] P. Erdős, On the integers relatively prime to n and a number-theoretic function considered
by Jacobsthal, Math. Scand. 10 (1962), 163–170.

[2] T. R. Hagedorn, Computation of Jacobsthal’s function h(n) for n < 50, Math. Comp. 78
(2009), 1073–1087.

[3] L. Hajdu and N. Saradha, On a problem of Recaman and its generalization, J. Number
Theory 131 (2011), 18–24.

[4] L. Hajdu and N. Saradha, Disproof of a conjecture of Jacobsthal, to appear in Math.
Comp.

[5] C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory
12 (1980), 218–223.

[6] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1992), 64–94.

[7] H. Stevens, On Jacobsthal’s g(n) function, Math. Ann. 226 (1977), 95–97.

N. SARADHA

SCHOOL OF MATHEMATICS

TATA INSTITUTE

OF FUNDAMENTAL RESEARCH

DR. HOMIBHABHA ROAD

COLABA, MUMBAI

INDIA

E-mail: saradha@math.tifr.res.in

(Received February 11, 2011; revised July 29, 2011)


