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On reducible trinomials, IV

By ANDRZEJ SCHINZEL (Warszawa)

To Kdlmdn Gydry, Attila Pethd, Jdnos Pintz and Andrds Sdrkézy
for their anniversary

Abstract. Let n > m be positive integers, d = (n,m), n = dni, m = dm; and
T(z) = 2™ + Az™ + B defined over a field K be such that 27 + AzT* + B has a linear
or quadratic factor f in K[z]. The paper deals with reducibility over K of T'(z)/f(z?)
and supplements earlier papers of this series.

The present paper supplements part II and III of the series. We shall use
the same notation. In particular, n and m are positive integers, n; = n/(n,m),
my =m/(n,m), K is a field, char K 1 nm(n —m). There is some overlap with [1]
indicated in the Remarks after the proofs of Theorem 2, 4 and 5. We shall prove

Theorem 1. Let n > 2m, A,B € K(y)*, A~"B"™ ™ ¢ K. Assume that
2™ + Ax™! + B has over K(y) a linear factor x — C, but not a quadratic factor.
Then (z" + Az™ + B)/(2(™™ — C) is reducible over K (y) if and only if for an
integer | :n =81, m = 2l and A = A} ,(C, D), B = —C*— AC, where D € K(y)*
and

—w® — dvw + 20%w?* — 52v3w? — 9t
64w? '
Theorem 2. Let n > 2m, L be a finite separable extension of K (y) such
that KL is of genus g > 0. Assume that A,B € L*, A7"B"™™ ¢ K and
" + Ax™' + B has over L a linear factor x — C, but not a quadratic factor. For

Az p(v,w) =
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g=1, (" + Az™ + B)/(x"™™) — C) is reducible over L if and only if there exists
an integer | such that either n = 81, m = 2] and A = AévQ(C, D), B=-C*-AC,
where D € L, or (n/l,m/l) =: (v, ) € S2 = {(10,2), (12,3)} and

A= All,’ (U, w)uV—H’ B=_—-(CM" — AC"”, C = Cy,u(%w)u(y’”),

where

©w

(v,w) € E;H(L), u€el

and Ei , Is an elliptic curve given by

Ejgg:w? =0 —2v+4, Cio2=20(1—2v) or — 40,
A%o,z = 200? (22 - 8v+ 3% + IOw)2 - 204(1 - 2v)4 or — 2200000, respectively;
Bly s w® =0 — 8910+ 9558, Clas = 18(3v +w — 57) or 18,

Aly s =6°(150 + w + 189) — 18%(3v 4+ w — 57)* or — 5616, respectively.

For g > 1, (2™ + Az™ 4+ B) /(™™ — C) is reducible over L if and only if
there exists an integer | such that (n/l,m/l) =: (v, u) € Z*, v < max{8¢, 17} and
(z¥ + Az* + B)/(x#¥) — O) is reducible over L.

Theorem 3. Let n > 2m, K be an algebraic number field and a,b € K*.
Assume that trinomial ™ + ax™* + b has over K a linear factor x — ¢, but not
a quadratic factor. Then (z™ 4 ax™ + b)/(2("™™) — ¢) is reducible over K if and
only if at least one of the following conditions is satisfied:

(i) there exist an integer | such that n = 8, m = 2] and d € K such that

a= Aéz(c, d), b=c*—ac;
ii) there exist an integer | such that (n/l,m/l) =: (v,u) € Sy and
a=A} (v,w)yu’""H b= —c" — Ac™ and ¢ = Cy. (v, w)uH) | where

(v,w) € E;#(K), u € K;
(iii) there exists an integer | such that (n/l,m/l) =: (v, u) € Z* and (ag, by, co) €
F, .(K), where F, ,(K) is a finite set, possibly empty.

Theorem 4. Let n > 2m, A,B € K(y)*, A~"B" ™ ¢ K. Assume that
x™ + Ax™ + B has over K(y) a quadratic factor F(x) = 22 — Px + Q. Then
("™ + Ax™ + B)/F(z(™™)) is reducible over K(y) if and only if at least one of
the following conditions is satisfied:

(iv) n = 3m and there exist U,Uy € K(y) such that either P = —~U!, | | m, [

prime or P = 4U3, 4 | m;
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(v) n = 4m and there exist Us,...,U; € K(y) such that either 4Q — 3P% = U%
or w = (Us + Us\/4Q — 3P2), | m, | prime, or w =

—4(Ug 4+ Ur/4Q — 3P? )4, 4| m;

(vi) n = 5m and there exists Ug € K(y) \ {1, 4, —C4} such that

P2 Us — 2

Q U3-UZ+Us—1

Theorem 5. Let n > 2m, L be a finite separable extension of K(y) such
that KL is of genus g > 0. Assume that A,B € L*, A-"B"™ ¢ K and
x™ + Az™ + B has over L a quadratic factor F(z) = 22 — Px + Q. For g = 1,
(z" + Az™ + B)/F (™) is reducible over L if and only if either (iv), (v) or
(vi) of Theorem 4 hold with Uy, ...,Us in L, or (vii) there exists an integer | such
that (n/l,m/l) =: (v,u) € S3 = {(5,2),(6,1),(10,2)} and P = P, ,(v, w)uH),
Q = Qu (v, W) where (v,w) € E? (L), u€ L and E7 , is an elliptic curve
given by

EZ,: w’ =0 +50"+80+16, Psp=v+4, Qs2=0"+6v+8— 2w,
Eg,w® =0 430+1, Psi=v+1,  Qp1=10>+2v+3- 2w,
Efpg:w® =0 — 520 4 144, Pio2=2v—8, Qo2 = 3v*+4v+ 8w — 68.

For g > 1, (" + Az™ 4 B)/F(2™™)) is reducible over L if and only if either
(iv) or (v) of Theorem 4 hold with K(y) replaced by L or (viii) there exists an
integer | such that (n/l,m/l) =: (v,u) € Z*, v < max {%g,16} and %
is reducible over L.

Corollary 1. Let L be a finite separable extensions of K(y) with KL of
genus g and A,B € L*, A~"B" ™ ¢ K and let F be a linear factor of ™ +
Ax™ + B in K(y)[z] of maximal possible degree d < 2. If ny > d + 2, then
(2™ + Az™ 4 B)F(z(™™)~! is reducible over L, if and only if there exists an
integer | such that (n/l,m/l) =: (v,u) € N*, v < max {17 — (d — 1)2, %ﬁl and
(z¥ 4 Az* + B)F(z(»*))~1 is reducible over L.

Remark 1. This is a minor improvement on Theorem 2 of [4] in which 9d? —
8d + 16 is replaced by 17 — (d — 1)2.

Theorem 6. Let n > 2m, K be an algebraic number field and a,b € K*.
Assume that 2™ + ax™ + b has over K a quadratic factor f(x) = 2% — px + q.
Then (z" + az™ + b)/ f(x(™™) is reducible over K if and only if at least one of
the following conditions is satisfied:
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(ix) n = 3m and there exist uj,us € K such that either p = —u}, I|m, I
prime or p = 4uj, 4|m;

(x) n = 4m and there exist us, . ..,u7 in K such that either 4q — 3p*=u3 or

— _ 2
@ _ (u4+u5\/m>l, ! m, Iprime

or

_ _ 2
—pt VA= 37 W:_4(u6+u7 fig=32)",  dlm;

)

(xi) m = b5m and there exists ug € K \ {1,(4, —(s} such that

p27 ug — 2

;
g ud—uitus—1

(xii) there exists an integer | and u € K such that (n/l,m/l) =: (v,u) € S
andp =P, ,(v, w)uH) | g = Qu,u(v, w)u?H) | where (v, w) € EghM(K),
u e K;

(xiii) there exists an integer | such that (n/l,m/l) =: (v, u) € Z? and (a,b,) €
F, ,(K), where F, ,(K) is a certain finite, possibly empty, set.

The proofs of all six theorems will be performed according to the same
scheme: first the condition for reducibility given in the theorem will be shown
necessary, then sufficient.

Lemma 1. In the notation of [3] we have forn > 2m >0, (m,n) =1, ¢ > 1

>0 it (m,n,q) =(1,4,2),
>1 it (m,n,q) =(1,4,3),(1,5,2),

gl*(m,n,Q) Z 2 if <m’n7q> = <1,474>a
> % otherwise.

PROOF. g1.(m,n,q) is the genus of the field Mi.(m,n,q). By Lemma 2(a)
and Lemmas 13-15 of [2] we have

1 qn72 o qnf?, qmax(nf?),mfl) m—1
g1+(m,n,q) > 1+§ (2(n2) T 1+W

max(n—3,n—m—1) - 1
q n—m -
B \‘ n—m (1 + qtﬂ(q(’ﬂfm))/@(q) )J) - b(m7 n, q)

Now, we find

b(1,4,3) =1 =15(1,5,2), b(1,4,4) =2 =b(2,5,2)
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and it remains to consider

n=4,¢q>5 or n=>5 ¢q>3 (1)
or n > 6. By a formula on p. 596 of [3].
n—3
gl*(’”»”aQ) 2 1+ Pyl(qvman>7
where
-1 1
qT(n—z)—1—f:1 if m=1,

71 (Qa m, n) =
-1 1 1 1
L(n —-2)— ( + > (1 + ) otherwise
2 m n—-m q

and in the case (1) y1(q,n,m) > 1,

n—3
5 1(g,n,m) > %-

For n > 6 the inequality gi.(m,n,q) > % has been proved on p. 596 of [3]. [

PROOF OF THEOREM 1. Necessity. Let
™ + Az™ + B
x—C '
If (2" + Az™ 4 B)/(z(™™ — C) is reducible over K (y), then by Capelli’s lemma
either Q(z; A, B) is reducible over K(y) or x(™™) — ¢ is reducible over K(y,¢),
where ¢ is a zero of Q(x; A, B). Following the proof of Theorem 1 in [3] we find
that either gj(k,mi,n1) = 0 for a certain k € [2, =] or gi.(my,n1,q) = 0
for a certain ¢ | (m,n), ¢ > 1, respectively. In the former case, by Lemma 8
of [3], n1 > 5 and reducibility of Q(z;A, B) contradicts the assumption that
2™+ Ax™! + B has no quadratic factor over K (y). In the latter case, by Lemma 1,
(m1,n1,q) = (1,4,2), hence (n,m) = (8,2). By Lemma 29 of [2] we have
zt 4+ Az — (C* + AO)
x—C
hence for a,b,c € K(y):

Q(z;A,B) =

=xzf(z)® —g(x)* f.ge€ Kyl

22+ 02+ C?*r + C* + A =2(x +a)* — (b + ¢)?
=23 4 (2a — b?)z? + (a® — 2bc)z —
20— b =C, a? — 2bc = C?, ad—=C*+A andifb#0

2\2 _ 42
(C +b*)? — 8bc = 4C?; C:—(CerS)b 1¢ ,

A=—c?—C®=A44,(Cb), B=-C'-AC.
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If b = 0 it follows that C' = 0, hence B = 0, contrary to the assumption.

Sufficiency. If n = 8l, m = 2, A = A§,(C,D), B = —C* — AC where
CeK(y), De K(y)*, then

¥+ A?+ B 4 Do 4 C+D2xl N -3C% +2CD?* + D*
22—-C 2 8D
y <x3l _ D2 n C+D2xl _ —3C? +2CD? —|—D4) . (2)
2 8D

O

PrROOF OF THEOREM 2. For g > 1 the assertion has already been proved
in [3], thus we consider only the case g = 1.

Necessity. Arguing as in the Proof of Theorem 1 we find that either

g1+(k,mi,m1) < 1 for a certain k € [27 "12_1] or Q(z, A, B) is irreducible over

L and g1.(m1,n1,q) <1 for a certain ¢ | (m,n), ¢ > 1. In the former case, by

Lemma 8 of [3], n1 < 6 and reducibility of Q(z, A, B) contradicts the assumption
that z"* + Az™ + B has no quadratic factor over L. In the latter case, by
Lemma 1, (my,n1,q) = (1,4,2),(1,4,3), or (1,5,2). If (my,ny,q) = (1,4,2) it
follows, as in the proof of Theorem 1, that A = Aé’Q(C’,D)7 where D € L*. If
(mi,n1,q9) = (1,4,3) and Q(z, A, B) is irreducible over L, then by Lemma 29
of [2], we have

zt + Ax — (C* + AC)
z—C

= f(2)* + 2g(2)’ + 2*h(x)* - 3af(x)g(x)h(x);

fag7h€L x).
Hence for a,b,c € L: ()

23+ 02+ C?r + CP+ A= (z+a)+2b® + 22 — 3z(x + a)be;
3a+ ¢ —3bc=C, 3a®+b>—3abc=C? a=C3+ A,
C—c3+3bc  (C—c+3be)?

a= 3 : 3 +b* — (C — 4+ 3bc)be = C?. (3)

If ¢ = 0 we obtain a = C/3, b® = %CQ, b= % (%)2 and taking % = u we have
b=6u? C=18u3 A=a®—-C3 = (63— 18%)u® = —5616u°.
If ¢ # 0 we put c% =1, C% = ( and obtain from (3)

2433 +96% — 363+ 12 = (33 — 2)? +8(38° =38+ 1) = (47 — 38+ 2)%.
Taking

u=g5, v=248+3, w=24(4y-36+2)
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we have
v3 — 891v 4 9558 = w?

and
A= Ajgs(v,w)u®,  C=Cias(v,w)u’.
If (m1,n1,¢) = (1,5,2) and Q(z, A, B) is irreducible over L, then, by Lemma 29

of [2], we have

25 + Az — (C° + AQ)

T_C = f(2)* —zg(x)®, f,g.€ L(z),

hence for a,b,c,d € L:

2t O+ CP? + OB+ C* + A= (2% 4 ax 4+ b)? — z(cx + d)?;
20— 2 =C, 204a®>—2cd=C?% 2ab—d*=0C3 b =C*+ A,

C+c? 1
a= —;C b:§(3C’2—2002—04—&—86d)7
(C + *)(3C% — 2Cc* — ¢* + 8cd) — 8d* = 8C3. (4)
If ¢ = 0 we obtain —8d%> = 5C3, C = —%(%)2 and taking % = u we have

C = —40u?, a = —20u?, b = 600u?*, A = b> — C* = —2200000u®.
If ¢ # 0 we put C% =, % = ¢ and obtain from (4)

A4y +1)% = 2(59° = y* + 3y + 1) = (46 — 2y — 2)°.

Taking 2v = =57 + 1, 2w = 5(26 — v — 1), u = 15 we have

3 — 20+ 4 = w?
and

A= A}&Q(v,w)ug, C = Cig2(v, w)u?.

Sufficiency. Ilf n =8l,m =2l, A = AévQ(C, D), B=—C*—AC where C € L,
D € L, then % is reducible over L by (2).

If n =100, m = 2l and A = Ajj 4(v, w)u®, B =
then

—05—AC, C = 01072(’0710)’&2

.’IJlOl—‘rAl‘Zl—I—B

e = (2 + 10uz® + 20(3 — v)u’z® + 200(w — v + 3)usz!
22l _

+200(22 — 8v + 3v% 4 10w)u?) (z* — 10uz + 20(3 — v)uz?!
—200(w — v + 3)udz! +200(22 — 8v + 3v? + 10w)u?).
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If n =10, m = 2] and A = —2200000u3, B = —C® — AC, C = —40u? then

200 4 A2+ B B

O (z* — 20022 — 200u3z! 4 600u*)

x (o — 20u*2?" 4 200u2! + 600u*).
If n =120, m = 3l and A = A}, 3(v,w)u?, B = —C* — AC, C = Cia3(v, w)u?
then

I121+A$31+B

p g = (23 4+ 12uz® + 6(v — 3)uz! + 6(15v + w — 189)u?)

x (28 — 12u2® + 6(27 — v)u®z + 12(9v + w — 171)u2>

+ 36(v? — 36v — 30w + 387)u'z?

—36(v — 3)(15v + w — 189)u’z! 4 6%(15v + w — 189)u’).
If n=12I, m =3l and A = —5616u°, B = —C* — AC, C = 18u3, then

120 A3l L B , )
% = (2% + 6u?z! + 6u?)
23 —

x (2 — 6ulzt + 120323 4 36utz® — 36uPz! + 36uS). O
Remark. The calculations performed in the case (m1,n1,q) = (1,4,3) are
similar to those in the Proof of Theorem 6.5 of [1].

PROOF OF THEOREM 3. In view of Theorem 2 the proof does not differ es-
sentially from the proof of Theorem 3 in [3]. The finiteness of the set F, ,(K) is
a consequence of the Faltings theorem. O

Lemma 2. For n > 2m, (m,n) = 1, n > 2k + 2 we have the following

inequalities
>0 if (kym,n) = (1,1,5),
g;(k,m,n) 21 1f<k’m’n> = <1’275>7<17176>7
5N .
> — otherwise.
24

PRrROOF. Except for (k,m,n) = (2,1,6) this follows from the inequalities

2 -2
g5 (k,m,n) > (:) (k(ng)_1>+1 for k> 1,

1/n—-2 1
waitomn) > 5(" %) 50— -2 41
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shown in the proof of Lemma 15 of [4], where ( is given by the formula (9) there,

namely
(n+m—-4)/2 if n=m=1 (mod 2),
(=90Cn—-—m-4)/2 if n=1, m=0 (mod 2),
(n—2)/2 if n=0, m=1 (mod 2)
For (k,m,n) = (2,1,6) we profit by the result of [1] that ¢5(2,1,6) = 2. O
Lemma 3. The number of vectors (a1, ..., ..., aq) € Z/qZ such that
Z C;""Céq =0, A a proper subset of {1,...,a} (5)
i=1

=
i¢ A
does not exceed
qa*IA\*min{min Afl,so(aq)/v(q)}v
where min @ = oo.

PROOF. Let 0 = [Q(Caq) : Q(¢y)] = w(ag)/v(q) and let Cog (1 < j < o) be
all the conjugates of (44 over Q(¢,). The equation (5) gives

min{min . A—1,p} a
Z Cigh = — Z (g Cag (1 <j <min{min A — 1, o}).
i=1 i=min{min A—1,p}+1
i¢ A

The Vandermonde determinant det( Zj )#0, hence a; (1 <i<min{min.A—1, p})
are determined uniquely by «o; (min{minA—1,9}) <i <a, i ¢ A). The number
of vectors formed by the latter is just the bound given in the lemma. O

Lemma 4. Let x(t) be an algebraic function of t given in the neighbourhood
of t = 0 by the Puiseux expansions

ai(t) = Gt/ ™ Pyt ™) (1<i<a, id¢A),

Tayj(t) = Gt2/M2 Py (™) (1<j<b, j¢B),

where 11,1y € Z; a,b,my, mg € N, A, B subsets of {1,...,a}, {1,...,b}, respecti-
vely and P;, P, ; ordinary power series with non-zero constant term. If

lymg — lomy = 1, q is a positive integer (6)
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and

a+b q
y(t) = ( > xi(t)l/q> ; (7)
i¢ AoBta
then the number of distinct prime factors of the denominator of t in the field
K(t,y(t)) does not exceed

o to—1AI=1B]-2 . my — 1
myme gmin{min A—1,0(aq)/e(a)}
meo — 1 .
x <1 + qmin{minB—Lso(bQ)/«p(Q)}) if |Al <a, Bl <b,
Mi=1 oai — ‘ (8)
e (1 * qmin{minA—l#’(GQ)/V’(Q)}) if |A] <a, |Bl=b,
b—|B|-1 1
q ma . .
™2 (1 + qmin{minsl,mbq)/w(q)}) if |Al=a, [B] <b,

Remark. This lemma generalizes the arguments used in the proof of Lem-
ma 22 and 23 of [2], Lemma 14 of [3].

PROOF. By (7) the Puiseux expansions of y(¢) at ¢ = 0 are
a b q
(Z G Gagt™ P (G M S G czqt’”’"”Pw<<£t”m2>1/q) (9)
= b
where «;, aq4; run through Z/qZ.

Let S, T be the sets of vector {aq,...,q;,...,aq) (1 ¢ AJA| < a) and
<aa+1a~~~aaa+ja~'~vaa+b> (j ¢ Bv |B| < b) such that

a b
Z (¢l =0 and Z Cgoti ng = 0, respectively.
i=1 =1
igA 5%3

By Lemma 3 we have

S| < qaflA\fmin{minAfl,@(aq)/w(q)} if | Al < a, (10)

and
|7-| < qb—|B\—min{minB—l,(p(bq)/tp(q)} if |B| < b. (11)

On the other hand, if | A| < a, |B] < band (a1, ...,qq) ¢ Sand {(agt1, ..., Qatp) ¢
T the parenthesis in (9) contains t/™19 and #'2/"2¢ with non-zero coefficients.
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We assert that the g-th power of the parenthesis contains with non-zero coeffici-
ents both monomials

fe- D5 and g t@ Dk (12)

Indeed, if for ¢ =1 or 2

(q—l)niqur ai _i%(mqur) Zb (mw+mz>, (13)

m3—iq

where a,,, b, are non-negative integers and

S o+ bu—q (14)
n=0 n=0

then multiplying both sides of (13) by mjmsaq we obtain

l3_im; — lymz_; = limy Z a, + lomy Z b, (mod g),
n=0 n=0

hence by (6) and (14)
)= Z a, (mod gq)

and for ¢ = 1: ZZO:QCL;L =q-1, EM:O w = 1; for i = 2 fo:oau =1,
o0
Yp—obu=q-1.
Now, (13) gives in both cases

Z aup=0= Z buu

n=0 pn=0
and, since a, > 0, b, > 0, a, = 0 = b, for p > 0, thus for i = 0: ap = ¢ — 1,
bg = 1; for i = 2: a9 =1, by = ¢ — 1. Therefore, there is no cancellation and both
monomials (12) occur with non-zero coefficients in the Puiseux expansion of y(¢)
at t = 0. Now, by (6),

(¢—1) l; lai  _ qlimg—i +13_imi —lims—; _ gqlima—; + (—1)"
m;q  Mm3z—14q mimaq mimaq

hence the reduced denominator is divisible by ¢ms_; and, since (mi,ms)
=1 we have L.e.m. [gma,gmi] = gmims. Thus we obtain for y(t) at t =0

i ) [t V)

g>mima

cycles of length gmims.
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If |A < a, |B] <b, {a1,...,0,) € S and (@gs1,---,0qtp) € T, then the
parenthesis in (9) contains t"’iﬁ and t%‘ﬁﬁ (we take the least possible v € N)
with non-zero coefficients, hence the g-th power of the parenthesis contains with
a non-zero coefficient

tvﬁﬁ(q—l)(wiiﬁ#z),
(the proof is similar to the one given above). However, by (6),

z z z —1)+1
1+(q—1)<2+”):’”IQ(2+”(‘1 )+
mimaq

)

miq maq ma

hence the reduced denominator is divisible by m1q and we obtain for y(t) at t =0
at most

(¢~ — ISDIT]

q>my

cycles.
If |Al < a, |B] <b, {a1,...,aq) € S and {(@gt1,-..,Qatp) ¢ T we obtain
similarly for y(t) at ¢t = 0 at most

[SI(a" "% — [T
q*ms
cycles.
Finally, if |A| < a, |B] < b, {a1,...,a,) € S and (@g41,--.,0q+p) € T the
parenthesis in (9) contains with non-zero coefficients

1,1 lpg | va
tM1q+M1 and tTﬂQq+m2

(we take the least possible v, vo in N), hence the ¢g-th power of the parenthesis
contains with a non-zero coeflicient

oD (S ) v (15)
Indeed, if
ll %1 lQ Vg - > ll 1%
@-D(—+—)+—+—== a(—+-—
mig ma2q M2 i miqg
o] 12 [ )
()
:Z A i (16)

where a,, b, are non-negative integers and

oo

Z a, + Z b, =g, (17)

K=V H=r2
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then multiplying both sides of (16) by mimsoqg we obtain

—1=1l1my Z a, + lomy Z b, (mod q),

n=v1i H=V2

hence by (6) and (17)
-1= Z a, (mod q)
K=V
and 3277 a,=q—1,37 b, =1. Now (16) gives

H=r2

(e ) o
ma Z aup+my Z bup = ma(q — vy + mqva,
n=r1 H=Vr2

hence a, = 0 for 4 > v1 and b, = 0 for u > 1o, a,, = ¢ — 1, by, = 1. Therefore,
there is no cancellation and the monomial (15) occurs with a non-zero coefficients
in the Puiseux expansions of y(t) at t = 0. Now,

maq M2 mimaq

)

(q_1)< L +V1>+ o ve _ g(mel+man(q—1) +mreg) - 1

hence the reduced denominator is divisible by ¢ and we obtain for y(¢) at most

SIHT]
q2

cycles. The total number of cycles does not exceed

(gl — |S|)( b—|B| _ \7—|) (g2~ 1Al — |3|)|7-| IS|(¢"~ 1B = |T)) N |S||T]

q>mimeo q*my q>ms q?
a+b—|A|—|B] b—|B| 1 a—|A| 1
. 81— (1-— )+ ML— (1- —
g mime q“mo my qemq ma
S 1 1
ST LY (- L,
q my ma

Using the inequalities (10) and (11) we obtain for the number of cycles the bound
M, given by (8). O

Consider now the case |A| < a, |B| = b. Then, if (a1,...,aq) ¢ S, the mo-
nomial of the least degree occurring with a non-zero coeflicient in the parenthesis
of (9) is t'/™19 and the g-th power of the parenthesis contains with a non-zero
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coefficient t'/™1. Tt follows by (10) that the number of cycles for y(t) at t = 0 is
at most

1-— —
mi

qmy q m1 q
a—|A|—-1 -1
q my o
= my (1 * gmin{min A—Ls@(tm)/sa(q)}> = M.

a—|A| _ S S a—|A|—-1 S 1
q S| N ISI _q N |81 ( )

The case |A| = a, |B| < b is treated similarly.

Lemma 5. Let x(t) be an algebraic function of t given in the neighbourhood
of t = co by the Puiseux expansion

wi(t) = Gt/ Qu (it ™) (1<i<e i¢C),

Toj(t) = CHtH/ M Qo (G ™) (1<j<d, j¢D),

where ls,ly € Z; ¢,d,m3, mq € N, C, D are proper subsets of {1,...,a}, {1,...,b},
respectively and Q;, Q.+; ordinary power series with non-zero constant terms. If
lsmy — lymg = 1, q is a positive integer and

c+d q
y<t>=< ) w)“q),

i=1
1¢CUD+c

then the number of distinct prime factors of the denominator of t in the field
K(t,y(t)) does not exceed

qc+d—|C|—|D\—2 (1 N ms — 1 )

msmy gmin{minC—To(cq)/e(a)}

M, — C_TC(_IIJF qmifl{mirln;iio%?;w(q)}) if |Cl <¢, Dl <d,
: m3 (1 * qmi“{mincglw(CQ)/w(q)}> it |C| <¢, |D|=d,
qdmill (1 " qmin{minn;il_,sidq)/qs(q)}> if |Cl=c, |D|<d,

PROOF. We apply Lemma 4 to the algebraic function z(¢~!) replacing [y, la,
a, b, my, mo by —ly, —l3, d, ¢, my, mg, respectively. ([
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Lemma 6. In the notation of [4] (Lemma 8) if n > 5 the number of distinct
prime factors dividing the numerator or the denominator of t in the field K (t,y(t))
is at most

n—4
q 1 _3 .
1 : "3 jfp=1mod2, m=1
2 ( * qmin{"fmo((n—l)(ﬂ/so(q)}) o = tmed 2, m =4
M3 = n—3
I (1+ b ) +am if n=1mod2, m=2,
2¢"3, otherwise.

PROOF. In the notation of [4] (Lemma 3) we have

n

fna™ =t foa™ + 1P fr = H(w —z;(t)), 2 —trt+t= H(x —xz;(t)),

i=1 €T

where f, is a monic polynomial of degree L";lJ with a non-zero constant term

and a:gJ_{%J ﬁ:{n;mJ_V;J'

We have to choose a, b, ¢, d, A, B, C, D that

(1,..,a+ )\ A\ (@ +B) ={1,....n}\Z, c+d=n, |C| +|D| = 2.

If n =m =1 mod 2 we take in Lemmas 4 and5

a=m, llzmTH, my=m, A=ga;
b=n—-m, Ily=1, mo = 2, Bz{n;m,n—m};
c=n—-m, lI3=1, m3=1, C={n—m}k
d=m, ly =0, my=1, D={m}.

If n=1, m =0 mod 2 we take in Lemmas 4 and 5
a=nm, lh =1, my = 2, AZ{%J”}%
b=n—m, 12:%7”_17 mog=n—m, B=;
c=n—-m, lI3=1, mg = 1, C={n—m};

d:m, l4=0, ’/77,4:17 D:{m} (Il
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Lemma 7. In the notation of [4] we have for n > 5, n > 2m, (m,n) = 1,

q=2
>1 if (m,n,q> = <17572>a
>2 if (m,n,q) = (2,5,2),
g2+(m,n,q) § > 3 if (m,n,q) = (1,5,3),
ong .
> 5Ty otherwise.

PRrROOF. By Lemma 2(a) of [2], Lemma 20-22 of [4] and Lemma 6 we have
qn—4 q-— 1/n—2
2 2 2
m—1 1 1 n—m-—1
T2 T T U o
m—1 4—n
m <1 * qw(mQ)/w(4)> — Msq >> '

92*(m7n7 q) Z 1 +

If (m,n) = (1,5) we obtain

q (5 1 1 3 9
* b ) Z = - - 1) — - — —— — = —_— —_— N
g2+ (m,n, q) {1—# 5 (2((1 1) 5 3 q)J {4@ 1)
thus gox(m,n,q) > % unless ¢ < 3.
If (m,n) = (2,5) we obtain
3 1 1 2
gox(m,m,q) > {1+q<(q—1)+q———q——

2 \ 2 2 2 3

1
= | (¢ 1)(13¢q —
LQ(Q )(13¢ 5)J :
thus go.(m,n,q) > % unless g = 2.
If n > 6 we have (cf. [4], p. 68)

qn74

2
PROOF OF THEOREM 4. Necessity. Let

™ + Az™ + B

@z 4, B) = 22— Px+Q

(18)

If <m1,n1> = <1,3>, then
Q(z;A,B) =2+ P
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and condition (iv) follows from Capelli’s theorem.
If (mq,n1) = (1,4) then

Q(z;A,B) = 2° + Pz + (P?> - Q)

and condition (v) follows from Capelli’s lemma and Capelli’s theorem. Therefore,
let n; > 5. If Q(2™™; A, B) is reducible over K(y), then by Capelli’s lemma
either Q(z; A, B) is reducible over K (y), or (™™ — ¢ is reducible over K (y,£),
where € is a zero of Q(z; A, B). Following the proof of Theorem 1 in [4] we

find that either g5(k,mi,n1) = 0 for a certain k < ™2 or go.(m1,n1,q) = 0
for a certain q | (m,n), ¢ > 1, respectively. The latter case is impossible by
Lemma 7. In the former case by Lemma 2 above (k,mj,n1) = (1,1,5) and we
have to consider the case 2° + Az + B = (22 — Pr+ Q)(x +a)(2? + bz + ¢), where
a,b,c € K(y). This gives the following system of equations:

a+b—P=0, ab+c—Pa—Pb+Q =0,
ac— Pab— Pc+ Qa+ Qb=0

We cannot have P = 0, since this would imply B = 0. Taking Ug = a/P we

obtain
P2 (a+b)*(a+2b) Us —2
Q  2a2b+2ab?+b3 U —-UZ+Us—1
where Us € K(y) \ {1, (4, —Cs}, which gives condition (vi).

Sufficiency. If (iv) is satisfied, Q(x(™™); A, B) is divisible either by

et Ut (P =)
or by
™2 4 2Uya™ 4 2U2 (P = AUR).
If (v) is satisfied, Q(z(™™); A, B) is divisible either by z™/! — Ulm/l (P=U}) or
by

or by
22— U™+ U2 — U2(4Q — 3P?),

or by

™ + AUga®™* 4+ 8UZa™/? + 8Us(UZ — U2(4Q — 3P%))2™/*
+ 4(UZ — U2(4Q — 3P?))2.
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If (vi) is satisfied, then

Q(z'™™; A, B) = (™™ 4 P)(22™™ 4 (P — PUg)z(™™ + P2 (U2 - Ug+1)— Q).
O

Remark. The calculations performed in the case (k1,mi,n1) = (1,2,5) are
similar to those in [1], Proof of Theorem 3.1.

PROOF OF THEOREM 5. Necessity. Let Q(z; A, B) be again given by (18).
If n; < 4 the conditions (iv) and (v) with K(y) replaced by L follow as in
the proof of Theorem 4, or g > 2 and the condition (viii) holds with v =
ny, thus let n; > 5. If Q(z(™™); A, B) is reducible over L, then by Capelli’s
lemma either Q(z; A, B) is reducible over L, or (™™ — ¢ is reducible over L(¢),
where € is a zero of Q(z; A, B). Following the proof of Theorem 2 in [4] we
find that either g5(k,m1,n1) < g for a certain k < ”1;2, or gax(mi,m1,q) < g
for a certain ¢ | (m,n), ¢ > 1, respectively. In the former case, by Lemma 2
either, (k,mi,n1) = (1,1,5),(1,2,5) or (1,1,6),(1,5,3),(2,5,2) or g > 53—;‘1. For
g = 1 we have (k,my,n1) = (1,1,5),(1,2,5),(1,1,6) or (mq1,n1,q) = (1,5,2). We
consider these cases successively. The case (k,m1,n1) = (1,1,5) leads to (vi) with
K (y) replaced by L, as in the proof of Theorem 2. The case (k,m1,n1) = (1,2,5)

leads to the equality

2° + A2+ B = (2 — Pr+ Q)(z +a)(2® + bz +¢), a,b,c€ L.

This gives the following system of equations:

a+b—P=0, ab+c—Pa—Pb+Q =0, —Pac+ Qab+ Qc=0
and on eliminating P and @

—(a+b)ac + ab(a® + ab +b* —¢) + c(a* + ab+b* —¢) =0
ab = 0 implies B = 0, hence ab # 0 and or putting b = a, ¢ = va? it follows
7= (B2 =By = (B°+ 8%+ B) =0,
(27— (8% = B)* = (B = B)* + (8" + B* + B) = B +26° + 55° + 48.

Taking 437! = v, 8y 2 —44+48"1 = w, % = u we obtain w? = v3+5v2+8v+16,
where v,w € L and P = u(v + 4), Q = u?(v? + 6v + 8 — 2w).
Consider now (k,m,n) = (1,1,6). The equality

25+ Az + B = (2% — Pz + Q)(z + a) (2 + ba? + cx + d),
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leads to the system of equations

a+b—P=0, ab+c— Pa—Pb+Q =0,
ac+d— Pab— Pc+ Qa+ Qb =0, ad — Pac — Pd + Qab+ Qc = 0.

Eliminating P, Q and d and taking b = a, ¢ = ya® we obtain
7 +(8 +26) - (8 +26° + 26° + 26) = 0.
It follows that

(27 + B2 +28)2 = (B2 +28)2 + 4(8* + 2% + 282 + 28)
=584 + 12833 +126% + 843.
Putting 287 ' 4+1=v,2v872+1+28"! = w, % = u we obtain w? = v3 +3v+1,
where v,w € L and P = u(v + 1), Q = u*(v? + 2v + 3 — 2w). Consider finally
(m1,n1,q) = (1,5,2). By Lemma 29 of [2] we have

>+ Az + B
2 — Pr+Q

=zf(z)® — g(x)?, where f,g € L[z]
and taking f(z) = z + a, g(x) = bx + ¢ we obtain
2% 4+ Az + B = (2 — Pz + Q)(2® + (2a — b*)2® + (a® — 2bc)x — ¢?),

which leads to the system of equations

2a —b>—P =0, a® —2bc — P(2a —b*) +Q =0,
—c? — P(a* — 2bc) + Q(2a — b*) = 0.

Eliminating P and @ and taking a = ab?, ¢ = vb> we obtain
7 — 2y(da — 2) — (4a® — 10a* + 6a — 1) = 0.
It follows that
(v — 4o+ 2)? = (4a — 2)* + 40> — 100® + 6 — 1 = 4a® + 602 — 10 + 3.

Putting 4o 4+ 2 = v, 47y — 16 + 8 = w, g = u we obtain w? = v3 — 52v + 144,
P = (2v—8)u?, Q = (3v® + 4v — 68 + Sw)u.
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Sufficiency. Proof of sufficiency in the cases (iv), (v) and (vi) is similar to
that of Theorem 4. If there exists an integer ! such that (n/l,m/l) = (v, u) € Ss
and P = P, ,(v,w)u®™", Q = Q, (v, w)u*"" where (v, w) € E2 (L), uelL,
we shall consider successively the three cases.

If (v, ) = (5,2), then

"+ Az + B

TPy g ~ @ )+ du + 2w v+ 4).

If (v, ) = (6,1), then
"+ Ax™ + B
m = (xl +u(v —1)) (xgl 4 oux? & 20’ (w — U)a:l
+u® (20 4 6)w —v® —v* —9v —5)).

If (v, ) = (10,2), then

"4+ Ax™ + B
% = (2% + 2ax® +u?(v — 2)z' + 2u® (w + 4v — 16))
x (2% — 202 + u? (v — 2)z! — 2u3(w + 4v — 16)).
For g > 1 the sufficiency of the given condition is obvious. O

Remark. The calculations performed for the cases (k, m1,n1) = (1,2,5) and
(1,1,6) and {(my,n1,q) = (1,5,2) are similar to those in the proof of Theorem 3.2,
Theorem 4.1, and Theorem 6.1 of [1].

PROOF OF COROLLARY. The corollary follows from Theorem 2 of [2], The-
orem 2 and Theorem 5 above. O

PROOF OF THEOREM 6. In view of Theorem 5 the proof does not differ es-
sentially from the proof of Theorem 3 in [3]. The finiteness of the set F, ,(K) is
a consequence of the Faltings theorem. (Il
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Corrigenda to the paper [2] (mistakes corrected in Selecta, vol. 1 are not
included)

p. 8 Table 2 Ag; (first): for 3v? — 12v — 10 read 3v? — 10
Table 2 Ag,: for v3 4 18v — 36 read v® — 18v + 36

(I owe these corrections to A. Bremner).

p.- 9 line 6 for (7,2) read (7,2),(7,3)
line -6 insert E7 3(Q) = {(—33,0), (3,108), (3, —108),
(39,216}, (39, —216)}
p. 49 line 13 for u® read u®(v — 39)
p. 50 for (v—1)x 4+ (w —3v +5)
read u?(v — 1)z + u®(w — 3v + 5)

(I owe these corrections to A. Jasinski).

p. 64 line 17  insert E73(Q) = {(—33,0), (3,108), (3, —108),
(39,216), (39, —216)}
line -16 leave out E7 3
line 17 leave out (3, 108)
line -13 insert: All rational points on the curve E7 3 are the
indicated torsion points (see [1], Theorem 5.2 (3)).
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